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Abstract—We propose a modelling framework, that can be
used to reproduce the workload volatility of a Video on Demand
(VoD) system. Based on numerical simulations, we evaluate the
precision of the estimation procedure we derive to calibrate our
parametric model. We also compare its performance to that of
other existing models examining the goodness-of-fit of the steady
state distribution and of the autocorrelation function of real
workload traces. We then give each parameter of the model an
interpretation in terms of the workload volatility, that enlightens
on some origins of the system dynamics, like the users behaviour.
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I. Introduction
In recent trends of data-intensive applications with pay-

as-you-go execution in a cloud environment, there are new
challenges in system management and design to optimize the
resource utilization. For instance, some applications exhibit
bursty workloads, which lead to highly varying demand in
resources. Research to better understand and to faithfully
reproduce this demand volatility in simulators calls for per-
tinent workload models. Past research on traffic modelling
has yielded significant results for various types of applications
such as Web, P2P or Video streaming. In all these cases, the
developed traffic models have served as valuable inputs to
assess the efficiency of adapted management techniques. In
this work we consider a Video on Demand (VoD) system as
a paradigm of applications subject to highly variable demand
and we elaborate a complete modelling framework able to
reproduce similar bursty workload.

A VoD service delivers video contents to consumers on
request. According to Internet usage trends, users are increas-
ingly getting more involved in the VoD and this enthusiasm
is likely to grow. According to [1] a popular VoD provider
like Netflix alone represents 28% of all and 33% of peak
downstream Internet traffic on fixed access links in North
America, with further rapid growth expected. IT giants like
Apple, Adobe, Akamai and Microsoft are also emerging as
competitive VoD providers in this challenging, yet lucrative
market. Since VoD has stringent streaming rate requirements,
each VoD provider needs to reserve a sufficient amount of
server outgoing bandwidth to sustain continuous media de-
livery (we are not considering IP multicast here). However,
resource reservation is very challenging when a video becomes
popular very quickly (i.e. buzz) and yields a flood of user
requests on the VoD servers. To help the providers anticipating
these situations, descriptive models are sensible approaches
to capture and to get a better insight into the mechanisms
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that underlie the applications. The goal of a model is then
to reproduce, under controlled and reproducible conditions,
the behaviour of real systems and to generate workloads
that can eventually be used to evaluate the performance of
management policies. One important tenet in modelling is to
get a parsimonious description (with few parameters that can
easily be calibrated from the observation) covering a large
diversity in users practices. Moreover, due to the stationarity
and uniformity of a model it might be possible to run shorter
simulation and still obtain convergent results [2]. In this paper,
we elaborate a complete modelling framework that formalises
the users behaviour in a VoD system and so, permits to
simulate realistic workload regarding burstiness amplitude and
dynamics. Our contribution comprises: (i) the construction of
an epidemic-inspired model adapted to VoD mechanisms; (ii)
an heuristic procedure to estimate the models parameters from
a workload trace; (iii) a comparative study emphasising the
good match between our model and real VoD workload traces;
that we develop in the next three sections, respectively. We
discuss related works and draw conclusions in Section V.

II. Proposed Video on Demand (VoD) Model

Following the trails of related works, our model is inspired
by epidemic models to represent the way information spreads
among the viewers (gossip-like phenomenon) in a VoD system.
Epidemic spreading models commonly subdivide a population
into several compartments: susceptible (noted S) to designate
the persons who can get infected, and contagious (noted C) for
the persons who have contracted the disease. This contagious
class can further be categorized into two parts: the infected
subclass (I) corresponding to the persons who are currently
suffering from the disease and can spread it, and the recovered
class (R) for those who got cured and do not spread the
disease anymore [3]. In these models S (t)t≥0, I(t)t≥0 and R(t)t≥0
are stochastic processes representing the time evolution of
susceptible, infected and recovered populations respectively.

