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Transdimensional tomography with unknown data noise
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S U M M A R Y
A meaningful interpretation of seismic measurements requires a rigorous quantification of
the uncertainty. In an inverse problem, the data noise determines how accurately observations
should be fit, and ultimately the level of detail contained in the recovered model. A common
problem in seismic tomography is the difficulty in quantifying data uncertainties, and thus the
required level of data fit. Traditionally, the complexity of the solution model (defined by both
the number of basis functions and the regularization) is defined arbitrarily by the user prior to
inversion with only limited use of data errors. In the context of multiscale problems, dealing
with multiple data sets that are characterized by different noise variances and that span the
Earth at different scales is a major challenge. Practitioners are usually required to arbitrarily
weigh the contribution of each data type into the final solution. Furthermore, the basis functions
are usually spatially uniform across the velocity field and regularization procedures are global,
which prevents the solution model from accounting for the uneven spatial distribution of
information. In this work we propose to address these issues with a Hierarchical Bayesian
inversion. The new algorithm represents an extension of the transdimensional tomography to
account for uncertainties in data noise. This approach has the advantage of treating the level
of noise in each data set, as well as the number of model parameters, as unknowns in the
inversion. It provides a parsimonious solution that fully represents the degree of knowledge
one has about seismic structure (i.e. constraints, resolution and trade-offs). Rather than being
forced to make decisions on parametrization, level of data fit and weights between data types
in advance, as is often the case in an optimization framework, these choices are relaxed and
instead constrained by the data themselves. The new methodology is presented in a synthetic
example where both the data density and the underlying structure contain multiple length
scales. Three ambient noise data sets that span the Australian continent at different scales are
then simultaneously inverted to infer a multiscale tomographic image of Rayleigh wave group
velocity for the Australian continent. The procedure turns out to be particularly useful when
dealing with multiple data types with different unknown levels of noise as the algorithm is able
to naturally adjust the fit to the different data sets and provide a velocity map with a spatial
resolution adapted to the spatially variable information present in the data.

Key words: Inverse theory; Probability distributions; Surface waves and free oscillations;
Seismic tomography; Computational seismology; Australia.

1 I N T RO D U C T I O N

Seismic ground motion represents one of the most valuable re-
sources for investigating the internal structure, composition and
dynamics of the Earth. When combined with petrophysical exper-
iments and geodynamical modelling to aid interpretation, seismic
data allow us to examine the scale and nature of heterogeneities
in the crust and upper mantle in different tectonic regions. To-
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mographic imaging has been a favoured tool of seismologists for
interpretation of seismic data for more than 30 yr, and has resulted in
numerous models of seismic wave speed, attenuation and anisotropy
at different scales. Recent summaries can be found in Rawlinson &
Sambridge (2003); Romanowicz (2003); Rawlinson et al. (2010).

1.1 A heterogeneous distribution of information

Due to the increasing quantity and quality of seismic data, the
number of overlapping tomographic models and their consistency
has dramatically increased in recent years (Nolet 2008). However,
several problems remain, such as the uneven spatial distribution
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of information contained in seismic data, due mainly to irregular
source–receiver path coverage. Another issue is the difficulty in
accurately quantifying the level of data noise in seismic waveforms,
and hence the level of interpretable information present in observed
data (Gouveia & Scales 1998; Scales & Snieder 1998).

The unbalanced spatial and azimuthal sampling of the Earth
and the presence of data uncertainties results in an inherent non-
uniqueness of the tomographic inverse problem, which often leads
to ambiguity in the interpretation of seismic models. Furthermore,
with increasing computational power, tomographic studies simulta-
neously treating different data sets that sample the Earth at different
scales—and hence with different resolving power—are gaining in
popularity. For example, mixing teleseismic and regional seismic
information generates a tomographic system that is especially ill-
posed given the tremendous variability of data sampling. In such
situations, the level of interpretable information in seismic data is
spatially variable, difficult to measure and differs between data types
and processing schemes. This raises the issue of how much infor-
mation should be present in the recovered image (i.e. how complex
should the model be?), and how this information should be spatially
distributed.

The level of model complexity is directly determined by the
choice of model parametrization and regularization. Traditionally
tomographic studies have largely ignored the spatial variability in
the data’s resolving power and opted to build models in terms of
uniform local or globally supported basis functions, for example,
regular cells or spherical harmonics. The limitation of a regular
parametrization is that in order to resolve densely sampled areas,
small-scale artefacts in regions where the velocity field is much less
well constrained may be introduced. This effect is usually avoided
by adding non data-driven constraints on the model (i.e. regulariza-
tion). However, most smoothing and damping procedures are global
(responsive to the entire model) and while averaging over large ar-
eas, they make resolvable small-scale details difficult to see, or even
mask them all together. Moreover, sharp discontinuities present in
the model are typically blurred by smoothing processes into gradual
transitions. Note however that several groups are currently working
on developing alternative regularization procedures, which allow
sharp discontinuities, or multiscale feature. See for example in Loris
et al. (2007, 2010), Hu et al. (2009). Another well known limitation
of regularization procedures is that they often result in artificially
small model uncertainty estimates. This is because regularization
stabilizes the model construction process at the cost of biasing the
solution in a statistical sense (Aster et al. 2005).

