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INTRODUCTION 
  
Many innovative approaches to using data to make inferences 
about aspects of the natural world necessitate the calculation 
and appraisal of large numbers of alternative models or the 
repeated sampling of a multi-parameter solution space.  While 
this is not new to science, it has hitherto been restricted to 
either very simple models, or to institutions with powerful 
computing infrastructure. Such institutions include large 
commercial companies and publicly funded computing 
initiatives, generally housed at universities or government 

research establishments. Advances in desktop and notebook 
computer processing and data storage capabilities now enable 
a variety of multiple-model approaches to geophysical data 
inference to be carried out on personal computers.  It is 
therefore timely reconsider such approaches as innovative in 
recognition of their newly increased potential for widespread 
use. We also illustrate an innovative algorithm that is highly 
applicable to many aspects of geoscience. 

SUMMARY 
 
Wireline logs record the variation in a number of physical 
measurements, sometimes 20 or more different 
properties, with depth down a borehole.  They are 
routinely correlated with, and/or interpreted in terms of, 
the rock stratigraphic record.  Logs are also interpreted 
with the aim of inferring other useful physical properties 
not directly measured.  In some data-rich exploration 
industries, such as oil and gas, wireline log interpretation 
is highly developed.  In other industries, such as 
geothermal and minerals exploration, wireline 
information is often incomplete and may be inaccurate or 
inconsistent.  The aim of this work is to explore an 
innovative approach to the analysis of wireline logs.   
 
We use an innovative, flexible approach to the 
identification of ‘change points’, which may indicate 
boundaries between lithologies or significant intra-
formation structure.  The number of boundaries/classes is 
not fixed in advance, being solved for as part of the 
modelling process. The approaches are applicable in 
data-rich environments with relatively well-know 
stratigraphy where they will add to physics and more 
conventional statistics-based inference.  They may also 
find particular utility in situations with less than ideal 
data and diverse stratigraphy as they naturally 
incorporate ways of handling uncertainty.  Unforeseen 
relationships are allowed to emerge and, hence, inform 
future predictive analysis. 
 
Key words: data inference, inversion, petrophysics, 
thermal properties, wireline log 

 
An example of a successful borehole wireline interpretation 
program is LogTrans (Zhou and Fullagar, 2009) which uses a 
statistical characterisation of a representative control dataset 
to predict lithology from wireline data.  Our work aims to add 
to such practical approaches by using the data itself to suggest 
change points, without using a control dataset. This may 
enable further insights to be made in data rich environments. 
For regions with sparse data and no control datasets, it may 
enable interpretations to be made which would not have been 
possible before. 
 
Making an inference from data in a quantitative sense is a 
significant branch of mathematics often termed ‘inverse 
theory’.   Essential definitions, as applied to geophysical data 
analysis are reviewed in the widely read texts by Menke 
(1989) and Aster et al. (2005).  The latter text makes clear the 
distinction between the goal of model parameter estimation 
and that of understanding the full scope of the inverse problem 
in question. In this paper, we apply the term ‘traditional’ to 
data inference problems in which a single model is derived 
from data, and a reasonable starting model, possibly over 
several iterations.  Of course there are still many applications 
for which this approach is well-founded and there is certainly 
scope for innovation in this area (not least in the formation of 
the forward problem).   We do not consider Monte Carlo-style 
direct search algorithms (e.g. genetic algorithms) in which 
multiple models are calculated and subject to assessment and 
refinement, although we also recognise the value of these 
techniques (Sambridge, 1999).  Increased computer power 
does make these approaches more realistic for models of 
several tens of parameters and there are certainly some 
philosophical similarities between some methods of assessing 
the resulting ensemble of models and the methods described 
below. 
 
The innovations we focus on in this paper concern the nature 
of the solution.  Instead of there being an unknown model 
which we would like to determine, the solution is a 
probability distribution for the model parameters and the 
number of model parameters is allowed to vary. We explore 
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these probability distributions by sampling the multi-
dimensional posterior model space.  This is done using a 
Monte Carlo approach, with sampling being guided by 
previous samples using a Markov Chain.  The work falls in 
the category of ‘Bayesian’ techniques.  Bayesian techniques 
in general have met with criticism and failure in usage in the 
past owing to the lack of understanding of underlying 
fundamentals, but used with intelligence, they facilitate 
extremely well-founded, flexible algorithms which are 
sufficiently efficient to be of practical use in a typical desk-
top computing environment.  Importantly, they make use of 
the information inherent in a well-sampled probability 
distribution for the model parameters, and may now be viewed 
as an alternative, with many advantageous features, to 
traditional forms of geophysical modelling.   
 
