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Abstract—DPDK works as a specialized library that enables
virtual switches to accelerate the processing of incoming packets
by, among other things, balancing the incoming flow of packets
over all the CPU cores and processing packets by batches to make
a better use of the CPU cache. Although DPDK has become a
de facto standard, the performance modeling of a DPDK-based
vSwitch remains a challenging problem.

In this paper, we present an analytical queueing model to
evaluate the performance of a DPDK-based vSwitch. Such a
virtual equipment is represented by a complex polling system
in which packets are processed by batches, i.e., a given CPU
core processes several packets of one of its attached input queues
before switching to the next one. To reduce the complexity of the
associated model, we develop a general framework that consists in
decoupling the polling system into several queueing subsystems,
each one corresponding to a given CPU core. We resort to servers
with vacation to capture the interactions between subsystems.
Our proposed solution is conceptually simple, easy to implement
and computationally efficient.

Tens of comparisons against a discrete-event simulator show
that our models typically deliver accurate estimates of the
performance parameters of interest (e.g., attained throughput,
packet latency or loss rate). We illustrate how our models
can help in determining an adequate setting of the vSwitch
parameters using several real-life case studies.

Index Terms—NFV; virtual switch; DPDK; modeling; perfor-
mance evaluation; polling system; batch.

I. INTRODUCTION

Server virtualization has become ubiquitous in the modern
IT environment. Decoupling virtual servers from physical
servers helps to leverage the computing resources, and brings
important gains in scalability and agility. More recently, the
virtualization of networks has attracted much attention. Scala-
bility, agility, and multi-tenancy (with the concept of network
slicing) are the envisioned improvements that virtualization
will bring to traditional computer networks.

This trend towards more flexible networks, often known as
“softwarization”, is driven by two main paradigms: Software-
Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV). The former aims at removing all the decision-
making networking functions from network nodes and re-
grouping them into a (set of) controller(s). Thus, network
nodes, such as routers, switches, load-balancers, firewalls, etc.
are replaced by appliances receiving their instructions directly

from the controller(s) (using a standard interface like Open-
Flow [1]). On the other hand, NFV refers to the gradual move
of network functions from dedicated hardware to commodity
hardware running specialized software. For example, functions
such as routing, switching, load-balancing, firewalling, etc.
will be run as software on standard x86 servers, and are thus
referred to as Virtualized Network Functions (VNFs). Note
that VNFs may be executed directly by the hypervisor or
within a Virtual Machine (VM) (or a container). In any case, to
allow communications between the VMs (of a same physical
server) and the rest of the physical network, the hypervisor can
create a virtual switch (aka vSwitch) that logically connects
the VMs to the outside world.

While software-based solutions are generally viewed as
more flexible than their hardware counterparts, the network
softwarization raises concerns about its expected performance.
To address this issue, a consortium including companies like
Intel and 6WIND has devised Data Plane Development Kit
(DPDK) [2]. DPDK is an open-source project and works as a
specialized library for x86, ARM and PowerPC processors. In
particular, it enables vSwitches to accelerate the processing
of incoming packets by (i) balancing the incoming flow
of packets over all the vSwitch CPU cores, (ii) avoiding
unnecessary re-copy of the packets, (iii) keeping all operations
out of the OS kernel and, instead, within the user space and
(iv) processing packets by batches, thereby having a better
use of the CPU cache. While other libraries exist, DPDK has
become a de facto standard for vSwitches. Nonetheless, due to
the relative novelty and complexity of virtual switches, their
performance modeling (e.g., to analytically derive estimates of
throughput, loss rate, latency) remains a challenging problem.
We believe that an analytical model can provide some helpful
guidelines by suggesting adequate values for the large number
of parameters that can be adjusted in a virtual switch.

In this paper, we investigate the performance of a virtual
switch, i.e., a software relaying packets (possibly after mod-
ifying their content) between the ports of VMs or containers
hosted on a same physical machine and the rest of the physical
network. We assume that the vSwitch is equipped with DPDK.
We propose a conceptually simple and easy-to-implement
modeling approach for evaluating customary performance pa-
rameters of a vSwitch such as its mean throughput, its mean
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latency, its loss rate as well as the level of utilization of its
CPU cores. We consider several examples inspired by real
scenarios and we assess our model accuracy by comparing
its predictions with the actual values delivered by a discrete-
event simulator. To illustrate the application of our model,
we explore the effects of changing a vSwitch configuration
(e.g., batch sizes) as well as adjusting the vSwitch resources
(number of allocated CPU cores) to satisfy a given Service
Level Agreement (SLA) policy (e.g., zero-loss).

The remainder of this paper is organized as follows. Sec-
tion II describes the internal behavior of a DPDK-based
vSwitch as well as the real-world inspired scenarios that mo-
tivate our study. In Section III, we present the main principles
underlying our modeling framework for a vSwitch. Section IV
details our approach in the case where a vSwitch processes
incoming packets individually while Section V handles the
case of packets being served by batches. We study the accu-
racy of our models in Section VI and we provide potential
applications of theirs in Section VII. We discuss the related
work in Section VIII. Section IX concludes this paper.

II. DESCRIPTION OF A VSWITCH

A. Context and definition

Like traditional switches, a vSwitch commutes packets
between its ports but, unlike them, it operates as a software
typically run by the hypervisor of the physical server. In
general, a vSwitch has access to a set of logical CPU cores
and to a set of physical and logical ports. Logical ports
connect to ports of VMs hosted on the same physical machine
while physical ports are associated with existing ports on
the physical server. An example is given in Figure 1. For
example, in a cloud computing context, a physical server may
host several VMs that are interconnected using a vSwitch,
which itself is executed by the hypervisor. In an SDN/NFV-
based network, vSwitches (software running on commodity
hardware) are replacing specialized hardware devices such as
switches, firewalls, load-balancers, routers, and other middle-
boxes. In addition to commuting packets between their ports,
vSwitches may also perform other operations like filtering,
header editing, content encrypting and deep packet inspection.
In fact, vSwitches may use all the headers from layer 2 up
to layer 5 (and not just 2 as it is commonly the case for a
traditional switch) so that they are also referred to as virtual
multi-layer switches. Note that the physical machine running
the vSwitch typically hosts VMs or containers so that the
vSwitch has to share the physical resources with them.

The two prominent solutions to create a vSwitch in a
hypervisor are OVS [3] and FD.io VPP [4]. Note that both
are open-source projects and that VPP is the open-source
version of Cisco’s Vector Packet Processing. Aside from open-
source implementations, a couple of proprietary virtual switch
solutions have been released; e.g., by Cisco (Nexus 1000V)
and VMware (vSphere Distributed Switch).