In the case of a VoD system, infected I refers to the
people who are currently watching the video and can pass
the information along. In our setting, I(t) directly represents
the current workload which is the current aggregated video
requests from the users. Here, we consider the workload as
the total number of current viewers, but it can also refer
to total bandwidth requested at the moment. The class R
refers to the past viewers. In contrast to the classical epidemic
case our model does not exhibit a threshold phenomenon, i.e.
if the initial infected population exceeds a critical threshold
(which quantifies the transmission potential of the disease),

978-1-4673-2480-9/13/ $31.00 c©2013 IEEE



then the epidemic spreads, else it dies out. There is no such
phenomenon in our proposed model which distinguishes it
from a classical epidemic model. Another major distinction of
our approach stems from introducing a memory effect in our
model, assuming that the R compartment can still propagate
the gossip during a certain random latency period. We deem
this assumption necessary from standard social behavior where
people keep talking about a video even after watching it.
We also consider the number of susceptible viewers to be
infinite, since the number of subscribers of the popular VoD
service providers can go very high. Like standard epidemic
models, our model also follows a stochastic process that
satisfies the Markov property and takes values in the state
space. Then, within a small time interval dt, the probability
for a susceptible individual to turn into an active viewer reads:
PS→C = (l + (I(t) + R(t)) β)dt + o(dt), where β > 0 is the
rate of information dissemination per unit of time and l > 0
fixes the ingress rate of spontaneous viewers. At time t, the
instantaneous rate of newly active viewers in the system:

λ(t) = l + (I(t) + R(t))β, (1)

corresponds to a non-homogeneous (state-dependant) Poisson
process which varies linearly with I(t) and R(t). When β �
l, the arrival process induced by peer-to-peer contamination
dominates the workload increase, whereas it is the spontaneous
viewers arrival process that prevails when l � β. This l also
restricts the system reaching in the absorbing state.

Regarding the sojourn time in the (I) compartment, we
assume that the watch time of a video is an exponentially
distributed random variable with mean value γ−1, meaning that
viewers leave for the (R) class at rate γ. As already mentioned,
it also deems reasonable to consider that a past viewer will
not keep propagating the gossip about a video indefinitely.
Instead, they remain active only for a latency random period
that we also assume exponentially distributed with mean value
µ−1, after which they leave the system (at rate µ). Without loss
of generality we assume that watching time (γ−1) of a video
is much smaller compared to the memory (µ−1) persistence,
leading to µ � γ.

Another innovation of our model lies in the buzz generating
mechanism: we resort to Hidden Markov Models to randomly
switch between the nominal (buzz-free) and the buzz regimes.
While β = β1 in the normal state, the propagation rate (gossip)
jumps to β = β2 � β1 in buzz regime, triggering thus a sudden
and steep increase of the current demand. Transitions between
these two hidden and memoryless Markov states occur with
rates a1 and a2 respectively and characterize the buzz in terms
of frequency and duration. In our context we suppose that
a1 � a2, i.e. buzz periods are less frequent and shorter in
duration than normal periods. Theoretically, we can generalize
the model to include many hidden states. But our result shows
(see section IV) only two states suffice to reproduce different
types of buzz with peaks and troughs at many scales. With
these assumptions, and posing (I(t) = i, R(t) = r) the current
state, Fig. 1 shows the state-transition diagram of the model.

A closed-form expression for the steady-state distribution
of the workload (i) of this model seems not to be trivial to
derive. However, we can express the analytic mean workload
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Fig. 1: Markov Chain representing the possible transitions of the
number of current (i) and past active (r) viewers.

of the system equaling the incoming and outgoing flow rates
in steady regime. For ease, we start with β = β1 = β2 and
generalize the result to β1 , β2 thereafter. We get: E(i) =

µl/(µγ − µβ − γβ), which, to be a positive and finite quantity,
yields the stability criterion in buzz-free regime:

β−1 > µ−1 + γ−1. (2)
We now extend these results to the case where the model may
exhibit a buzz activity. As β alternates between the hidden
states β = β1 and β = β2, with respective state probabilities
a2/(a1 + a2) and a1/(a1 + a2). Therefore the mean workload in
this situation reads:

E(i) = a2/(a1 + a2) · Eβ1 (i) + a1/(a1 + a2) · Eβ2 (i), (3)
In order to illustrate the flexibility of our workload model
and to validate Eq. (3), we generate three synthetic traces
corresponding to the different sets of parameters. We reported
the result in Table I. Particular realizations of these processes
generated over 221 points are displayed in Fig. 2. We choose
these three sets of parameters as they lead to three distinct
types of workload. The synthetic traces corresponding to cases
(b) and (c) reproduce distinct and easily identifiable buzz
regimes. However, the buzz shown in case (c) is even more
prominent than that occurs in case (b). The parameter set of
case (a) leads to a workload variation which is different from
case (b) and (c) and the buzzes are not easily identifiable
here. Nonetheless, for all 3 configurations, the empirical means
estimated from the 221 samples of the traces are in good
agreement with the expected values of Eq. (3).

III. Model Calibration

In this section we address the identifiability of our model
and design a calibration algorithm to fit workload data (sta-
tionary trace). We start constructing empirical estimators for
each parameter of the model and then numerically evaluate
their performance on synthetic traces.

A. Parameters estimation
Considering a standard epidemic process X with propaga-

tion rate θ, the maximum likelihood estimate θ̂MLE is derived
TABLE I: Parameters value used to generate the traces plotted in
Fig. 2. The last two rows correspond to the theoretical mean workload
of Eq. (3) and to the sample mean value estimated from the traces.

(a) (b) (c)
β1 4.762 × 10−4 3.225 × 10−5 2.439 × 10−5

β2 0.0032 0.0032 0.0032
γ 0.0111 0.0020 0.0011
µ 5 × 10−4 3.289 × 10−5 2.5 × 10−5

l 10−4 10−4 10−4

a1 10−7 10−7 10−7

a2 0.0667 0.0667 0.0667

E(i) 1.92 16.41 44.93
Emp. mean 〈i〉 1.74 16.72 45.23
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Fig. 2: Illustration of our model ability at generating different dynamics of workload I(t). See Table I for the parameter values corresponding
to each of these three cases. The X−axis corresponds to time (in hours unit) while the Y−axis indicates the number of active viewers.

in [3], [4] and reads:

θ̂MLE = n · (
∫ T

0 X(t) dt)−1, (4)

where n is the number of contaminations (i.e. number of
increments of X) occurring within the time interval T .

Very often, the maximum likelihood approach yields opti-
mal results (in terms of estimated variance and/or bias) but
it is not always possible to get a closed-form expression
for the estimated parameters. This can either be due to the
likelihood function that is impossible to derive analytically, or
to missing data that preclude straightforward application of the
maximum likelihood principle. Nonetheless, solutions, such
as the Expectation-Maximization (EM) or the Monte Carlo
Markov Chain (MCMC) algorithms exist, which in some cases
can approximate maximum likelihood estimators.

Returning to our model depicted in Fig. 1, each parameter
needs to be empirically estimated, assuming that the instanta-
neous workload time series is the only available observation.
Watching parameter γ. As γ is the departure rate of users that
leave the infected state after they finished watching a video,
it can directly be inferred from the number n of decrements
of the observable process I(t). Therefore, the MLE of Eq. (4)
straightforwardly applies and leads to:

γ̂MLE = n · (
∫ T

0 I(t) dt)−1. (5)

Memory parameter µ. This rate at which past viewers leave the
recovery compartment and stop propagating the virus (gossip),
relates to the decrement density of the non-observed process
R(t). It is thus impossible to simply apply the MLE of Eq.
(4) unless we first construct a substitute R̂(t) to the missing
data from the observable data set I(t). Let us recall that in our
model, all current viewers turn and remain contagious for a
mean period of time γ−1 + µ−1. Then, in first approximation,
we can consider that R(t) derives from the finite memory
cumulative process:

R̂(t) =
∫ t

t−(γ−1+µ−1) I(u) du, (6)

which itself, depends on the parameter to be estimated µ. We
propose an estimation procedure based on the inherent expo-
nential property of the model. From the Poisson assumption,
the inter-arrival time w between the consecutive arrivals of two
new viewers is an exponentially distributed random variable
such that E (w| I(t) + R(t) = x) = (β x + l)−1. It means that,
for x fixed, the normalized random variable w̃ = w/E(w|x) is
exponentially distributed with unitary parameter and becomes
independent of x. Ideally then, for each value of R(t)+I(t) = x,
all the sub-series wx = {wn : R(tn) + I(tn) = x}, after
normalization by their own empirical mean, yield independent
and identically distributed realizations of a unitary exponential
random variable. In practice though, as R(t) is not observable,
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Fig. 3: Evolution of the exponential test statistics (Eq. 7) applied to
the traces of Fig. 2. Dotted vertical lines locate the actual value of µ
for each case; dot markers on each curve indicate the estimated value
µ̂ corresponding to the minimum point of the statistical test Tµ.

only if R̂(t) is accurately estimated, should this unitary ex-
ponential i.i.d. assumption hold true. From there, we propose
the following algorithm: for different values of µ spanning a
reasonable interval, we use R̂µ(t) estimated from Eq. (6) to
build the normalized series w̃µ. A statistical test applied to
each w̃µ allows for assessing the exponential i.i.d. hypothesis
and then to select the value of µ that yield the best score.
More concretely, we apply to w̃µ = (w̃n)n=1,...,N the statisti-
cal exponentially test derived in [5]: Form the normalized
spacings vµ =

(
v(n) = (N − n + 1)(w̃(n) − w̃(n−1))

)
n=1,...,N where(

w̃(n)
)
n=1,...,N stands for w̃µ rearranged in ascending order. Let

F and G denote the cumulative distribution functions of w̃µ

and vµ respectively, and compute the classical Kolmogorov-
Smirnov distance:

Tµ = 1
√

N
sup1≤k≤N |F(k) −G(k)|. (7)

As F and G are identical for an exponentially i.i.d. random
series, we then expect Tµ to reach its minimum for the value
of µ that gives the best estimate R̂µ(t) of R(t):

µ̂ = argminµTµ and R̂ = R̂µ̂. (8)

Plots of Fig. 3 show the evolution of the Kolmogorov-Smirnov
distance corresponding to the traces displayed in Fig. 2. In
the 3 cases, Tµ clearly attains its minimum bound for µ̂ close
to to the actual value. The corresponding estimated processes
R̂(t) derived from Eq. (8) match fairly well the real evolution
of the (R) class in our model (see Fig. 4).
Propagation parameters β and l. According to our model, the
arrival rate λ(t) of new viewers is given by Eq. (1). It linearly
depends on the current number of active and past viewers. So,
from the observation I(t) and the reconstructed process R̂(t)
of Eq. (8), we could formally apply the maximum likelihood
Eq. (4) to estimate β. In practice however, we have to bear
in mind that: (i) the arrival process of rate λ(t) comprises a
spontaneous viewers ingress that is governed by parameter l
and which is independent of the current state of the system;
(ii) depending on the current hidden state of the model (buzz-
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Fig. 4: Evolution of the number of active past viewers. Comparison
of the actual (non observable) process R(t) (blue curve) with the
estimated process R̂(t) (red curve) derived from Eq. (6).