1.2 A brief review of multiresolution methods

To maximize the amount of information extracted from the data, sev-
eral studies have used irregular parametrizations of non-overlapping
cells, where the grid size is based on some criteria prior to inver-
sion (Abers & Roecker 1991; Fukao et al. 1992; Sambridge et al.
1995; Sambridge & Gudmundsson 1998; Spakman & Bijwaard
1998; Bijwaard et al. 1998; Boschi et al. 2004; Zhang & Thurber
2005; Nolet & Montelli 2005; Li et al. 2008; Boschi et al. 2009;
Schivardi & Morelli 2009). In most of these studies, the irregular
mesh is chosen to match variations in ray path density (quanti-
fied by hit count). However, hit count is not always an ideal in-
dicator of resolvability, particularly when considering clusters of
seismic rays travelling in a near uniform direction. Schaefer et al.
(2011) address this issue with an adaptive-voxel parametrization,
with voxel size also accounting for azimuthal coverage. Note also
that cell boundaries can be deformed to eliminate rank deficiency

in the tomographic system of equations (i.e. the null space energy)
(Vesnaver 1996) or to minimize the condition number of this system
of equations (Curtis & Snieder 1997).

Instead of building an irregular grid prior to inversion, another
possibility is to dynamically adapt the grid during the inversion pro-
cess, and thus the tomographic system of equations is resolved for
each new parametrization. For example, Michelini (1995) proposed
a scheme with simultaneous determination of seismic velocities and
nodes perturbations. There is a natural tendency for nodes to cluster
where velocity is changing more rapidly, but the method does not
lead to a denser node distribution where the sampling is denser. In
a larger scale problem, Sambridge & Faletic (2003) proposed an
iterative method where model nodes are added in places where am-
plitude changes from the previous step are higher than a predefined
criterion. However, the optimal criterion for parameter refinement
is uncertain.

Although irregular parametrization schemes dramatically reduce
the size of the tomographic system and yield more uniformly re-
solved parameters, the inverse problem often remains ill-posed and
non-unique and smoothing or norm damping are still needed. De-
termining the optimum regularization operators and corresponding
weights remains difficult and often speculative. Another problem is
the need of specific forward solvers to compute sensitivity kernels
on irregular meshes, which generally introduce additional difficul-
ties at the implementation stage (Sambridge & Rawlinson 2005).

Alternatively, the uneven sampling of the Earth can be addressed
by expressing the inverse problem on overlapping regular grids
of different scales, for example, through a wavelet parametrization
(Chiao & Kuo 2001; Chiao & Liang 2003; Loris et al. 2007; Tikhot-
sky & Achauer 2008; Delost et al. 2008; Gung et al. 2009; You et al.
2010; Hung et al. 2010). Wavelet decomposition is particularly con-
venient in multiscale tomography as it enables one to account for
both spatial and spectral resolution while avoiding the choice of
an irregular grid. Recently, Simmons et al. (2011) proposed a mul-
tilevel tessellation inversion where a hierarchy is defined between
regular grids of different scales. In their scheme, high resolution
solutions can be expressed in terms of perturbations of low resolu-
tion solutions. The parameters associated with the coarse grid carry
heavier weights than the parameters associated with the base level
grid subdivisions. Note that many other multiresolution methods for
seismic tomography exist in the literature, and we refer the reader to
the review papers by Sambridge & Rawlinson (2005) and Thurber
& Ritsema (2007).

Although multiresolution methods enable automatic inference of
the relative resolution between different areas of a model, the overall
number of parameters (or the size of the finest grid) is still to be de-
fined. The question is when do we stop subdividing cells, or adding
more unknowns into the problem? All the aforementioned algo-
rithms are based on an optimization procedure (i.e. least-squares
fit), and the level of data fit can always be improved by adding more
unknowns. Some methods can be used to find the ‘optimal’ model
complexity (or regularization parameters) such as the chi-square
statistical test or the discrepancy principle (Aster et al. 2005). How-
ever, these schemes operate within a given fixed dimension for the
model, and hence several tests with different degrees of freedom
need to be carried out separately. Furthermore, they rely on knowing
the level of data noise in advance, which is difficult in seismology.

1.3 A transdimensional framework

The difficulties outlined above can be addressed with a transdi-
mensional Bayesian formulation. In Bodin & Sambridge (2009),
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Figure 1. Example of a multiscale Voronoi diagram (black), which forms a
set of irregular cells that partition the plane. Any point inside a cell is closer to
the node of that cell than any other node, so the shape of the parametrization
is entirely defined by the location of nodes (red dots). In transdimensional
tomography (Bodin & Sambridge 2009), the model is parametrized with
a variable number of nodes and a constant velocity value is assigned to
each cell. The solution is a large number of Voronoi models with variable
parametrization distributed according to the posterior probability function. A
smooth solution model is produced for interpretation by pointwise averaging
this large ensemble of spatially partitioned models.

we proposed the transdimensional tomography algorithm which is
based on a fully nonlinear stochastic search for model complexity,
parameter definitions, and seismic models. Although it is currently
too computationally expensive for 3-D global problems, our trans-
dimensional approach to tomography has proven to be feasible for
regional scale 2-D problems. As showed in Fig. 1, the velocity
(or slowness) field is partitioned by a variable number of non-
overlapping cells defined by a set of Voronoi nodes (Voronoi 1908;
Okabe et al. 1992). The number and the position of the cells, as well
as the velocity field itself are unknowns in the inversion.