A vSwitch mainly comprises three types of components: (i)
network interface cards (NICs) that altogether provide a total
of N input/output (I/O) ports, (ii) a set of (logical) CPU cores
that are in charge of processing the packets coming from the
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Fig. 1: vSwitch connecting three VMs with two physical ports.

different I/O ports, and (iii) memory to store packets waiting
for their processing, be it from the CPU cores or from the
NICs. As a side note, note that packets are moved across these
components through PCI buses.

B. DPDK library

To let vSwitches deal with high rates of packets, differ-
ent techniques, e.g., Netmap [5], OpenOnload [6], Packet-
Shader [7] and DPDK [2], have been developed to provide a
faster packet processing. DPDK is an open-source project and
works as a specialized library for x86, ARM and PowerPC
processors. It is developed by a consortium comprising com-
panies like Intel and 6WIND. Note that DPDK is integrated
to the most prominent vSwitch solutions, namely OVS and
VPP, making it a de facto standard for vSwitches. Hence,
we focus our study on a vSwitch equipped with the DPDK
library [2]. DPDK makes use of several means for accelerating
the processing of packets.

1) No packets recopy: DPDK avoids the recopy of packets.
Thanks to the use of a shared memory, CPU cores are able
to process packets without recopying them in their associate
memory. For a deeper understanding of these mechanisms, the
reader can refer to the work of Scholz [8].

2) Operations performed in the user space: Another means
of DPDK for accelerating the packet processing is to run the
associated operations in the user space and not within the
kernel as is done by default. By doing so, DPDK avoids the
overhead of CPU interrupts that result in additional delays in
processing packets.

3) Balancing the load across all the CPU cores: Although
DPDK allows various configurations in the polling of the
several vSwitch ports by the multiple CPU cores, we consider
here its standard configuration, using the so-called “Poll Mode
Driver”, which is known as the most versatile and efficient
(unless in specific scenarios). First, one CPU core, aka the
“master” core, is entirely dedicated to the control and man-
agement of the vSwitch while the other CPU cores are devoted
to the packet processing. Let C denote the number of CPU
cores devoted to the packet processing, i.e., not including the
master core. Second, DPDK aims at uniformly distributing
the load originating from each port across the C CPU cores.
Said differently, each CPU core contributes to processing
packets coming from each port. More precisely, modern NICs
perform load balancing by letting each of their ports dispatch
incoming packets into C separate logical queues, called RX
queues. This dispatching step is typically carried out through
the application of a hash function on the packet headers (such
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as the Receive Side Scaling (RSS) used in DPDK) and aims
at ensuring an even balance of the incoming packets among
the RX queues as well as at accelerating packet processing
by directing packets belonging to the same flow to the same
RX queue. As a result, each RX queue is assigned to a single
CPU core while each CPU core handles as many RX queues
as the total number of ports in the vSwitch. We denote by
K the RX queue size, i.e., the maximum number of packets
that can be queued simultaneously in it. Then, once a CPU
core ends up processing a packet, the packet is (logically)
forwarded from its RX queue to a TX queue associated to the
appropriate output port. At this stage, the packet is pending
for transmission on the next link and does not need any
further CPU core processing resource. Figure 2 illustrates this
mapping between CPU cores, ports and RX queues.

RX queues TX queuesCPU cores

1

2

port 1

port 2

port N

port 1

port 2

port N

Fig. 2: Internal architecture of a vSwitch with N I/O ports
and C CPU cores.

4) Processing packets by batches: CPU cores poll their
associated RX queues in a cyclic order (i.e., in a round-robin
fashion). However, for the sake of performance, DPDK enables
CPU cores to serve a batch of packets on the same RX queue
before switching to the next RX queue. We denote by TS
the mean switch-over time taken by a core to switch from its
current RX queue to the next one, and by M the maximum
size of the batch. When the batch size is set to M , a CPU
core can prefetch up to M packets on one RX queue and
then it processes them in a run-to-completion manner. Note
that packets that enter the RX queue while the CPU core has
already started its service are not served in this round, and they
have to wait until the core revisits this queue. In the queueing
theory literature, this discipline is known as a gated M -limited
policy [9].

Batching packets by groups of M packets tends to increase
the overall efficiency of a vSwitch. Indeed, when a CPU core
handles packets belonging to the same batch, chances are that
the needed instructions are found in the CPU cache, which
lowers the average processing time of a packet. We denote
by TH and TM the average time needed by a CPU core to

process a packet when the set of instructions is found (cache
Hit), respectively not found (cache Miss), in the cache. Note
that TH is typically significantly smaller than TM , say around
an order of magnitude or so. Let TR indicate the average time
needed by the CPU core to forward a packet from an RX queue
to a TX queue over a PCI bus (once the CPU core processing
has ended). As a result, the total time needed by a core to
serve a given packet is either TM + TR (in case of a cache
miss) or TH + TR (in case of a cache hit). In general, the
former case is more likely to occur if the considered packet
is among the first packets of a batch (the cache is likely to
be “cold”) whereas the latter has more chances to happen
for the subsequent packets of a batch as they will benefit
from the cache information. In addition, processing packets by
batches also increases efficiency by reducing the total number
of switch-over times (as a CPU core does not switch to a
different RX queue upon the completion of a single packet
processing).

Despite the enhancements brought by DPDK, vSwitches are
subject to performance issues, in particular if the incoming
load is too large. Given the transmission speed of lines and
the current transfer rates of PCI buses and memory (SDRAM),
the bottleneck of a vSwitch, if any, is likely to occur during the
processing of packets in RX queues due to the limited CPU
resources. Therefore, we concentrate our modeling efforts on
the interactions between the CPU cores, the RX queues and
the ports.

Note that, despite the “Poll Mode Driver” of DPDK wherein
a master core is made available for the management tasks
while the others are entirely devoted to the packet processing
(see Section II-B3), a vSwitch may be affected by a momen-
tary external load applied to the hypervisor or to co-hosted
VMs. One way to take into account this effect is to scale up
the average times to process a packet, TH and TM .

C. Scenarios

Throughout the paper, we consider three scenarios inspired
by features of real vSwitches to demonstrate the accuracy and
the abilities of our modeling approach. For the sake of sim-
plicity and without loss of generality, we assume throughout
this paper that the considered vSwitches comprise CPU cores
running each at 3GHz, that RX queues are set to store up to
K = 128 packets, that the mean packet size is 1000 bytes,
and that the switch-over times TS are equal to 1ns. We also
assume that the dispatching function performed on incoming
packets at the ports is well-behaved (see Section II-B3) so that
every CPU core undergoes the same performance allowing us
to restrict our analysis to only one of them. Note that this last
assumption does not mean that ports are equally loaded. Note
also that all the numerical values used to specify our three
scenarios are derived from real-life experiments conducted in
6WIND lab.