One particular advantage is flexibility in the number of 
parameters describing the model. This can be explored and 
changed as the model parameter sampling progresses.  Making 
use of such advantages requires working geophysicists to be 
familiar with a wider range of modelling philosophies than is 
necessary with commercially available ‘traditional’ software.  
Data that have been expensive to acquire can be made use of 
in a much more complete way.   There is often additional 
insight to be gained through the reinterpretation of existing 
data in innovative ways.  In this paper, we use wireline log 
data to illustrate some of the advantages of such approaches. 
 

APPLICABILITY 
 
Petroleum exploration has been carried out in on-land regions 
of Australia for some decades.  There is a large amount of 
existing archive wireline log data residing in the archives of 
state and federal government sources, much of which is now 
available online.   Many of the regions formally explored for 
petroleum are now the subject of renewed interest in the form 
of exploration for various types of geothermal energy 
generation potential.  These include Enhanced Geothermal 
Systems (heat producing basement rock overlain by thermally 
insulating sediments) and Hot Sedimentary Aquifers. The 
geothermal industry in Australia is a yet unproven investment 
risk.  Raising the necessary capital for a comprehensive 
exploration drilling program is difficult and hence there is 
much to be gained from making good use of pre-existing data.  
Junior geothermal exploration companies are now beginning 
to drill exploratory deep holes, and there is also much to be 
gained from optimal interpretation of new wireline data for 
this developing industry.  The technique outlined below is not, 
however, confined to a particular industry and may be applied 
to any sequence of noisy data where ‘change points’ which 
change the underlying relations between the data are 
suspected.  Importantly, the physics, or petrophysics, 
underlying the change points is not required in calculating the 
forward problem.  It is the statistical relationships between the 
data that are explored.  Change points are then assigned with 
appropriate probabilities. 
 
Change points in wireline log data may well correspond to 
lithological boundaries.  Importantly for the geothermal 
industry, they may also indicate regions within lithological 
units with varying thermal properties but no obvious change 
in lithology (even if an accurately logged core is available).  
For example, sandstone containing a large proportion of 
quartz is likely to be much less thermally conductive than 
sandstone containing a larger proportion of feldspar.  These 

proportions may change within an apparently uniform 
formation and would affect the results of thermal modelling in 
a system dominated by conductive heat flow. 

 
DATA 

 
Wireline log data for this analysis come from two locations in 
Eastern Australia, Boyne River in Queensland (shown in this 
paper) and Singleton in New South Wales.  They were chosen 
because they also have a reasonably complete core which was 
available for sampling and complementary laboratory analysis 
of petrophysical and rock thermal properties although this is 
not generally the case with archive wireline log data.  
Sedimentary cores in particular may be dried out and not 
suitable for laboratory testing, if indeed they exist at all 
(Howe, 2009). 
 
The logs used in this example are Density (LSD, counts per 
sec), Neutron (Porosity, instrumental units), Interval time 
(DT, us/ft) and Electric Array (EAL, ohm.m). This 
information is not essential to the method, which normalises 
the data prior to inversion and converts back to the original 
scale values for output. Knowledge of the uncertainty in 
measurement values is not required as this is solved for as part 
of the inversion. Four logs were used in this case, although 
typically 12-20 different logs are collected (Dewan, 1984, 
Serra 1988) and more could be used if required.  A 75 m 
section of core / wireline log was used to illustrate the method.  
It was simplified considerably by subsampling the wireline 
values for testing although this is not a general requirement of 
the method.  
 

 
Figure 1.  Summary lithology and wireline logs.  The thick 
orange/brown units are dolerite, the other units 
interbedded shale and conglomerate, including some coal.  
This is an approximately 75 m long section of a deeper 
core / wireline log.  
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METHOD 
 

We investigate ‘change points’ in the wireline log using a new 
implementation which does not require prior knowledge of the 
uncertainty in the data (Bodin et al., 2010). This is a particular 
advantage in the analysis of wireline data as noted in the 
previous section. 
 
The reversible jump algorithm (Geyer and Møller, 1994; 
Green, 1995) represents a Bayesian framework for the 
construction of reversible Markov chain samplers that jump 
between parameter subspaces of differing dimensionality.   In 
practical terms, this enables models with differing numbers of 
change points to be tested and the probability of each change 
point to be calculated.  Such ‘transdimensional’ inversion 
methods in geophysics have been used in geostatistics 
(Stephenson et al. 2004), thermochronology (e.g. Stephenson 
et al. 2006), palaeoclimate inference (e.g. Hopcroft et al. 
2007) and tomographic inversion (Bodin et al., 2009).  While 
this approach is a very promising addition to the geophysicist 
/ well-log analyst’s computational toolbox, a problem arises 
given the lack of knowledge of the level of uncertainty in the 
data. Allowing the number of change points, model 
parameters, to vary, effectively allows freedom in the level of 
complexity in the model.  This could be problematic, in that 
sampling could favour very complex models that are 
effectively trying to fit noise.  
 