In a Bayesian formulation of the inverse problem, the knowledge
concerning the unknown model parameters is given by the a pos-
teriori probability distribution (or posterior distribution) p(m|d)
which is the probability density of the model parameters given
the observed data (Tarantola & Valette 1982). While optimization
schemes only provide a single model, that is, the best combination
of parameters that maximize the fit to observations, the Bayesian
solution is a large ensemble of models, whose density is directly
proportional to the posterior distribution. This ensemble solution
contains much more information than a single model, and allows
quantitative assessment of model parameter uncertainties, resolu-
tion and non-uniqueness (see Khan et al. 2011, for a recent example
of Bayesian tomography).

In transdimensional tomography (Bodin et al. 2009; Bodin &
Sambridge 2009), the number of cells is an unknown, and so the
dimension of the model space is itself a variable. In this case the
posterior distribution becomes a transdimensional function. A fun-
damental property of Bayesian inference is the preference for the
least complex explanation for an observation, referred to in the lit-

erature as ‘natural parsimony’ (Malinverno 2002). Given a choice
between a simple model with fewer unknowns and a more complex
model that provides a similar fit to data, the simpler one will be
favoured (see MacKay 2003, for a discussion). In the last decade,
transdimensional inversion has become popular in Earth sciences
and has been applied to a wide range of areas (e.g. Malinverno 2002;
Stephenson et al. 2004, 2006; Jasra et al. 2006; Hopcroft et al. 2009;
Charvin et al. 2009; Gallagher et al. 2011; Dettmer et al. 2010; Luo
2010; Piana Agostinetti & Malinverno 2010; Minsley 2011; Bodin
et al. 2012).

In transdimensional tomography, the solution is represented by a
large ensemble of Voronoi models with variable parameterisations.
At each pixel of the 2-D velocity map, one can compute the mean
and standard deviation over all the models in the ensemble solu-
tion. When these posterior expectations are computed, models with
variable geometries overlap providing continuous smooth solution
and uncertainty maps that have a better resolution than any single
model. This way, information is extracted from the ensemble as a
whole, and the approach provides a parsimonious solution with no
need for explicit regularization. For a detailed description of transdi-
mensional tomography, the reader is referred to Bodin & Sambridge
(2009).

In this study, we present an improved version of transdimensional
tomography, and use it to simultaneously invert different data sets
that span the Australian crust at various scales. The Rayleigh wave
group traveltime data set from Saygin & Kennett (2010) is inverted
in conjunction with similar cross-correlation traveltimes obtained
from the WOMBAT experiment which sample the southeast part
of the continent at much higher resolution (Arroucau et al. 2010;
Young et al. 2011). The data sets used here are different both in
size (i.e. the number of picked traveltimes) and in the scale of the
region they sample (Fig. 2). Although considerable detail might be
resolvable for densely sampled areas, only relative large-scale in-
formation is available for sparsely sampled regions. The goal is to
see whether additional information can be revealed by simultane-
ously inverting data sets that would not be easy to combine using a
standard approach.

1.4 Uncertain data noise and Hierarchical Bayes

An important feature of transdimensional schemes is that the level
of data uncertainty estimated by the user prior to inversion (i.e. the
covariance matrix of data errors) directly affects the complexity of
the solution, that is, the number of model parameters. Note that
data uncertainties contain two terms: the errors done on the mea-
surements but also modelling errors, that is, the inability of our
forward model to explain the data (Gouveia & Scales 1998). There-
fore in this work we follow the definition of Scales & Snieder (1998)
and define data noise as ‘that part of the data that we do not expect
the model to explain’, and hence the residuals (difference between
estimated data and observations) are viewed as a realization of a
random data noise.

The level of data noise determines the required level of data fit,
and high dimensional (many cell) models that fit the data more than
this level are given a low probability (see Dettmer et al. 2010; Piana
Agostinetti & Malinverno 2010, for recent examples). A key issue
of transdimensional inversion is therefore the quantification of data
noise, which is often difficult. This is especially true in the case of
joint inversion of multiple data sets, where noise levels effectively
control the influence of different data types.

Using ambient-noise surface wave tomography, seismologists
have constructed maps of seismic wave velocity (e.g. Shapiro et al.
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Figure 2. Ray coverage for the three ambient noise data sets which sample the Australian crust at different scales. Black lines indicate rays between
simultaneously recording station pairs (red circles). Top panel: large scale data set. Bottom panel: Wombat Experiment that can be divided into two subarrays
(mainland southeast Australia and Tasmania).

2005; Sabra et al. 2005; Yang et al. 2006; Villasenor et al. 2007;
Brenguier et al. 2008; Stehly et al. 2009; Yao & Van der Hilst 2009)
in many different regions of the world and at a variety of scales.
Although such techniques are now well established and widely used,
the uncertainties associated with ambient noise measurements are
still poorly understood. While recent studies propose to quantita-
tively measure the bias due to different effects (Larose et al. 2008;
Weaver et al. 2009, 2011; Yao & Van der Hilst 2009), this is ongo-
ing work and there is presently no consensus on the way to quantify
errors.