1) Scenario 1 - Simple forwarding: In our first scenario, we
consider a case where a vSwitch is simply forwarding incom-
ing packets between its ports based on their link layer headers
and does not provide any further services. Said differently,
the vSwitch behaves similarly to a regular switch. We assume
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that the vSwitch operates on a small-scale network so that its
flow table is relatively small. More precisely, we assume that
there is a total of N = 4 ports and that 80 CPU cycles are
enough for processing packets (i.e., looking up entries in the
flow table) while 10 additional CPU cycles (resp. 200) are
needed to access the information if the vSwitch experiences
a cache hit (resp. cache miss). Overall, given the speed of
the CPU cores (3GHz), we have: TH = (80 + 10)/3 = 30ns
and TM = (80 + 200)/3 = 93.3ns. We also assume that the
batch size M is set to 4 packets and that PCI buses sustain
16 GBps so that TR = 1000/16 = 62.5ns. Finally, we assume
that ports are unevenly loaded as follows: Port 1 receives 15%
of the whole traffic, Port 2 receives 20%, Port 3 receives 25%
and Port 4 receives 40%.

2) Scenario 2 - Complex routing: Our second scenario
pertains to a vSwitch whose flow table is large featuring
numerous rules to handle different types of traffic with various
destinations. Such a situation can occur for routers located
in the core (backbone) network of a network operator. Here,
we assume that, because of the size of the flow table, 800
CPU cycles are needed for the lookup operation while 10
additional CPU cycles (resp. 200) are needed to access the
information if the vSwitch experiences a cache hit (resp. cache
miss). Therefore, we obtain: TH = (800+10)/3 = 270ns and
TM = (800 + 200)/3 ' 333ns. We choose a larger size of
packet batch with M = 8 and we assume that PCI buses work
at 32 GBps so that TR = 31.25ns. Finally, we assume a total
of N = 5 ports that are irregularly loaded as follows: Port 1
receives 10% of the whole traffic, Port 2 receives 15%, Port 3
receives 20%, Port 4 receives 25% and Port 5 receives 30%.

3) Scenario 3 - IPsec: In our last scenario, we consider
a vSwitch applying IPsec encryption operations on incoming
packets. Network architects typically deploy IPsec tunnels to
provide security for data communication between pairs of
distant nodes. The packets are encrypted at the ingress of the
tunnel and decrypted at its egress using computationally inten-
sive encryption algorithms implemented in IPsec. We assume
that 8,000 CPU cycles are spent to perform the encryption
process and that 10 additional CPU cycles (resp. 200) are
needed to access the information if the vSwitch experiences
a cache hit (resp. cache miss). Given the speed of CPU cores
(3GHz), this leads to TH = (8000 + 10)/3 = 2670ns and
TM = (8000 + 200)/3 = 2733.3ns. The size of batches is set
to M = 16 packets. The speed of PCI bus is fixed to 8 GBps
so that TR = 125ns. The total number of ports is set to N = 8
ports that are unevenly loaded as follows: Port 1 receives 5%
of the whole traffic, Port 2 receives 10%, Port 3 receives 15%,
Port 4 receives 18%, Port 5 receives 22% and Port 6 receives
30%.

III. GENERAL MODELING FRAMEWORK

A. System notation

We start this section by reminding the notation introduced
so far. As stated in Section II, C denotes the total number of
CPU cores devoted to the packet processing and N represents
the number of ports attached to the vSwitch. As a results, the
total number of RX queues of the vSwitch is equal to N ×C.

TABLE I: Principal notation.

Symbol Description
C Number of CPU cores devoted to the packet processing
N Number of ports
K Capacity of the RX queues
M Size of packet batches
TH Average time needed by a CPU core to process a packet

in case of a hit in the cache
TM Average time needed by a CPU core to process a packet

in case of a miss in the cache
TR Average time needed by a CPU core to forward a packet

to a TX queue
TS Average time needed by a CPU core to switch to the

next RX queue
β Switch-over rate
Λi Packet arrival rate on port i, i = 1, . . . , N

λj
i Packet arrival rate dispatched to the j-th RX queue of

port i, j = 1, . . . , C and i = 1, . . . , N

Λj Packet rate bound to the j-th CPU core, regardless of
their incoming port (j = 1, . . . , C)

µj
i Service rate of the j-th CPU core when it is serving

the i-th RX queue, j = 1, . . . , C and i = 1, . . . , N

U j Utilization rate of the j-th CPU core, j = 1, . . . , C

Bi Blocking probability at port i, i = 1, . . . , N

bi Loss rate at the entrance of queue i, i = 1, . . . , N

q̄i Average number of packets in queue i, i = 1, . . . , N

r̄i Average sojourn time in queue i, i = 1, . . . , N

Each RX queue has a finite capacity expressed as a maximum
of K packets. Each CPU core cyclically polls its associated
RX queues and processes at most M packets from each RX
queue before switching to the next one. M is referred to as
the batch size. Let us also recall that the average time needed
by a CPU core to process a packet is denoted by TH in case
of a hit in the cache, and by TM in case of a miss. We use TR
to refer to the average time needed by a CPU core to forward
a packet to a TX queue while we use TS to denote the average
time taken by a CPU core to switch from its current RX queue
to the next one.

We use Λi to denote the packet arrival rate on port i (i =
1, . . . , N) while λji refers to the rate of packets dispatched
to the j-th RX queue of port i, and hence handled by the j-
th core (j = 1, . . . , C). It follows that Λi =

∑C
j=1 λ

j
i and,

assuming the hash function dispatches equally across the RX
queues, we have: λji = Λi

C . Finally, we denote by Λj the total
rate of packets bound to the j-th core CPU core, regardless of
their incoming port (j = 1, . . . , C) so that Λj =

∑N
i=1 λ

j
i .

For the sake of our modeling framework we let µji denote
the service rate of the j-th core when it is serving the i-th
RX queue, while β denotes the switch-over rate. Note that by
definition, we have, β = 1/TS . We detail later how µji can be
derived from TH , TM and TR.

Table I summarizes the principal notation used in this paper.

B. Performance parameters
The objective of this paper is to develop an accurate

and scalable modeling framework to derive performance pa-
rameters of the vSwitch. These metrics may pertain to the
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Fig. 3: Illustration of a subsystem involving a single CPU core
that polls N RX queues with a size of batch of M = 2. Blue
packets are being processed while red packets are waiting for
their turn.

