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INTRODUCTION 

 
Exploration geophysics often gives rise to situations where 
subsurface properties vary spatially. For example in 1-D, this 
may be a function of depth within the outer layers of the Earth 
or down a borehole In each case the physical property of 
interest may vary abruptly due to discontinuities in the 
medium. An example is airborne EM where flight line data 
can be inverted as a series of 1-D layered models of 
subsurface conductivity at each point along a profile which is 
subsequently stitched together to form a 2-D image. For a full 
discussion of this problem see Brodie & Sambridge (2006).  A 
well known feature of AEM inversion is the presence of non-
uniqueness, i.e. different conductivity models give rise to the 

same surface response. This is illustrated in Figure 1 where 
the surface response of a three layer conductivity profile is 
reproduced by multiple three layer models of conductivity. 
Reassuringly all three layer models are similar. With 15 layers 
many profiles are again found that also fit the data, but these 
bear no resemblance to each other. Moreover, the best fitting 
model bears no resemblance to the truth. Clearly then 
knowledge of the number of layers is crucial for a reliable 
interpretation. Without prior knowledge of the number of 
unknowns to include how is the practitioner to decide which if 
any should be the preferred interpretation?  
 

 
 
Figure 1. An illustration of non-uniqueness in the 
inversion of AEM data: The bottom left panel shows a 
synthetic three layer model (thick black line) and several 
other three layer models (coloured lines) all of which fit 
the data to within observational error. Plotted in the top 
left panel is the true model’s forward response (red and 
blue curves with error bars) and the forward responses of 
models, which fit the true model response within noise 
levels. The right hand panels show the same information, 
in a parametrization involving 15 fixed-thickness layers. 
The best fitting model is plotted in bold magenta to 
improve clarity. 
 
A common solution is to select the number of unknowns using 
statistical methods based on the level of data fit achieved after 
repeated inversions specifying the number of unknowns each 

SUMMARY 
 
The focus of this presentation is on new ways to extract 
information from complex datasets in situations where 
direct measurement is not possible. Such inverse 
problems are ubiquitous across the physical and 
mathematical sciences and are central to discovery of 
resources within the Earth upon which Australian society 
is dependent.  

A recurring problem is how to choose the number of 
unknowns with which to fit noisy data. If too few are 
chosen the data cannot be fit and if too many the 
inversion results contain unwarranted detail. Statistical 
methods are often used to find optimal numbers of 
unknowns, but these are based on simplistic assumptions 
and typically require multiple trial inversions to be 
performed with different numbers of variables.  A new 
general approach recently applied to geophysical 
problems is to ask the data itself `How many unknowns 
should be used ?’ While this may seem counter-intuitive 
at first sight it turns out to be entirely feasible.  In effect 
the number of unknowns itself becomes an unknown. An 
extension of the basic approach also allows the level of 
noise on the data to also be included as an unknown. 

In this presentation we outline the central ideas, and 
illustrated through an example where a geophysical 
property varies only in 1-D (usually depth or time) and is 
constrained  from surface measurements. Applications of 
the general approach are to airborne EM data, borehole 
geophysics, seismic interpretation and also palaeoclimate 
reconstructions. 
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time. Such approaches have their limitations (See Sambridge 
et al. 2006) and in any case are always retrospective. Another 
approach is to deliberately choose a large number of 
unknowns (e.g. as in the 15 layer example in Figure 1) beyond 
what we believe the data will resolve and then impose some 
form of smoothing or damping to restrict extravagant 
behaviour.  In the example in Figure 1 this was not done and 
one ends up with the extravagant best fitting conductivity 
profile in purple. Smooth models have their drawbacks too. 
Typically, physical properties in the subsurface are not 
expected to be smooth, as a consequence of discontinuities in 
lithologies (bedding, facies variations, faults).  
 
Recently a new approach, initially developed in the field of 
computational statistics, overcomes many of these problems in 
a more satisfactory manner. Bayesian partition modelling 
(hereafter referred to as BPM) (Denison et al. 2002a, 2002b) 
is a Monte Carlo technique in which the number of unknowns 
is itself an unknown to be constrained by the data. In contrast 
to the usual optimisation based techniques commonly 
employed in exploration problems, BPM is an ensemble based 
approach where many models of the subsurface are generated 
in a pseudo random fashion biased toward those that fit the 
observations. The Bayesian nature of this algorithm means 
that it is `naturally parsimonious’ in that subsurface models 
with fewer unknowns are automatically favoured over those 
with more unknowns, without explicitly imposing this fact 
externally.  As a result the ensemble of candidate solutions 
favours simple models, i.e. less extravagant (fitting our 
preconceptions) but this is achieved without imposing 
smoothness. Indeed a characteristic of the approach is that it is 
particularly good at estimating discontinuities in subsurface 
models when they are supported by the data. As such it is 
ideally suited to the 1-D inversion problem highlighted above 
and can also be extened to 2-3D problems. 
 