In this multiscale study, interstation distances, ambient noise
recording period, azimuthal distribution of noise and processing
techniques differ with each data set. Therefore the uncertainty on
the computed traveltimes may vary considerably between data sets
as well as within a data set. Without any reliable estimation of data
noise, we shall show that it appears difficult to directly use the con-
ventional transdimensional tomography as described in Bodin &
Sambridge (2009).

Hence, we here propose an improved version of the algorithm that
can address the issue of noise estimation. The Bayesian formulation

C© 2012 The Authors, GJI

Geophysical Journal International C© 2012 RAS



Transdimensional tomography 5

is extended to hierarchical models which allow data error to be an
unknown parameter (Malinverno & Briggs 2004; Malinverno &
Parker 2006). Overall, a joint posterior probability distribution is
defined both for data noise parameters and Earth parameters. The
result is that the arbitrary choice of a weighting factor to balance
different data sets in the misfit function is avoided, and instead this
aspect is driven by the data itself, thereby allowing a probabilistic
velocity model to be obtained.

The purpose of this paper is twofold. First, we show that the
improved version of transdimensional tomography can be used to
jointly invert different data sets in a multiple scale tomography
problem. Secondly, we show that using a broad prior distribution
for the data uncertainties and letting the data infer its own level of
noise is a new and powerful feature of the extended algorithm. We
first present the three ambient noise data sets, and then establish
the necessity of the Hierarchical Bayes formulation. A synthetic
experiment is then carried out prior to simultaneously invert the
three observational data sets to construct a detailed map of Rayleigh
wave group velocity at 5 s for Australia.

2 T H E DATA

We use the 5 s Rayleigh wave group traveltime data set com-
puted from ambient noise by Saygin & Kennett (2010) (this data
set will be referred to as the large scale data set) in conjunction
with similar cross-correlation traveltimes obtained from the WOM-
BAT experiment by Arroucau et al. (2010) and Young et al. (2011)
(Fig. 2).

Saygin & Kennett (2010) compiled all the seismic broadband data
from temporary and permanent stations across the Australian conti-
nent from 1992 to 2006. They used a large volume of recorded noise,
which comes from diffuse sources of seismicity such as oceanic
and atmospheric disturbances, and computed the cross-correlation
on the vertical component for all simultaneously recording station
pairs (see Bensen et al. 2007, for details about the data process-
ing scheme). The extracted waveforms exhibit a dispersed wave-
train which can be interpreted as the Rayleigh wave component of
the Green’s function (Campillo & Paul 2003; Shapiro & Campillo
2004). For different frequencies, the Rayleigh wave arrival time is
picked on the envelope of the bandpass filtered seismogram. We note
here that there is no information available on the data uncertainty
for the large scale data set shown in Fig. 2(a).

WOMBAT is an extensive program of temporary seismic array
deployments throughout southeast mainland Australia and Tasma-
nia. Each array consists of between 30 to 60 short period instruments
that continuously record for between 5 to 10 months. Over the last
decade, a total of over 550 sites have been occupied resulting in a
very large passive seismic data set that has been used for several
studies (e.g. Graeber et al. 2002; Rawlinson & Urvoy 2006; Rawl-
inson et al. 2006; Clifford et al. 2007; Rawlinson & Kennett 2008;
Rawlinson et al. 2010, 2011; Tkalčić et al. 2011; Young et al. 2011).
Recently, Arroucau et al. (2010) computed cross-correlograms us-
ing a subset of WOMBAT array data in a similar manner as Saygin &
Kennett (2010). However, the technique used to determine Rayleigh
wave group traveltimes from the obtained cross-correlograms was
slightly different from the one used for the large scale data set by
Saygin & Kennett (2010). In a first stage, preliminary dispersion
curves for periods ranging from 1 to 20 s were constructed and av-
eraged to build a phase-matched filter (Levshin & Ritzwoller 2001)
which was subsequently applied to the seismograms prior to a sec-
ond round of traveltime picking. This allowed additional dispersion
measurements to be included that were discarded during the first

stage due to low signal-to-noise ratio. Relative uncertainties for the
picked traveltimes were obtained following the procedure presented
in Cotte & Laske (2002) and Harmon et al. (2007).

Arrays were not deployed at the same time in Tasmania and in
mainland southeast Australia. As a consequence, there are no appar-
ent traveltimes available between Tasmanian and mainland stations.
Furthermore, the average interstation distance for the mainland ar-
rays is about 50 km, while it is only 15 km in Tasmania. Hence
the WOMBAT data can be divided into two subsets corresponding
to two separate regions with different scales: mainland southeast
Australia and Tasmania (see Fig. 2a).

The traveltimes obtained using WOMBAT arrays were used to
generate tomographic maps for each frequency. Due to the differ-
ence in ray densities, data from mainland arrays and Tasmania were
inverted separately with two different grid sizes. The internode dis-
tance for mainland regions (20 km) was four times larger than that
for Tasmania (5 km). Furthermore, the regularization parameters
(smoothing and damping) were different for the two inversions.