free versus buzz state), it is alternately β = β1 and β = β2
that fix the propagation rate in Eq. (1). We designed an
estimation procedure based on a weighted linear regression,
that simultaneously addresses these two issues. We decompose
our rationale in two steps: First, let us consider the buzz-free
state only and β = β1. As discussed in the estimation of µ the
inter-arrival time w between the consecutive arrivals of two
new viewers is an exponentially distributed random variable
such that E (w| I(t) + R(t) = x) = (β x + l)−1. Concretely then,
for different values of the sum I(t) + R̂(t), we calculate the
conditional empirical mean: Ω(x) = 1

|I(x)|
∑

tn∈I(x) wn : I(x) =

{tn : I(tn)+R̂(tn) = x}. The linear regression of (Ω(x))−1 against
x yields at one go, both parameters estimation β̂ (slope) and l̂
(intercept).
Let us now return to the general form of our model with
alternation of buzz and buzz-free periods. In the buzz-free
case, β = β1 corresponds to a normal workload activity,
meaning that the sum I(t) + R̂(t) takes on rather moderate
values. Conversely, when the system undergoes a buzz, β = β2
and the population I(t) + R̂(t) suddenly increases to reach
significantly larger values. Yet, in both cases, the quantity Ω−1

remains linear with x but with two different regimes (slopes)
depending on the amplitude of I(t)+ R̂(t) = x. As a result, it is
possible to reduce the bias that β2 causes on the estimation of
β1, using a weighted linear regression of Ω−1 vs x where the
weights p(x) are proportional to the cardinal of the indicator
sets I(x). Indeed, |I(x)| should be smaller for larger values of
x because buzz episodes are expected to be less frequent than
nominal activity periods.

Formally, we can apply the exact same procedure to estimate
β2, but considering opposite weights to favor the large values
of x’s. However, due to the large fluctuations of (Ω(x))−1 in
the corresponding region, the slope β̂2 is subject to a very
poor estimation variance. Instead, we propose to apply the
ML estimator described in Eq. (4) on the restriction of I(t) to
the buzz periods only. Strictly speaking, we should consider
R̂(t) as well, but since a buzz event normally occurs on very
small interval of time, we assume that R̂(t) (resp. R(t)) remains
constant in the meanwhile (flash crowd viewers will enter in
R compartment only after the visualization time). In practice,
to automatically identify the buzz periods, we threshold I(t)
and consider only the persistent increasing parts that remain
above the threshold.
Transition rates a1 and a2. At time t, the inter-arrival time
w separating to new incomers is a random variable drawn
from an exponential law of parameter λ = β(i + r) + l,

where β is either equal to β1 or to β2. We denote f1(w) and
f2(w) the corresponding densities built upon the reconstructed
process R̂(t) and the estimated parameters (β̂1, l̂) and (β̂2, l̂)
respectively. For a given inter-arrival time w = wn observed
at time tn, we form the likelihood ratio f2(wn)/ f1(wn) to
determine whether the system is in buzz or in buzz-free state.
Moreover, in order to avoid non-significant state transitions we
resort to a restoration method inspired by the Viterbi algorithm
[6]. Once we have identified the hidden states of the process,
we estimate the transitions rates â1 and â2 from the average
times spent in each state.