In the new implementation (Bodin et al., 2010), the 
formulation is improved by parameterising the data 
uncertainty in the form of one value (a hyperparameter), 
corresponding to the standard deviation, for each dataset.  The 
algorithm solves for these values in the same way as other 
model parameters, i.e. providing a posterior distribution for 
each. This is made possible through a Hierarchical Bayes 
(‘HB’) regression formulation.  
 
In general, it is possible to improve the fit of a given model to 
a dataset by making the model more complicated.  At some 
point, the model starts to fit noise in the data, rather than the 
underlying features that are the target of the analysis.  This is 
sometimes referred to as ‘over-fitting’.  In estimating model 
parameters (or optimization based inversions), the aim is to 
find a model that minimises the misfit between the data and 
model.  Assuming that the data have normally distributed 
independent errors, with an expected value of zero, it is 
common to minimise a misfit function such as the chi-square 
measure and the most complex model will always be 
preferred.  
 
Contrary to optimization based inversions, the HB algorithm 
is able to infer the data noise uncertainty for each data type 
and to generate models with the required complexity. As data 
noise increases, the level of acceptable misfit becomes 
increasingly large and we should accept poorer fitting models.  
As the estimated noise is decreased, the required data fit 
becomes more stringent and the Markov chain adds more 
parameters to provide more closely fitting models.  The HB 
takes into account the lack of knowledge about data errors.  
Instead of being fixed, the variance of the measurement errors 
can be assigned a broad prior uncertainty and the posterior 
distribution sampled accordingly.  More details about HB 
methods and hyperparameter formulations in general may be 
found in the general text by Gelman et al., (2004) and HB 
methods are noted in recent overview of uncertainty 

quantification with geophysical problems in mind by 
Malinverno and Briggs (2004). 
 
In summary, the new HB implementation that we use allows 
the inference of a change point structure that is common to all 
the different input logs, adapts to the complexity defined by 
the data itself and allows for the uncertainties in each dataset.  
 

RESULTS 
 
The results of HB regression analysis to determine change 
points in the wireline log data are shown below.   
 

 
Figure 2. Change points in the test section of wireline log 
data solved for using the new HB implementation 
simultaneously over 4 wireline logs. Blue dots = input data, 
red solid line = final result, green dotted lines = confidence 
limits on final result. (The over-simplification due to 
subsampling of the original data is being addressed in 
ongoing work and is not an inherent limitation of the 
method.) 
 

 
 
Figure 3. The relative probability of change points existing 
at different depths is indicated by the number of models 
showing a change point at that depth. 
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Figures 2 and 3 show that the HB algorithm has successfully 
identified change points in the wireline data with no prior 
information regarding the number of changes in the model or 
the noise in the data.  Figure 3 shows that some of the change 
points are extremely clear cut (e.g. those at 211 and 221 
metres deep), where as others are less well defined (e.g. that at 
203 m) or just suggested (around 224 m). 
 
The change points can be used to form a framework for the 
prediction of other rock properties, such as thermal 
conductivity, which is the subject of related work. 

 
COMMENT 

 
The classification of inverse problems in geophysics, and the 
description of approaches to their solution, is becoming less 
straightforward as greater use is made of algorithms 
developed in other fields.  For example, inverse problems in 
geophysics are classified as ‘linear’ or ‘nonlinear’ according 
to the relationship between the data and model (i.e. not the 
form of the function describing the model).  This makes good 
sense as the approaches used to tackle linear or linearised 
problems form a particular branch of inverse theory (Aster, 
2005). Linear approaches are not suitable for nonlinear 
problems.  However, model search algorithms that are suitable 
for non-linear problems (e.g. Monte Carlo-style approaches 
such as genetic algorithms) may, in theory at least, be applied 
to linear inverse problems.  Provided sufficient computer 
power is available, the distinction becomes much less useful.  
In contrast, material in the text by Denison et al. (2002) uses 
the term ‘nonlinear’ to refer to the nature of the function 
describing the model.  The reader wishing to explore different 
approaches must be aware of this and many other 
inconsistencies in language usage. 

 
CONCLUSION 

 
Transdimensional inversion methods are an extremely 
promising area of inverse theory and should find wide use in 
the near future.  The HB implementation illustrated in this 
example using wireline data should prove particularly 
appropriate given the frequent lack of knowledge of levels of 
data noise in geophysical applications. 
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