In this study we carry out a joint inversion of these three data
sets which have different scales and have been processed separately.
Each data set samples a particular region (whole Australia, main-
land southeast Australia and Tasmania) and is characterized with a
scale length defined by its average ray length (respectively 200 km,
50 km, 15 km). We note that, while the two WOMBAT data sets in-
dependently sample two separate regions (Fig. 2a), the largest scale
data set spans the whole continent and includes areas sampled by
the smaller arrays (Fig. 2a).

3 W H Y H I E R A RC H I C A L B AY E S ?

In Bodin & Sambridge (2009), the largest scale data set was inverted
with the conventional transdimensional tomography algorithm. The
transdimensional posterior probability distribution was defined with
Bayes’ theorem (Bayes 1958) which combines prior information on
the model m with the observed data d:

p(m |d) ∝ p(d|m) × p(m), (1)

where a|b means a given, or conditional on, b. Hence, p(a|b) is the
probability of having a when b is fixed. p(m) is the prior probability
distribution (what we know about the model before measuring the
data) which is set uniform with relatively wide bounds to assume
unobstructive prior knowledge.

The likelihood function p(d |m) determines how well a given
model with a particular set of parameter values can reproduce
the observed data. Here it is based on a Gaussian distribution
which quantifies the agreement between simulated and observed
data (Sambridge et al. 2006):

p(d|m) = 1√
(2π )N |Ce|

×exp

{
− 1

2

(
[g(m) − d]T C−1

e [g(m) − d]

)}
, (2)

where g(m) is the vector (of length N) of traveltimes estimated for
the seismic model m, and Ce is the covariance matrix of data noise,
which represents data uncertainty and the covariability between
data errors (|Ce| is the determinant of this matrix). The model
vector m has a variable number of components, and the number
of Voronoi cells needed to explain the data is directly determined
by the estimated data noise Ce (see Figs 3 and 4). Because the
level of detail in the solution is automatically adjusted as a function
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Figure 3. Conventional transdimensional tomography (Bodin & Sambridge 2009) with ambient noise cross-correlation for the Australian continent (large
scale data set). Average solution model (km s−1) obtained with four different (but realistic) values for σ est.

Figure 4. Posterior distribution on the number of Voronoi cells correspond-
ing to the four solutions shown in Fig. 3 obtained using conventional transdi-
mensional tomography. These distributions are simply obtained by plotting
the histogram of the number of cells of sampled models across the ensemble
solution. Here it is clear that as the estimated data noise given by the user
decreases, model complexity increases.

of the required data fit, this has been seen as an advantage over
optimization based inversions where the level of data noise is not
accounted for and the complexity of the solution (i.e. the number
of model parameter or level of smoothing) is manually adjusted by
the user.

Indeed it is worth noting that the general least squares solution
used in linear inverse problems (where d = Gm) is given by

mL2 = (GT C−1
e G)−1GT C−1

e d. (3)

Here mL2 does not depend on the absolute value of the data noise.
That is, mL2 does not change when Ce is multiplied by a constant
factor. In fact, only the estimated error on the model (i.e. the pos-
terior model covariance matrix) depends on the data noise. In most
traveltime tomography studies, the linear system of equation G is
regularized and the damped least square solution can be written as:

mL2 = (GT C−1
e G + μC−1

m )−1(GT C−1
e d + μC−1

m m0), (4)

where m0 is a reference model, Cm is the a priori model covariance
matrix and μ a regularization parameter that has to be manually
chosen by the user (Aster et al. 2005). In this case, a scaling factor
in Ce simply absorbs into the regularization parameter. That is,
if we multiply Ce and divide μ by the same factor, the solution
mL2 is unchanged. Hence, most tomographic models obtained with
optimization schemes do not directly depend on the magnitude of
data noise but only on relative uncertainties. For example, Steck
et al. (1998) used relative weights (1, 2, 3 and 4) to describe the
diagonal elements of Ce.

Here the large scale data set has been inverted with the con-
ventional transdimensional algorithm (Bodin & Sambridge 2009),
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where data errors are assumed to be independent and normally dis-
tributed with zero mean and a fixed standard deviation σ est, that is,
Ce is diagonal with all diagonal elements equal to σ 2

est. The solution
maps obtained for four different values of σ est are shown in Fig. 3.
The posterior distribution on the number of cells (i.e. the histogram
on model dimension across the ensemble solution) for each map is
shown in Fig. 4. There is clearly a strong correlation between σ est

and the number of cells of the sampled models. As the assigned data
error decreases, more cells are added in the model and the solution
maps show more complexity. Here the model complexity is adapted
automatically to fit the data up to the given level of noise. In the
absence of information about the data noise, it is impossible to give
a preference to any of these four solutions. The details appearing
in 3(a) could be unrealistic and noise induced as a result of the
data being ‘over-fitted’. Conversely, in Fig. 3(d), data might have
been considered too noisy and uninformative and consequently the
solution model may be missing finer details. This shows that by
choosing σ est, we also choose the model complexity.