RX queues or to the whole system itself. As for the i-th
RX queue (i = 1, . . . , N ) attached to the j-th CPU core
(j = 1, . . . , C), performance parameters of interest include
the blocking probability (i.e., the loss rate) denoted by bji , the
mean sojourn time of a packet denoted by r̄ji , as well as the
buffer occupancy denoted by q̄ji . Besides, for each CPU core
j, we use U j to indicate its utilization rate. Finally, the global
performance of a vSwitch often derive from the former inner
parameters. Thus, the global CPU core utilization rate, denoted
by U , can simply be expressed as:

U =

∑C
j=1 U

j

C
(1)

Similarly, the packet blocking probability at port i, referred to
as Bi, can be computed as:

Bi =

∑C
j=1 b

j
iλ
j
i∑C

j=1 λ
j
i

=

∑C
j=1 b

j
iλ
j
i

Λi
(2)

Note that the global CPU utilization and blocking proba-
bility are performance parameters that capture and summarize
the overall level of congestion in a vSwitch, and therefore
represent metrics of direct interest for network operators.

C. Decomposition principle

The first step of the modeling framework is to break down
the general switch architecture into C independent subsystems,
each of them consisting of one CPU core that polls N
independent RX queues. Recall that, as stated at the end of
Section II-B, we focus on the interactions between the CPU
cores, the RX queues and the ports, and as a result we exclude
from the model the transmission part of packets in TX queues.
Every subsystem is identified with a distinct color in Figure 2
and is simply referred to as a polling system. In the rest of the
paper we only consider the model associated with a given CPU
core j and its N related RX queues. Therefore, for the sake of
clarity, we drop superscript j in all subsequent notations and
equations. Figure 3 represents the polling system associated
with the considered CPU core having a service rate µi when
serving its i-th RX queue, and a switch-over rate β.

The second step of the general modeling framework consists
in replacing each polling system with a set of N decoupled
queues with server vacations. This decomposition step is
illustrated in Figure 4. The buffer of queue i in the decomposed

Fig. 4: Decomposition of a subsystem into N separate queues
with a size of batch of M = 2. Blue vacations are active while
the red vacation is inactive.

model represents the i-th RX queue associated with the
considered CPU core. The server of the i-th queue in the
decomposed model aims at reproducing the way packets of
the i-th RX queue are processed by the CPU core. Because
the core polls all its RX queues in-between the processing
of two successive batches of (at most M ) packets at a given
queue i, there is an in-between time that corresponds to the
processing of one batch of packets for all the other non-empty
queues and N switch-over times. In the model, this total time
will be referred to as a vacation time. As an illustration, in
Figure 4, the server of queue i is in process, meaning that
the CPU core is currently processing a packet of the current
batch in RX queue i, and all other queues are in vacation. In
this particular example, when queue i ends its processing, it
goes in vacation, the remaining packets of queue i are put on
a hold, and, at the same time, the switch-over time between
RX queue i and RX queue i + 1 starts. It is only after the
completion of this switch-over time that queue i+ 1 ends its
vacation and starts the processing of its first M in-line packets

D. Modeling assumptions

In order to derive tractable models, we make in the whole
paper the following Markovian assumptions. First, we assume
that the arrival of packets at the entrance of queue i follows
a Poisson process of rate λi. Then, we assume that the
processing time of one packet from queue i is exponentially
distributed with rate µi. We also assume that the switching
time is exponentially distributed with rate β. Finally, as
developed in the following sections, the subsequent models
will represent the vacation times by a succession of different
phases with exponential distributions.

IV. MODELS WITH NO BATCH SERVICES

To start our analysis, we do not take into account the
processing of packets by batches and we restrict our study
to the case of M = 1, i.e., a CPU core processes only one
packet of its associated (non empty) RX queues at each round.
We relax this assumption in the next section.
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Fig. 5: Representing the vacation times in Sohail model [10].

With a batch size of M = 1, CPU cores are very unlikely
to process consecutive packets belonging to the same flow,
thereby essentially precluding any benefit from the cache. As
a result the mean processing time of the considered CPU
core when serving a packet from its i-th RX queue can be
considered as a constant given by:

1

µi
= TM + TR. (3)

The switch-over rate β is simply defined, as stated in previous
section, as the inverse of the mean switch-over time:

β =
1

TS
. (4)

A. Sohail model

The model developed by Sohail in [10] falls into the
scope of our general modeling framework. In their paper, the
vacation time is developed as a sequence of switch-overs and
possible processing times. As illustrated in Figure 5 in the
case of queue i, its vacation time always comprises a first
switch-over stage (first green “S” labeled circle) between RX
queue i and RX queue i+ 1, and when this first switch-over
stage ends, two things can happen: (i) if RX queue i + 1
is not empty, the vacation time of queue i goes through the
processing of a packet of RX queue i+1 (first blue “P” labeled
circle), after which it continues with the second switch-over
time between RX queue i + 1 and RX queue i + 2; (ii) if
RX queue i + 1 is empty, the vacation time of queue i goes
directly to the second switch-over time. The same happens for
all other RX queues so that the modeling of the vacation time
becomes a complex phase-type distribution. As a result, the
model associated with a given queue i is a pretty complicated
Markov chain having 2N(K + 1) states, that must be solved
using a numerical technique [10]. Note that the parameters of
the i-th Markov chain depend on the performance extracted
from all other Markov chains, and thus an overall fixed-point
iterative technique must be used to solve the model.

B. Proposed model

1) Vacation representation: Unlike Sohail model [10], in
which the vacation time is represented as a sequence of switch-
over and processing times, we keep in the vacation time the
first switch-over time and aggregate all the remaining phases.

V

S β

μi

αi

Fig. 6: Representing the vacation times in our model.

As shown in [11], by doing this we drastically reduce the
complexity of the model without significantly deteriorating its
accuracy. This idea is illustrated in Figure 6. Following the
processing stage of the server, the vacation starts by a switch-
over time between RX queue i and RX queue i + 1. The
remaining of the vacation time is then aggregated into a single
exponential phase with a given rate αi (i.e., with a given mean
duration 1/αi), that has to be accurately estimated.

2) Markov chain model associated with each RX queue:
Under the markovian assumptions given in Section III-D, we
can associate with each queue i of the decomposed model,
the continuous-time Markov chain depicted in Figure 7. The
chosen state description has two dimensions and thus is made
of two parts (k,CPU state). The left-hand side corresponds
to the current number of packets in the queue, k = 1, . . . ,K,
while the right-hand side specifies if the CPU core is currently
processing this queue (P), switching from this queue to the
next one (S), or otherwise processing another RX queue or
switching between the other RX queues (V).

In order to solve this chain corresponding to a particular
queue i, only one parameter remains to be estimated, namely
αi (the other parameters λi, µi, β, and K are supposed
to be known either from knowledge on the system or from
measurements). However, assuming that αi is known, we show
in Appendix A how to quickly and easily obtain the stationary
probabilities of this Markov chain without resorting to any
numerical technique.