In recent years the approach has been applied with success to 
various Earth Science problems including thermochronology 
(Stephenson et al. 2006), seismic tomography (Bodin et al. 
2009, Bodin and Sambridge, 2009), inversion of stratigraphic 
data for environmental parameters (Charvin et al., 2009), and 
borehole temperature inversion (Hopcroft et al, 2009). In this 
paper we provide a brief introduction to the basic approach 
and illustrate it with a simple example. We believe there are 
significant potential applications of the methodology in 
several areas relevant to exploration geophysics, especially 
involving recovery of 1-D or 2-D spatial fields with 
discontinuities. 
 

BAYESIAN PARTITION MODELLING 
 
The details of Bayesian Partition modelling including 
mathematics and computational algorithms can be found in 
Denison et al. (2002) and also the articles cited above in the 
context of geophysical applications. Here we provide a basic 
outline for the 1-D case illustrated through a simple synthetic 
example involving regression of a discontinuous field. 
 
1-D regression example 

We consider the 1-D regression problem in Figure 2. Here the 
grey piecewise continuous line is the unknown signal that we 
seek to determine using the noisy measurements represented 
by red dots. These were generated from the grey line with 
Gaussian random noise added using a standard deviation, , of 
10 vertical units. The data therefore consist of values of (d,x) 

where d is a noisy estimate and x a noiseless control variable. 
We seek to estimate the underlying signal (grey line) and 
prefer not to smooth over the discontinuities in the signal. 
This is a classic problem ripe for application of 1-D Bayesian 
Partition modelling. 
 

 
Figure 2. Example of the parametrization used in BPM. 
Red dots are the data, grey line is the true model and blue 
line represents a partition model controlled by the heights, 
dj, in each partition and the position of control points blue 
squares at xi, which are equi-distant to interfaces. 
 
The real grey signal here contains nine separate partitions 
between which the function is discontinuous.  The 
parametrization for the inverse problem is in terms of a finite 
set of partitions represented mathematically by the expression 

 d(x)  mii(x)
i1

k

   (1) 

where mi is the height of the function in the ith partition, (x) 
is a basis function equal to 1 when x is inside partition i and 
zero otherwise, and k is the number of partitions.  In this case 
the unknowns of the problem are the signal values, mi  
(i=1,…,k) the position of the partition boundaries and the 
number of partitions, k. Figure 2 shows an example of a d(x) 
with six partitions (blue line). The blue squares represent the 
locations of control points, xi (i=1,…,k) that are used to define 
the partition boundaries, which are equidistant between 
successive pairs of control points (see Figure 2). By varying 
(mi,, xi,, k) a wide range of possible piecewise functions can 
be generated with variable numbers of partitions. The 
inference problem simply stated is then given N noisy 
observations, dj,, (j=1,…,N) we wish to reconstruct the 
underlying grey signal using the variables  (mi,, xi,, k). 
 
To measure the discrepancy between model predictions and 
data, the least squares misfit is calculated as the sum of 
squares of the differences between the heights of the red dots 
and the blue line, normalised by the data error.  One way to 
solve the problem would be to seek a best fit solution by 
minimizing this misfit function. Irrespective of the data error,  
the best fit would be achieved by setting the number of 
partitions equal to the number of data, k = N, arrange for each 
datum to fall in its own partition and setting mi = dj (i=1,…,k). 
This would produce a perfect fit to the data but clearly a poor 
estimate of the true signal.  Such approaches are often quite ad 
hoc in that the type of smoothing will dictate the character of 
the final solution.   
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The alternative approach adopted here is to use a Bayesian 
sampling algorithm. In Bayesian inference all information is 
represented by probability density functions. Rather than just 
seeking a single best fit solution we generate many candidate 
solutions whose density follows the a posterioi probability 
density function p(m | d) where 
 

 p m d    p d m p m . (2) 

 
Here we collect all unknowns into the vector m and all data 
into the vector d. In this expression p(m|d) represents the 
probability density of the model, m given the data, d. It is 
proportional to the probability of obtaining the data, d, given 
the model, m (otherwise known as the likelihood) multiplied 
by the a priori probability of the model m. For Gaussian noise 
on the data the likelihood function is simply a Gaussian 
distribution measuring the discrepancy between dj and mj . 
 

p d | m   1

N exp  1
2

(di  g m j(i) )2

2
i1

N














   (3) 

 
where j(i) indicates the model partition containing the ith 
datum, and g(.) is the forward model response.  The prior PDF 
of the model parameters p(m) is represents our state of 
knowledge about the unknowns prior to receiving the data. 
Here we simply set p(m) to a uniform (constant) distribution  
which means it is a constant in (2). The object of the Bayesian 
approach is then to generate a large number of models m 
whose density follows p(m | d). For the regression problem 
each model consists of a set of values for (mi,, xi,, k) and 
corresponds to a piecewise constant curve like the blue line in 
Figure 2.  
 