B. Numerical Validation
To evaluate the statistical performance of our estimation

procedure, we resort to numerical experiments to empirically
get the first and the second order moments of each parameter
estimator. Owing to the versatility of our model, we must
ensure that the proposed calibration algorithm performs well
for a variety of workload dynamics. To this end, we system-
atically reproduce the experiments considering the 3 sets of
parameters reported in Table I. For each set, we generate
10 independent realizations of processes similar to the ones
depicted in Fig. 2, and use these to derive descriptive statistics.
The box plots of Fig. 5 indicate for each estimated parameter
(centered and normalized by the corresponding actual value)
the sample median (red line), the inter-quartile range (blue box
height) along with the extreme samples (whiskers) obtained
from time series of length 221 points. As expected (from
maximum likelihood), estimation of γ shows to be the most
accurate, both in terms of bias and variance. More surprisingly
though, although the estimation β̂1 derives from a heuristic
procedure that itself depends on the raw approximation R̂(t)
of Eq. (6), the resulting performance is remarkably good: bias
is always negligible (less than 5% in the worst case (c)) and
the variance always confines to 10% interval. Notice also that
the estimation of β1 goes from a slight underestimation in case
(a) to a slight overestimation in case (c), as the buzz effect, i.e.
the value of β2, grows from traces (a) to (c). Compared to β̂1,
the estimation of β2 behaves more poorly and proves to be the
hardest parameter to estimate. But we have to keep in mind
that this latter is only based on buzz periods which represent
only a small fraction of the entire time series. Regarding the
parameter µ, its estimation remains within a 20% inter-quartile
range but all cases show a systematic bias (median hits the
lower or upper quartile bound). Remind that the procedure,
described by Eq. (8) to determine µ̂ selects within some
discretized interval, the value of µ that yields the best Tµ score.
It is then very likely that the true value does not coincide
with any sampled point of the interval and therefore, the
procedure picks the closest one that systematically lies beneath
or above. Finally, estimation of the transition parameters a1
and a2 between the two hidden states relies on all other
parameters estimation, cumulating all relative inaccuracies.
Nonetheless and despite a systematic underestimating trend,
precision remains within a very acceptable confidence interval.

Convergence rate of the empirical estimators is another
important feature that binds the estimate precision to the
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Fig. 6: Evolution of the Mean Square Error versus the data length
N in a log-log plot. For the sake of conciseness, we only show here
the results corresponding to the case (b) of Table I.

amount of available data. Using the same data set, the bar
plots of Fig. 6 depicts the evolution of the mean square
error MSE(̂θ) = E{(̂θ − θ)2} – where generic θ stands for
any parameter of the model – with the length N of the
observable time series. As our purpose is to stress the rate
of convergence of these quantities towards zero, to ease the
comparison, we normalize the MSE of each parameter by its
particular value at maximum data length (i.e 221 points here).
Then, the estimator rate of convergence αθ corresponds to the
decaying slope of the MSE with respect to N in a log-log plot,
i.e. MSE(̂θ) ∼ O(N−αθ ). For the different parameters of our
model we obtain convergence rates that lie between αβ1 = 0.5
and αa2 = 0.2, leading each time to sub-optimal convergence
(αθ < 1).

IV. Model Fitting to RealWorkload Data

To assess the adequacy of our model at reproducing real
workload traces, we apply the calibration procedure described
in Section III on two VoD traces, recorded in January 2011
by the Greek Research and Technolohy Network (GRNET)
[7]. We denote them as Trace I (∼ 200 hours long) and
Trace II (∼ 150 hours long) and plotted in Fig 7-(a) and -
(b), respectively. For both cases, we check that the two sets of
estimated parameters reported in Table II verify the stability
condition of Eq. (2) and we use the so calibrated models to
generate two corresponding realisations of synthetic workloads
(plots (c)-(d) of Fig. 7).

Comparing the means and the standard deviations of both
real and synthetic traces (Table III), it is clear that our model
successfully reproduces the average number of active viewers
but also its variability along time. The observed difference
(about 10% for the mean values) is not as striking as it was
with the synthetic traces of Section II. But we must bear in

TABLE II: Estimated Parameters of our VoD model.

β̂1 β̂2 γ̂ µ̂ l̂ â1 â2

Trace I 1.3.10−3 8.4.10−3 3.9.10−3 2.8.10−3 3.2.10−3 3.1.10−4 2.2.10−2

Trace II 4.9.10−3 1.8.10−2 1.2.10−2 9.5.10−3 4.8.10−4 1.3.10−5 4.1.10−2

TABLE III: Mean and standard deviation of real traces and models.

Real Proposed Model Simple Markov MMPP/M/1
Trace I Mean 4.99 5.59 12.68 6.45

Std. Dev 18.26 17.87 17.15 20.02
Trace II Mean 0.71 0.62 1.23 0.94

Std. Dev 16.82 15.99 15.85 17.95

mind that first, ab initio nothing guarantees that the underlying
system matches our model dynamics and, second, Traces I and
II can possibly encompass short scale non-stationary periods
(e.g. day versus night activity) which are not accounted for in
our model.