3) Estimation of the chain parameters: Instead of consid-
ering αi, we estimate 1/αi, corresponding to the mean time
between the end of switching from i-th to (i+1)-th RX queue
(marking the time when the core is leaving queue i) and the
end of switching from (i − 1)-th to i-th RX queue (marking
the time when the core is returning to queue i). Therefore,
this time includes N − 1 switch-over times, but also includes
the processing of one packet for all non-empty RX queue j
different from i. It follows that:

1

αi
= (N − 1)× 1

β
+
∑
j 6=i

(1− Ej)×
1

µj
. (5)

In this expression, Ej represents the probability that RX queue
j is empty when the core is returning to it, i.e., at the particular
instant when the switch-over time from (j − 1)-th to j-th
RX queue ends. This parameters can be extracted from the
Markov chain associated with RX queue j (equivalent to the
one represented in Figure 7 but where i is replaced by j).
Indeed, Ej can be expressed as the ratio between the number
of transitions from state (0, V ) to state (0, S) by unit of time,
and the total number of transitions from red states by unit of
time, each of them correspondonding to the end of a vacation
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Fig. 7: Continuous-Time Markov Chain associated with queue i.

for RX queue j. Therefore, we have:

Ej =
πj(0, V )αj∑K
k=0 πj(k, V )αj

=
πj(0, V )∑K
k=0 πj(k, V )

, (6)

where the πj are the stationary probabilities of the j-th Markov
chain.

4) Fixed-point solution: As expected, the parameters of a
Markov chain associated with a given queue i depend on
the stationary solution of the other Markov chains (through
Eq. 5 and 6). As a result, the resolution of the model relies
on a fixed-point iterative technique that is summarized by
Algorithm 1. The main loop of the algorithm is repeated until
a given convergence criterion is reached, e.g., the maximum
relative difference of varying parameters between two succes-
sive iterations is very small (say less that 10−7).

Algorithm 1: Fixed-point iterative technique
Input : System parameters K, µi, λi, β for each queue i
Output : Stationary probabilities πi and performance metrics

for each queue i
Initialize πi, Ei for each queue i;
while convergence criterion not satisfied do

foreach queue i ∈ [[1, N ]] do
Compute αi using Eq. 5;
Solve the Markov chain associated with queue i and

compute the stationary probabilities πi;
Compute Ei using Eq. 6;

end
end
Compute all performance metrics of interest from Eq. 7 to 9;

5) Performance parameters: After convergence of our algo-
rithm, we can derive the system performance parameters from
the stationary probabilities of the Markov chains as follows.
The average number of packets in queue i is given by:

q̄i =

K∑
k=1

k × (πi(k, P ) + πi(k, S) + πi(k, V )). (7)

We can compute the loss rate at the entrance of queue i as:

bi = πi(K,P ) + πi(K,S) + πi(K,V ). (8)

The average sojourn time of an accepted packet in queue i is
then obtained using Little’s law:

r̄i =
q̄i

λi(1− bi)
. (9)

V. MODEL TAKING INTO ACCOUNT BATCH SERVICES

We now turn to the more general case where packets
are processed in batches by the CPU cores. As discussed
in Section II-B, the use of batches accelerates the packet
processing by reducing the number of CPU cores switch-
over times, and more importantly, by making a better use of
the CPU caches. Our rationale is to make use of the model
presented in Section IV while carefully adjusting some of its
parameters to account for the presence of batches.

A. Rethinking µi and β in the context of batch processing

In order to understand the influence of the cache on the
mean processing times, let us take an example of a vSwitch
having N = 4 ports and processing packets by batch of size
M = 16. Let us consider that the CPU core at a particular
round has to process a batch of 16 packets from RX queue 1
that is made of 4 packets destined to port 2, 7 packets destined
to port 3, and 5 packets destined to port 4. We can reasonably
assume that for the first packet destined to a given port, the
information necessary for its processing (typically contained
in the forwarding table) has to be fetched from the RAM,
whereas for the subsequent packets destined to the same port,
the information is present in the cache. If we make this
assumption, the total time necessary to process all packets
of the considered batch is thus 3TM + 13TH + 16TR, and the
average processing time by packet is 3TM+13TH+16TR

16 .
By generalizing this result, we first proposed in [12] to

estimate the average processing time by the following simple
equation:

1

µi
=

{
N−1
M TM + M−(N−1)

M TH + TR if M ≥ N − 1

TM + TR if M < N − 1
(10)

This estimation is realistic when M >> N and when the
system is heavily loaded. Indeed in this case there is a high
chance that the CPU core processes full batches, i.e., batches
made of M packets, and that in each batch there is at least
one packet destined to each of the possible N − 1 output
ports. In this case, the processing time of the whole batch is
(N − 1)TM + (M − (N − 1))TH + MTR and the formula
becomes exact.

Finally, when considering a vSwitch with non negligible
values of the switch-over time TS , the value of β has to
be adapted since the model does not structurally take batch
services into account. The easiest way is to reduce the mean
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switch-over time by a factor M , leading to replace Eq. 4
by [12]:

β =
M

TS
. (11)

B. Refining the calculation of µi
When M is small or when the load is low, Eq. 10 is not

accurate anymore. Let us first see how we can improve the
estimation of the mean processing time in the case where M
can take any value (small or large). We first assume that a
batch is always made of M packets (which will obviously be
the case when the load is high). We propose to replace Eq. 10
by:

1

µi
=
P̄ (M,N − 1)

M
TM +

M − P̄ (M,N − 1)

M
TH+TR (12)

where P̄ (M,N − 1) is the average number of ports among
the N − 1 possible output ports that receive packets from the
current batch (supposed of M packets):

P̄ (M,N − 1) =

min(N−1,M)∑
k=1

kPk(M,N − 1) (13)

with Pk(M,N − 1) being the probability that a batch of M
packets is sent over exactly k ports among the N −1 possible
output ports, k = 1, ...,min(N − 1,M).

If packets are assumed to be equally dispatched to all outgo-
ing ports, Pk(M,N−1) can be obtained through enumeration
as:

Pk(M,N − 1) =
Dk(M,N − 1)

(N − 1)M
(14)

where Dk(m,n) is the number of ways to put m objects
(the packets) in exactly k boxes (the output ports) among n
possibles boxes. Theses quantities can be obtained from the
following recursive formula:
D1(m,n) = n k = 1

Dk(m,n) = Cknk
m −

k−1∑
i=1

Dk−i(m,n)Cin−(k−i) k = 2, ..., n

(15)
Let us now see how we can improve the value of the mean

processing time 1
µi

in the case of a low load, i.e., when a batch
is not anymore of M packets. If we first assume that we know
the average size m̄i of a batch on input port i. We propose to
replace Eq. 12 by:

1

µi
= αTM + (1− α)TH + TR (16)

where

α =



P̄ (m̄i,N−1)
m̄i

if m̄i is integer

(dm̄ie − m̄i)
P̄ (bm̄ic,N−1)

bm̄ic

+(m̄i − bm̄ic) P̄ (dm̄ie,N−1)
dm̄ie if m̄i is not integer

and m̄i > 1

m̄iP̄ (1, N − 1) if m̄i is not integer
and 0 < m̄i < 1

(17)

Now we have to face the problem of estimating the average
size m̄i of a batch.