4 H I E R A RC H I C A L B AY E S A L G O R I T H M

By adding the Hierarchical Bayes formulation to the algorithm and
by treating Ce as unknown, we let the data infer its own degree
of uncertainty without imposing any fixed value for the required
data fit. In Fig. 3 the model complexity is spatially variable but the
algorithm operates within a fixed data noise level. By freeing up
this constraint and also treating the data variance as an unknown,
we allow the overall model complexity level to be driven by the
data.

If there are N data in the problem, Ce is a symmetric N × N matrix
defined with (N2 + N)/2 independent values which are obviously
impossible to estimate separately from only N data. Hence some
assumptions need to be made in order to ‘parameterize’ the matrix of
data errors. Following current statistical terminology, the data noise
covariance matrix is expressed with a number of ‘hyper-parameters’
Ce = f (h1, h2, ...) (Gelman et al. 2004). For example, assuming
an independent (i.e. not correlated) and invariant Gaussian random
noise, the noise covariance matrix can be considered proportional
to the identity matrix IN and can be parameterized with a single
hyperparameter h1 = σ representing the standard deviation of data
errors (Ce = σ 2IN ). In principle any scale factor removed from Ce

can be treated in a similar manner.
The model to be inverted for is defined by the combined set

m = [c, v, n, h], where c is the vector containing the nodes of
Voronoi cells (Fig. 1), and v contains the constant velocity values
assigned to each cell. The vectors c and v are of size n (i.e. the
number of Voronoi cells) which is itself a variable parameter [see
Bodin & Sambridge (2009) for a complete description of the model
parameterization]. In this study we include as unknowns the vector
of hyper-parameters defining data errors h = (h1, h2, ...). Each
component of m is given a wide uniform prior distribution. In this
way, the final models will be dominated by the data rather than by
prior information. In the following sections we show how we define
noise parameters h in Ce.

At a coarse level, the algorithm can be summarized by Fig. 5. At
each iteration, ray paths are determined in the current continuous
reference velocity model using the fast marching method (Sethian
& Popovici 1999; Rawlinson & Sambridge 2004) (prior to the first
iteration this is a laterally homogeneous reference model). At each
successive iteration the Hierarchical Bayes transdimensional algo-
rithm produces a large number of Voronoi models m = [c, v, n, h]

with variable dimensions from which Bayesian statistics can be de-
rived (e.g. expected number of cells, expected level of data noise, etc
. . .). Then, the reference model is updated by spatially averaging the
entire ensemble of Voronoi models. Each Voronoi model has dis-
continuities throughout the velocity field, but the ensemble average
tends to be spatially smooth with continuously varying gradients.

Given a fixed geometry of rays, the Hierarchical Bayes trans-
dimensional algorithm is a method for obtaining a sequence of
random samples m, where each is a perturbation of the last, and
which are distributed according to the transdimensional posterior
distribution p(m|d). The approach is based on a generalization of
the well known Metropolis-Hastings algorithm (Metropolis et al.
1953; Hastings 1970) termed the reversible-jump Markov chain
Monte Carlo (rj-McMC) sampler (Geyer & Møller 1994; Green
1995, 2003). The Hierarchical Bayes algorithm is implemented in
the same manner as the conventional transdimensional tomography,
the only difference being that here we add an extra type of model
perturbation in the Markov chain, that is, a change in the hyperpa-
rameter vector h. Having randomly initialized the model parameters
m = [c, v, n, h] by drawing values from the prior distribution of
each parameters, the algorithm proceeds iteratively. Each step of
the Markov chain is divided into three stages:

(1) Propose a new model by drawing from a probability distribu-
tion q(m′|m) such that the proposed model m′ is conditional only
on the current model m. This involves one randomly selected type
of change, with probability 1/5, out of five possible:

(i) Change a velocity value: randomly pick one Voronoi cell
(from a uniform distribution) and change the velocity value assigned
to this cell according to a Gaussian probability distribution q(v′

i |vi )
centred at the current value vi.

(ii) Move a Voronoi node: randomly pick on Voronoi cell,
and randomly perturb the position of its node according to a 2-D
Gaussian proposal probability density q(c′

i |ci ) centred at the current
position ci .

(iii) Birth: create a new Voronoi cell by randomly drawing a
point in the 2-D map. A velocity value needs to be assigned to
the new cell. This is drawn from a Gaussian proposal probability
centred on the current velocity value where the birth takes place.

(iv) Death: delete a Voronoi node chosen randomly from the
current set of n cells.

(v) Change one noise parameter: randomly pick one com-
ponent of the vector h, and randomly perturb its value according
to a Gaussian proposal probability density q(h′

i |hi ) centred at the
current value hi.

(2) Compute traveltimes estimated for the proposed Voronoi
model. The new estimated traveltimes g(m′) are compared with
the observations d to build the likelihood (2) and the posterior value
of the proposed model p(m′|d).

(3) Randomly accept or reject the proposed model (in terms of
replacing the current model), according to the acceptance criterion
ratio given in eq. (18) of Bodin & Sambridge (2009). When the
proposed model is rejected, the current model is retained for the
next step and also added again to output ensemble.