Nonetheless, for the sake of a fair analysis, we must
compare the performance of our approach with that of simpler,
yet sensible models and with that of more elaborated models
that were proposed in the literature for similar purposes. Then,
we start with a simple Markov model where the transition
rates derive from all possible changes of states observed in
real time series. Calibrated on Traces I and II, this model
produces synthetic evolutions of active viewers, represented
in Fig. 7(e)-(f), whose mean can significantly differ from real
values (see Table III). However the discrepancy is not that
pronounced for the standard deviations (relative error remains
below 10%), which tends to prove that a naive model like a
Markov chain succeeds to catch the inherent variability of a
VoD workload process!

Let us now consider the more refine MMPP/M/1 queue
model proposed in [8]. This queueing system assumes an
arrival process that alternates between two Poisson processes
according to a two hidden state Markov chain, an exponen-
tially distributed service time and a single server to serve the
viewers. In the author’s own words, this Modulated Markov
Poisson Process is particularly adapted for modelling corre-
lated arrival streams and bursty workload behaviour. As previ-
ously then, we calibrate this model with Traces I and II and we
plot in Fig. 7(g)-(h) the realisations of the corresponding two
synthesised workloads. Comparing the means and the standard
deviations between the real and the modelled traces, the fitting
performance of the MMPP/M/1 model are fairly comparable
to that of our model (see values in Table III). . .

Beyond its mean and standard deviation, the steady state
distribution of a (stationary) stochastic process is a more
complete indicator of the process volatility. In particular, the
way it decreases towards zero defines the frequency of large
values and therefore directly reflects the burstiness of the
process. Top and bottom plots of Fig. 8 represent the estimated
steady state distributions corresponding to the real workloads
of Traces I and II, respectively and superimposed, the ones
for the three different models we considered. Despite having
comparable means and variances (Table III), these curve show
that not all the synthetic traces do reproduce accurately the
statistical distribution of the number of active viewers. In
particular, it is clear from the plots that the occurrence of large
amplitudes are overvalued by the simple Markov model and
also by the MMPP/M/1 queue. In contrast, the good fit of
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Fig. 7: Modelled workload for Trace I (Left column) and Trace II (Right column). First row corresponds to the real traces; second row to
the synthesised traces from our model; third row to synthesised traces from simple Markov model; fourth row to the synthesised traces from
MMPP/M/1 model. Horizontal axes represent time (in hours) and vertical axes represent workload (number of active viewers).

our model proves its capacity to reproduce the occurrence and
the amplitude range of buzz events (i.e. bursts in the evolution
of active viewers).

Another very important feature that characterises the volatil-
ity of a process is the local regularity of its path. In particular,
the rapidity of the amplitude variations at small scales fixes the
dynamics of the bursts, and can subtly be formalised via the
auto-correlation function of the process. This latter measures
the statistical dependency RI(τ) = E{I(t) I∗(t+τ)} between two
samples of a (stationary) process I, distant of a time lag τ: the
larger RI(τ), the smoother the path of I at scale τ. So, for all
the trajectories of Fig. 7, we estimated their auto-correlation
functions that we plotted in Fig. 9. It is striking then, how our
model is able to reproduce the long-term correlative structure
of the real traces, whereas both simple Markov and MMPP/
M/1 models fail at imposing a statistical continuity beyond
a 30 minutes time scale for Trace I, and only 3 minutes for
Trace II! Actually, this time coherence is also very visible
in the synthetic traces of our model (Fig. 7(c),(d)) that look
much smoother compared to the very erratic ones of the other
models (Fig. 7(e)-(h)).