This quantity can be easily obtained from the Markov chain
as follows:

m̄i =

M−1∑
k=1

k × πevi (k) +M ×
K∑

k=M

πevi (k) (18)

where πevi (k) is the probability that queue i contains k packets
at the instants of end of vacation of the queue (“ev”), i.e., when
the precise size of a batch is decided. These probabilities can
be derived from the stationary probabilities of the i-th Markov
chain as:

πevi (k) =
πi(k, V )αi∑K
j=0 πi(j, V )αi

=
πi(k, V )∑K
j=0 πi(j, V )

(19)

VI. ACCURACY OF THE PROPOSED APPROACH

To study the accuracy of our modeling approach, we explore
the three scenarios described in Section II-C. We compare
the results of our model to those of a home-made discrete-
event simulator written in Java, whose code is made available
[13]. Unlike our model, the simulator precisely implements the
behavior of a vSwitch as described in Section II: i) Packets
queued on an RX queue are processed by batches; ii) The
time to process a packet is closely related to the presence or
absence of the corresponding instructions in the cache, and
not only averaged as this is the case in the model; iii) After
processing a batch of packets on a given RX queue, the CPU
core is assigned to the next RX queue. As such, the simulator
does not proceed, as the model does, with a decomposition of
the vSwitch architecture into decoupled queueing subsystems
with vacation. We provide a validation of our simulator against
real-life measurements in Appendix B.

We run seven independent replications of 50,000,000 pack-
ets completions each. The obtained estimated confidence in-
tervals at 95 percent confidence level are so small that we
use only the mid-point in our validation. In each scenario, we
consider a wide range of values for the packet arrival rate,
varying from a very low level of load up to a high level
corresponding to a full saturation of the vSwitch.

Numerical results for Scenario 1, in which we consider the
case of a simple forwarding with N = 4 ports and batches
of M = 4 packets, are presented in Figure 8. Refer to
Section II-C for a complete list of the parameters. Figure 8a
represents the average queue size (number of packets being
buffered in RX queues) as a function of the load. We first
notice that possible values of the average queue size vary
from 0 for a low level of load up to 128 (corresponding to
the capacity K of RX queues) when the load is high. As
expected, we observe that the most loaded port, namely port 4
(receiving 40% of the total load), is the first to saturate when
the load increases. For example, at a level of load of 8 Mpp, the
queue associated with port 4 is almost full (i.e., close to 128
packets) while the queues associated with the three other ports
are almost empty. Note also that the curves are significantly
steep denoting a high sensibility to the actual level of load. In
Figure 8b, we consider the loss rate (i.e., blocking probability)
experienced by each port as a function of the load. We note
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Fig. 8: Accuracy of our approach on Scenario 1 - Simple forwarding.

that the most loaded port is again the first to undergo losses
as soon as the load exceeds 7 Mpps. Finally, we study the
evolution of the average sojourn time spent by a packet in an
RX queue in Figure 8c. At heavy levels of load, the value
found for each port converges to a common asymptotic value
(corresponding to the average time necessary to process 128
packets of a given RX queue). Overall, Figure 8 shows the
close agreement between the proposed model and simulation.

Scenario 2 deals with the case of a vSwitch whose flow table
is much larger and complex. Let us recall that, in this scenario,
the number of ports is set to N = 5 while the size of batches
equals M = 8 packets. Figure 9 presents the associated results.
Figure 9c shows that, in the case of the average sojourn time,
the asymptotic value for large levels of load differs from that
found on Figure 8c. This gap results from the fact the mean
time to process a packet is significantly larger in our second
scenario. Here too, the performance parameters returned by
our model closely match those delivered by the simulator.

Finally, Scenario 3, which addresses the case of a vSwtich
performing IPsec functions and featuring N = 6 ports with a
size of batches set to M = 16 packets, is handled in Figure 10.
We again observe that the performance obtained from our
model are close to those delivered from the simulator at any
level of load.

VII. EXAMPLES OF APPLICATION

A. Influence of switch-over time

We begin by studying the impact of the switch-over time
on the average size of RX queues. We use parameters close
to those of Scenario 2 and let TS vary so that it ranges from
a very low overhead (i.e., representing 0.1% of the average
packet processing time), all the way to a massive overhead
(i.e., 100%). Then, based on our model, we compute the
average number of packets buffered in the RX queue of the
most loaded port for different levels of load. The associated
results are reported in Figure 11. First, we notice that the
relationship between TS and the average queue size is far
from being linear. Indeed, the deviation between an overhead
of 100% and 50% is approximately twice smaller than that
between 50% and 0.1%. Second, starting from a switch-over
time representing approximately 2% of the packet processing
time, all curves for subsequent smaller values tend to coincide.

From a practical point of view, this suggests that, whenever
the switch-over time represents an overhead less than, say 1%
or 2%, they can be neglected in the performance analysis of
a vSwitch.

We continue this study by examining simultaneously the
influence of the switch-over time and of the load, on the
loss rate of an RX queue. Figure 12 shows the corresponding
results with a varying switch-over time on the X-axis and a
varying load on the Y-axis. As shown by the figure, when the
load is low (under 0.5-0.6 Mpps), the value of the switch-
over time overhead has virtually no influence on the loss rate
that remains totally negligible, whereas when the load is high
(close to 1 Mpps), the switch-over time overhead has a large
impact on the loss rate.

B. Influence of batch size

In our second example, we investigate the influence of the
size of packet batches M on the performance of a vSwitch.
We begin our study by considering Scenario 1. We let M
vary from a value of 1, in which at most one packet of each
RX queue is processed before the CPU core moves to the
next RX queue, up to a value of 32. We restrict our analysis
on the loss rate experienced by the most loaded port, namely
port 4. Figure 13 shows the corresponding results. We observe
that there is a substantial gain in increasing the size of packet
batches as the onset of packet losses is postponed from a load
of 6.5 Mpps for M = 1 to a load of almost 10 Mpps for
M = 32, which represents an improvement of more than 50%.
In the same way, while a load of 9 Mpps results into a severe
congestion for a vSwitch parameterized with M = 1 (with
a loss probability approaching 0.55), setting M to 32 leads
to virtually no packets being lost. It is worth noting that the
marginal gain of incrementing the size of batches decreases
quite rapidly with growing values of M .