Algorithms for sampling complex distributions like (2) have 
been the subject of much research and have become practical 
with modern computing. The workhorse technique is the 
Markov chain Monte Carlo algorithm (McMC) (see Gallagher 
et al. (2009) for details). In recent years McMC algorithms 
have been extended to trans-dimensional problems (Geyer and 
Moller, 1994, Green, 1995, Sambridge et al. 2006).  
 
In BPM the number of partitions and hence number of 
unknowns in the model are also variable and a 
transdimensional approach is needed. The results from a 
transdimensional McMC approach for our regression problem 
are shown in Figure 3b. The green curve is the average model 
in the ensemble generated by the Bayesian sampling 
algorithm. It is an excellent estimate of the underlying signal. 
The right panel of Figure 3b shows a histogram of the number 
of partitions in each model within the ensemble. Even though 
the prior PDF for this parameter was a uniform distribution 
between 1 and 50 the posterior distribution is peaked at 9 (the 
correct value). We see then that not only has BPM accurately 
recovered the true model it has also estimated the number of 
degrees of freedom adequately. This has been achieved 
without imposing any explicit form of regularization in terms 
of smoothness. Note also that the probability density of the 
number of partitions falls to zero by about 20 even though the 
prior distribution is finite up to 50. This feature has been 
driven by the data itself. The Bayesian approach is naturally 

parsimonious in that it prefers to choose fewer numbers of 
parameters to fit the data. 
 
Implicit in all Bayesian procedures is an error estimate on the 
unknowns which can be represented by the variance of the 
histograms of each parameter such as those in Figure 3.  
 

 
Figure 3. Results of 1-D regression problem. Left hand 
panels show the data (red dots), true model (grey line) and 
average of the ensemble of curves produced by Bayesian 
Partition modelling (green line). The left hand panels show 
histograms of the number of partitions. Red line is the true 
value of 9. A) is for underestimated data noise level, B) for 
the correct noise level and C) for too high a noise level. In 
each case BPM finds the simplest model needed to fit the 
data.  
 
Hierarchical Bayes – unknown data errors 

The results of the regression problem in Figure 3b were 
carried out using the correct level of noise on the data in the 
Likelihood function in (3). In most inversion problems one 
needs to know the level of data noise in order to calculate 
model uncertainty. Figure 3a and 3b show the results of the 
same BPM algorithm taking a error value which is too small 
(3a) and too large (3c). We see that the results are changed. 
When the error is too small we are in effect telling the 
algorithm to fit the data better, which it does by introducing a 
more complex model with too many partitions. Conversely 
when the errors are large we are saying that there is no need to 
fit as well. Hence the resulting model is less complex with 
fewer partitions. We see then that unlike the situation with 
optimisation of (3). which would be unaffected by the choice 
of data variance, the sampling algorithm is influenced by the 
choice of data noise. We need to know the level of data noise 
for the algorithm to perform well and estimate the true signal. 
In the common case where we do not know the data errors 
well, this raises the question `Can we let the data decide both 
the number of partitions in the model and the level of noise in 
the data ?’ The answer is - yes it is possible to do just that in 
many cases. This is known as Hierarchical Bayesian inference 
(Malinverno and Briggs, 2004). 

Figure 4 shows a repeat of the same regression experiment 
allowing both the number of partitions and the data variance 
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to be an unknown. The ensemble average regression signal 
(Green line in Figure 4a) closely follows the true signal 
(grey). and the histogram of the number of partitions (Figure 
4b) is again centred on the true value of 9. Figure 4c shows a 
histogram of the noise  values in the ensemble, which is also 
centred near the correct value of 10 units.  

 

 
Figure 4. Hierarchical Bayes applied to the regression 
problem a) shows the true (gray) and average recovered 
signal (green), b)  & c) show histograms of the recovered 
number of partitions  and standard deviation of the noise. 
 

CONCLUSIONS 

We present examples of a style of inversion where the number 
of unknowns and the level of noise in the data is unknown. 
We illustrate this with a simple regression problem where a 
piecewise constant function is recovered from noisy samples. 
The 1-D example is straightforward to extend to piecewise 
linear segments and to cases where the data consist of more 
complex physical properties. This style of 1-D inversion is 
readily adapted to several commonly encountered problems in 
exploration geophysics including the interpolation of 
discontinuous spatial fields (as an alternate to Kriging) 
(Stephenson et al., 2005), 1-D inversion of Airborne EM for 
subsurface conductivity (Brodie & Sambridge, 2006) and 
reservoir-related stratigraphic modelling (Charvin et al. 2009). 
In 2-D the same style of approach may be applied to inversion 
of ambient noise for near surface seismic structure (Bodin & 
Sambridge, 2009) and identifying spatial variations in 
palaeoclimate from borehole temperature inversion (Hopcroft 
et al. 2009). 
 
The ability of the approach to infer discontinuities, while 
estimating both the number of degrees of freedom in the 
model and the noise level in the data make it highly novel in 
the geophysical context and a significant step beyond the 
commonly used least square optimisation framework. 
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