Let us stress that this reproduced dynamics is a direct
consequence of the memory effect (controlled by the parameter
µ) we injected in our model. However, we did not intend with
this mechanism, to originate a Long Range Dependence (LRD)
property (in the strict sense of a power law decay of the au-
tocorrelation function), as we did not observe such behaviour
in real data. This explains also, why we did not report our
experiments based on a Lévy process model. Despite its ability
at matching highly varying processes, this model is specifically
known for exhibiting LRD that is incompatible with the sought
autocorrelation decay.

Finally, owing to its constructive approach, each parameter
of our model is meaningful with regards to the system opera-
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Fig. 8: Steady-state distribution of the real and generated traces from
the proposed, simple Markov and MMPP/M/1 models. Top plots
corresponds to Trace I and bottom to Trace II.

tion. For instance, let us compare the values of parameters β̂1
and l̂ estimated from Trace I and II. In the first case, the arrival
of new viewers is dominated by spontaneous incomers and is
not so much due to information propagation through gossip
(except in the buzz periods), whereas in the second trace, the
peer-to-peer diffusion component overtakes the spontaneous
attraction of the server. At the same time, the memory index µ̂
tripled, meaning that the mean duration of contagion shrank by
a factor of 3. This parameter could then be used as an indicator
of the content interest delivered by the server, through its
lifetime in users mind. A VoD service providers can exploit
these information for better provisioning the system [9].

V. RelatedWorks and Conclusion

A survey of the history of VoD modelling shows several
changes of paradigms and platforms. An early work in this
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domain include [10]. But, we focus on the bursty workload
generated by a VoD system, which has been an active area of
research with different approaches. In an user based approach
authors of [12], [13] and [14] develop user activity models to
reproduce the workload generated by an user. In a different
approach researchers [15] [16] aim to model the aggregated
workload generated by multiple users. In this vein we dis-
cuss some basic as well as advanced models which address
workload volatility of a VoD or similar systems in the next
paragraph. Authors of [17] proposed a maximum likelihood
method for fitting a Markov Arrival Process (MAP), a gener-
alization of the Poisson process by having non-exponentially
distributed (yet phase type) inter-arrival times, to the web
traffic measurements. This approach is useful to describe
the time-varying characteristics of workloads and seems to
achieve reasonable accuracy in models to fit web server traces
in terms of inter-arrival times and tail heaviness. However,
the authors do not aim to model bursty workloads in this
work. With a focus on buzz arrival modelling, the authors
of [15] and [16] proposed a two-state MMPP (a special
case of MAP) based approach and a parameter estimation
procedure using the index of dispersion. But as we saw in
section IV the MMPP model seems to include only very short
memory and may not be suitable for our purpose. Moreover,
the obtained model parameters from both MAP and MMPP
are not comprehensive to draw inference about the system
dynamics. A parsimonious model like Lévy is a tempting
approach since it can provide a long-term correlation of the
system. Thanks to its inherent “α-stable” process, this process
is also suitable to model system volatilities. But it develops
a long range memory which does not seem to match the
dynamic feature of our real traces. In a distinct approach,
server workloads have been thoroughly studied in many works,
such as [18], [11], [19], [20] or [21]. These works, however,
provide a statistical analysis of server workloads in context
of usage pattern, caching, pre-fetching, or content distribution
and do not focus primarily on workload modelling. Other
popular workload generators include [22], [23], [24] or [25].

They are mostly used to evaluate computer systems or Web
sites. But it seems that reproducing satisfactory burstiness in
workload is the major deficiency of most proposed models.

Our approach demarcates itself from the above described
works mainly in its constructiveness and ability to generate
bursty traffic with correct dynamics. We propose a com-
prehensive model, capable to reproduce workload volatility
with “avalanche” type of burstiness. Moreover, this model is
versatile and can be adapted to other applications as well.
Finally, owing to the constructive nature of our model, the
estimated values of the parameters provide valuable insight
on the application that is difficult to infer readily from the
raw traces. The captured information may answer questions
of practical interest to cloud oriented VoD service providers
which we intend to explore as our potential future work.
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