The first part of the chain (called the burn-in period) is discarded,
after which the random walk is assumed to be stationary and starts
to produce a type of ‘importance sampling’ of the model space
(Green 1995, 2003). This means that models generated by the chain
are asymptotically distributed according to the posterior probability
distribution p(m|d) (see Gallagher et al. 2009, for a description of
the Metropolis sampler).
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8 T. Bodin et al.

Figure 5. The Hierarchical Bayes transdimensional algorithm is used in conjunction with Fast Marching eikonal solver to build an iterative tomography that
takes into account ray bending. At each iteration, the Hierarchical Bayes algorithm produces an ensemble of models with variable dimensions from which
posterior expectations can be extracted. The ensemble solution of Voronoi models are spatially averaged to produce a reference model for the next iteration.

When treating the data noise as a variable, one might intuitively
expect the algorithm to choose high values for the variance of data
noise (i.e. the diagonal elements of Ce in (2)) as this would minimize
the misfit and increase the likelihood. However, note that the Gaus-
sian likelihood function in (2) is normalized by the determinant of
the data covariance matrix, and hence large data errors would also
tend to reduce the likelihood. Hence in a sampling scheme the val-
ues taken by the magnitude of data noise will be a balance between
these two competing effects.

In our multiscale problem, data noise is likely to vary between
data sets due to variations of spectral and azimuthal characteristics
of the noise field on different regions and at different spatial scales.
For example, the azimuthal distribution of sources is much more
even in Tasmania than for continental stations due to the close
proximity of oceanic microseisms on all sides of the island (Young
et al. 2011). The Hierarchical Bayes formulation can account for
this by independently treating the uncertainty on each data set.
For example, the levels of noise for the large scale data set and for
WOMBAT arrays can be separately represented by two scale factors
to be inverted for [i.e. h = (σ1, σ2)]. In this way, the inversion
procedure can consistently combine data sets with differing levels
of uncertainty.

5 A S Y N T H E T I C T E S T

5.1 Experimental setup

A synthetic multiscale checkboard velocity model (Fig. 6) is con-
structed in which the square size is approximatively proportional to

Figure 6. Synthetic velocity model (km s−1) with a multiscale resolution.
The three regions A, B and C have equal area but different spatial scales of
velocity structure.

the spatial sampling of the data shown in Fig. 2. The three regions
of equal area A, B and C are examples of regions with different
unit square. The areas in orange have a velocity of 2.5 km s−1 and
the green have a velocity of 3.1 km s−1 which makes the tomo-
graphic problem fairly non-linear. Three synthetic traveltime data
sets corresponding to the same configurations as shown before are
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Transdimensional tomography 9

constructed by using the Fast Marching Method (Sethian & Popovici
1999; Rawlinson & Sambridge 2004).

As explained later, we think that it is realistic to have smaller
uncertainties at shorter interstation distances. Consequently, some
random Gaussian noise has been added to the synthetic traveltimes
with a standard deviation of 4 s for the large scale data set and
of 1 s for the WOMBAT arrays. The hierarchical formulation will
attempt to recover these noise values along with the model and its
complexity.

5.2 Data noise hyperparameters

We use the Hierarchical Bayes formulation and invert for two noise
hyperparameters: σ 1 for the large scale data set and σ 2 for the
WOMBAT arrays (southeast Australia + Tasmania). Hence, the
likelihood function takes the form:

p(d|m) = 1∏N
i=1(

√
2πσ ′

i )
× exp

{
N∑

i=1

−(g(m)i − di )
2

2(σ ′
i )2

}
, (5)

where{
σ ′

i = σ1 for data belonging to the largest scale set.
σ ′

i = σ2 for WOMBAT data.
(6)

The model parameters (c, v, n, σ1, σ2), where n is the number of
Voronoi cells, are successively perturbed along the Markov chain to
collect an ensemble of models that samples the posterior probability
distribution.

5.3 Results

Posterior inference was made using an ensemble of around about 4 ×
105 models. A total of 96 Markov chains were run in parallel. Each
chain was run for 2 × 106 steps. The first million were discarded as
burn-in steps, only after which the sampling algorithm was judged
to have converged. Then, every 250th model visited was taken in the
ensemble. Three passes were made around the general tomography
algorithm with an update of the ray geometry for each pass (see
Fig. 5).

The spatial average of the post burn-in samples collected during
the last iteration is shown in Fig. 7 and clearly recovers features of
the true velocity field at different scales. By retrieving the different
sizes of the checkerboard squares, the parametrization has been able
to adapt to the underlying structure of the model as well as to the
spatial distribution of rays. The solution model varies smoothly in
regions of limited coverage like region A without sacrificing any
sharp or small-scale features in well-sampled regions like region C.

The uniform prior distributions on both hyperparameters σ 1 and
σ 2 were defined over the range [0.5 7] s. Their posterior distribution
after each pass are shown in Fig. 8. For the last iteration, the posterior
maxima are close to the true value of data noise (relative to the wide
range of the prior). The posterior maxima for σ 1 is about four times
as large as σ 2 which is the ratio between the two true values of data
noise. Note that the posterior maxima for both hyperparameters
would be closer to the true value if a Jeffreys prior (i.e. 1/σ ) was used
instead of a uniform prior. This is because the standard deviation
of the noise is a scale parameter, and a Jeffreys prior would be
the proper non-informative prior to use (the same is true for the
number of model parameters). However in this study, for simplicity,
we always use uniform priors for hyperparameters.