To develop a better understanding of the effect of M on
the behavior of a vSwitch, we switch to Scenario 2 and we
re-run our experiment. Let us recall that in this scenario the
time for processing a packet varies much less between a cache
hit and a cache miss. We represent the obtained results in
Figure 14. As is shown, the size of the packet batches does
not affect much the values obtained for the loss rates. Indeed,
the gain obtained by increasing M from 1 to 32 barely reaches
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Fig. 9: Accuracy of our approach on Scenario 2 - Complex routing.
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Fig. 10: Accuracy of our approach on Scenario 3 - IPsec.
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Fig. 11: Influence of the switch-over time on the average size
of an RX queue for Scenario 2.

10%. This is in stark contrast with Scenario 1. This difference
stems from the nature of the load. Indeed, unlike Scenario 1,
here incoming packets belonging to the same batch are quite
unlikely to access the same information in the CPU cache, and
hence there is little benefit in batching their services.

Based on these two examples, it appears that increasing
the size of packet batches may significantly improve the
performance of a vSwitch. However, the magnitude of the
gain may vary widely depending on the characteristics of the
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Fig. 12: Influence of the switch-over time and of the load on
the loss rate experienced at an RX queue for Scenario 2.

packet processing times. Significant gains are expected when
the average time needed to process a packet in case of a cache
hit is significantly less than in the case of a cache miss.

C. Ensuring zero-loss policy

To illustrate the potential application of our model, we
consider the problem of determining the proper number of
CPU cores to meet a given QoS criterion. Operators often aim
to size their networking devices so that packets exchanged over
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Fig. 14: Influence of the size of batches on the loss rate
experienced at an RX queue for Scenario 2.

these devices are (almost) never dropped. We now describe
how our model can help achieve this so-called “zero-loss”
policy on a vSwitch.

We consider a vSwitch parameterized closely to that de-
scribed in Scenario 3 but with M = 1. However, we let the
number of allocated CPU cores, C, unspecified as it varies
from 1 to 20. Then, for increasing values of the load submitted
to the vSwitch, we compute the total loss rate experienced over
all RX queues. Figure 15 shows the corresponding results. We
observe that for a load of 8 Mpps, a minimum of C = 10 cores
is required to ensure the zero-loss policy. This number grows
to C = 17 cores if the load gets to 14 Mpps.

Dimensioning curves, analogous to those depicted in Fig-
ure 15, are easily and quickly delivered by our model. We
believe that the knowledge conveyed by these curves can
provide useful information in order to avoid the under- or
over-provisioning of networking devices.

Load

Fig. 15: Ensuring zero-loss policy by adequately determining
the number of allocated CPU cores.

VIII. RELATED WORK

Many works have concentrated their efforts on evaluating
the performance of DPDK-based vSwitch, either by conduct-
ing measurements or by using modeling techniques. In the
following, we first present the approach adopted by DPDK’s
contributors to address this topic from an experimental point of
view. We then review modeling attempts of vSwitch systems
and, because polling is a key feature of DPDK systems,
we study the related work of polling models. Finally, we
conclude this section by reviewing our previous works on the
performance evaluation of DPDK-based vSwitch.

A. Experimental approach

With the objective of achieving the best software switching
performance, engineers contributing to the DPDK library
developed internal performance measurement tools similar to
monitoring probes. This approach has the advantage of giving
a localized and precise analysis of low-level performance of
a DPDK system, thus allowing developers to benchmark and
validate any novel implementation or algorithmic optimization.

Nonetheless, the fact of reading and updating values in
the system, typically when handling a counter, blocks the
CPU cores for a while and so, reduces the overall system
performance. About this, Vyatta/Brocade principal software
architect stated during the 2015 Dublin DPDK Userspace
forum that the act of “observing performance slows it down”
[14] To overcome this issue the performances of DPDK
based switching solutions are mainly assessed experimentally
using dedicated test software such as the TestPMD application
provided by Intel [15]. Such applications are for instance used
by Intel to publish bi-annual DPDK performance reports [16].
Several works also attempted to experimentally characterize
the open vSwitch performance. Most of them conducted
measurements on an experimental testbed to demonstrate the
enhancement provided by DPDK [17]. They also measured
the impact of the number of NIC, the offered load, and the
packet size [18]. Other works investigated the impact of active
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flow monitoring [19], that might simply consist in sampling
packets being forwarded across the vSwitch. Again, increasing
the sampling rate to gain accuracy keeps consuming CPU
resources, and in turn degrades the overall performance.

B. Modeling approach

By being non-intrusive in nature, modeling approaches can
be used to overcome these measurement constraints and help
in the performance evaluation of a DPDK system.

1) Non-DPDK-specific vSwitch modeling: Modeling the
performance of vSwitch systems has been addressed for non-
DPDK-specific systems. For instance, a model for estimating
the packet loss probability and the average sojourn time
of OpenFlow architectures is provided in [20]. This model
assumes that all the packets arrive at the same queue before
being forwarded to the switch. Suksomboon et al. presented
an optimal configuration selection algorithm for Linux-based
software routers relying on an Erlang-k-based packet latency
prediction model [21]. Such prediction model uses measure-
ments performed on two different router configurations to
accurately predict the performance of all the configurations.
It considers the case of systems with only a single CPU core.

These works cannot capture the effect of more sophisticated
processing strategies such as polling used in the DPDK Poll
Mode Driver or packet batch processing, that both highly
contributes to a vSwitch performance enhancement [22].

2) Polling system modeling: As polling is a key feature
of DPDK systems, we review the works done in modeling
its performance. Strategies of polling have been extensively
used in computer networks and telecommunication systems.
For instance, the IEEE 802.5 Token Ring introduced in
the early 1980s, used this scheme in its medium access
method. Nonetheless, the analysis of polling systems started
even before in the late 1950s with the patrolling repairman
model for the British cotton industry. Reference surveys on
polling models were published in the early 1990s by Takagi
to provide a classification of polling systems and related
research advances [23], [24]. These studies underscore that
the performance of a polling system depends, in general, on
many factors including the number and the capacity of queues,
the arrival and service rates, as well as the switch-over time.
Polling systems can be classified according to service policies,
that might be exhaustive or gated, and unlimited or M-limited.
Exhaustive: Once the server polls a given queue, it serves the
queue until its complete exhaustion, and then it switches to
the next queue. This implies that any request arriving in a
queue while the server is currently processing another request
of the same queue will be served before the server moves to
the next queue. Gated: Unlike the exhaustive policy, the server
does not process (in the current round) requests that may enter
the queue while the server is already serving this same queue.
Additionally, for both aforementioned policies, one can set an
upper limit on the number of requests that the server can pro-
cess for the same queue before switching to the next one. M-
Limited: On each turn, the server can serve at most M requests
for each queue. This corresponds to the case studied in this
paper. Unfortunately, the general solution to polling systems

is not known. However, their analysis is no less important,
and therefore, several approximations have been developed.
Tran-Gia proposed an analytical framework for computing the
performance of a gated 1-limited polling system with non-
zero switch-over time [25]. The modeling approach consists of
solving a fixed-point problem to evaluate the state probabilities
of an embedded Markov chain. In particular, the analysis of
each involved queue is carried out at polling instants, i.e., ends
of vacation. It requires the computation of Laplace-Stieltjes
transforms as well as the use of Laplace inversion procedures
or two-moment approximation techniques. As stated by the
authors, such model is accurate only for large switch-over
times and small values of the queue capacities (less than
10 requests). The fixed-point approach developed by Tran-
Gia has then been extended to the case of exhaustive M-
limited systems in [26]. In this work, the authors leverage
the techniques provided by Lee to study M/G/1/K queues
with server vacation [27], [28]. It consists in decomposing
the polling system in individual M/G/1/K queues with server
vacation. Each queue is then studied at polling instants. To
reduce the number of modeling assumptions introduced in the
previous works, a more general framework is presented in [29].
When conducting the analysis of each queue, it eliminates the
hypothesis that the busy period, i.e., the time the server is
not on vacation and that the vacation times are independent.
This approach relies on solving a system of several numerical
equations. However, as stated by the author, the complexity
of the involved expressions may require using a symbolic
computation software.

In conclusion, most of these approaches address a different
policy than that implemented in vSwitches, and/or they involve
complex arithmetic operations that may not scale with the
number of queues or with their capacity. Although they ac-
curately solve specific polling modeling problems, they seem
to be of little help when evaluating the performance of general
DPDK-based vSwitch systems.

3) Our previous contributions on DPDK-based vSwitch: In
a 2016 paper, Artero et al. [30] described an analytical model
for vSwitches based on the decomposition of the switch into
several polling systems, each one being in turn decomposed
into simple Markov chain models. Presented as a first step
towards a more general model, this work did not take into
account batch services and assumed a negligible switch-over
time. Su et al. developed an extension of this work [11] that
kept the simplicity and the accuracy of the initial model while
taking into account switch-over times. Including batch services
was all the more challenging as it structurally changes the
nature of the models and drastically increases their complexity.
A first attempt has been made in [12]. By simply adjusting
the average processing times to reflect the cache effects, Su
et al. have developed an extension of their previous works
that provides an accurate approximation in the specific case
of a heavily loaded system with large values of the batch size.
The main challenge of developing a more general modeling
framework including all the key features of DPDK-based
vSwitches while adapting to a widest range of scenarios,
remains an open issue and is the purpose of the present paper.
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IX. CONCLUSIONS

In this paper, we present an analytical queueing model to
evaluate the performance of a DPDK-based virtual switch
with several CPU cores and network interface cards. Polling
systems, in which a set of servers sequentially poll packets
from a set of queues, with batch services, in which several
packets are processed simultaneously, arises as an appropriate
representation for modeling the behavior of a vSwitch. To cir-
cumvent the combinatorial growth of the state space associated
with these models and their inherent complexity, we decouple
the polling system associated with each CPU into several
queues and we resort to servers with vacation to capture
the interactions between queues. Our proposed solution is
conceptually simple, easy to implement and computationally
efficient.

We conduct tens of examples to assess the accuracy of
our proposed model for various performance parameters such
as the attained throughput, the packet latency, the buffer
occupancy and the packet loss rate under various levels of
loads. Comparisons against a discrete-event simulator show
that our models typically deliver accurate estimates of the per-
formance parameters. We illustrate how our models can help
in determining an adequate setting of the vSwitch parameters
using three real-life case studies, and derive some qualitative
conclusions. For example, we find that increasing the size of
packet batches may significantly improve the performance of a
vSwitch, but only if a cache miss implies a much larger access
time than a cache hit. Future works could aim at extending the
validation of our model against real-life measurements.

APPENDIX

A. Efficient solution to the Markov Chain

The continuous-time Markov chain associated with a single
queue i of the model of Section IV-B is illustrated in Figure 16
with some cuts that will be useful in the resolution.

Fist, let us assume that πi(0, V ) is known. From the
steady-state equation corresponding to cut C0, we can express
πi(0, S) as a function of πi(0, V ):

πi(0, S) =
(αi + λi)

β
πi(0, V ).

Then, from cut C
′

0, we derive πi(1, P ):

πi(1, P ) =
λi
µi

(πi(0, V ) + πi(0, S)).

The three cuts C1, C
′

1 and C
′′

1 , directly provide the three
stationary probabilities πi(1, V ), πi(1, S) and πi(2, P ):

πi(1, V ) =
λi
αi

(πi(0, V ) + πi(0, S) + πi(1, P )),

πi(1, S) =
λi
β

(πi(1, V ) + πi(0, S) + πi(1, P )),

πi(2, P ) =
λi
µi

(πi(1, V ) + πi(1, S) + πi(1, P )).

Similarly, we can obtain the following stationary probabilities
for any k = 1, ...,K − 1:

πi(k, V ) =
λi
αi

(πi(k − 1, V ) + πi(k − 1, S) + πi(k, P )),

πi(k, S) =
λi
β

(πi(k, V ) + πi(k − 1, S) + πi(k, P )),

πi(k + 1, P ) =
λi
µi

(πi(k, V ) + πi(k, S) + πi(k, P )).

We use cuts CK and C
′

K to express πi(K,V ) and πi(K,S):

πi(K,V ) =
λi
αi

(πi(K − 1, V ) + πi(K − 1, S)),

πi(K,S) =
λi
β
πi(K − 1, S).

Finally, the last unknown probability, πi(0, V ), is obtained
using the normalization constraint:

K∑
k=0

(πi(k, V ) + πi(k, S)) +

K∑
k=1

πi(k, P ) = 1.

B. Validating our simulator against real-life measurements

For a given scenario, we compare the results provided by our
discrete-event simulator [13] that implements the behavior of
a vSwitch as described in Section II with those collected on a
real-life vSwitch implementing DPDK. The scenario is defined
as follows. We consider a vSwitch with a total of N = 32 ports
(equally loaded), RX queues of capacity K = 128 packets,
CPU cores running at 2.3 GHz, a switch-over times TS of 1ns,
packet batch of size M = 8 and an average packet processing
time of 178 CPU cycles corresponding to 77.43ns. The real-
life vSwitch implements OVS with 6WINDGate and DPDK
running on Ubuntu Linux with Intel Core i7 CPUs and Intel
ixgbe NICs. Packets of 64 bytes were generated using IXIA.
Figure 17 represents the corresponding results for the loss rate
and the average queue size for a wide range of values of load.
We observe that the results delivered by our simulator are in
fair agreement with the experimental measurements.
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