With scant information on the data noise prior to the inversion,
the Hierarchical Bayes procedure recovers the standard deviations

of the true data noise (4 s and 1 s). At the same time it provides
a parsimonious solution model with a complexity and resolution
that varies spatially and locally conforms to the level of information
provided by the data. Indeed, the low gradients in regions sampled by
the largest data set (e.g. region A in Fig. 7) indicate that observations
are less well fit there than under the WOMBAT arrays (e.g. regions
B and C) where the discontinuities are better recovered. This can
be seen quantitatively in Fig. 8. Note that inferring the level of data
noise for each data set is tantamount to inverting for the weighting
factor between data sets in a joint inversion. This is because the
estimated noise given to a particular data set directly weights the
contribution of this data set to the total data fit.

5.4 Hyperparameters and theory errors

In an inverse problem the data noise is usually defined as the
difference between the observed and the predicted measurements
(d − g(m)). In practice, ‘noise’ is whatever component of the mea-
sured data that g(m) cannot account for. See Gouveia & Scales
(1998) and Scales & Snieder (1998) for a discussion.

In traveltime tomography, incorrect estimates of ray geometries
implies an incorrect forward model, that is, an incorrect function
g in eq. (5). This is because by keeping the ray paths fixed, the
tomographic problem is linearized in slowness around a reference
model. This linear approximation on the forward model may also
contribute to the misfit, and should be accounted for as data noise.
For example, let us imagine a tomographic problem where traveltime
measurements are perfect, but where the ray geometries used in the
inversion are completely wrong. In this case it would not be sensible
to perfectly fit the data (although measurements are perfect), and
hence the covariance matrix of data errors needed in the inversion
would have to account for modelling uncertainties.

Fig. 8 illustrates how the hyperparameters σ 1 and σ 2 take into
account these modelling errors. The Hierachical Bayes tomography
algorithm was run over iterations (see Fig. 5). At the first iteration,
traveltimes for all the sampled models were computed assuming
straight rays between station pairs. Then the average of all collected
models was used to update ray geometries which were used in the
next pass. We show in Fig. 8 the posterior distribution on the two
hyperparameters obtained after each of these three passes, that is
for three different approximations of the forward model. The values
taken by the hyperparameters during the random walk are clearly
higher than the true data noise and seem to decrease as the iterations
progress. By retracing the rays and iterating the process, the true rays
geometries can be better approximated and the expected posterior
value of the noise parameters decrease and converge towards the
noise value that has been added to the ‘true’ synthetic data. As
ray paths are better approximated, the error present in the forward
model g decreases and contributes less to the data misfit. Hence the
hyperparameters σ 1 and σ 2 effectively quantify the ability of the
model to fit the data and take into account both observational and
theoretical errors contributions.

5.5 Comparison with subspace inversion

To compare our result to a fixed grid optimization based inversion,
we jointly inverted the three data sets with the subspace method
(Kennett et al. 1988; Rawlinson et al. 2006, 2008). Here, the veloc-
ity field is defined by a uniform grid of nodes with bicubic B-spline
interpolation. The nodes are evenly distributed and do not move
during the inversion process. This way of parametrizing the veloc-
ity field is common in surface wave tomographic studies Here, the
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10 T. Bodin et al.

Figure 7. Average solution model obtained with the Hierarchical Bayes transdimensional algorithm by jointly inverting the three data sets. The three lower
panels show details for Regions A, B and C.

unknown which is sought for during the inversion step is a pertur-
bation of the reference field. The problem is then locally linearized
around the reference model. The method is a subspace inversion be-
cause at each iteration, it projects the full linearized inverse problem
onto a smaller m-dimensional model space to reduce computational
effort. Details of the subspace method are given in Kennett et al.
(1988), Rawlinson et al. (2006), and Rawlinson et al. (2008). Note
here that the level of data noise is not accounted for as the problem
is regularized using ad hoc damping and smoothing. Several grid
sizes were tried, and for each an iterative L-curve method (Aster
et al. 2005) that successively ‘tuned’ both damping and smoothing
parameters was carried out as in Rawlinson et al. (2006).

Fig. 9 shows two solutions obtained with two grid sizes: a coarse
parametrization with 56 × 39 nodes, which equates to a B-spline
node separation of about 1◦; and a denser parametrization with a
finer grid of 112 × 78 nodes, that is, an internode separation of

0.45◦. The two solutions obtained with the two grid sizes are shown
in Fig. 10. The coarse grid solution shown in Fig. 10(a) recovers
the amplitudes of the true model relatively well, but misses the
sharp discontinuities and the small scale features under WOMBAT
arrays. By using a finer grid, in Fig. 10(b) the velocity field in
southeast Australia is better recovered but small artefacts are in-
troduced elsewhere and overall the amplitudes are worse. In both
cases, information appears to be lost compared to the transdimen-
sional solution. The coarse grid appears to be adequate for the large
scale data set whereas the finer grid is better for WOMBAT arrays.

The data misfit for both solutions is relatively similar with
an ‘rms’ value of 3.3 s for the coarse grid solution and 3.1
s for the finer grid solution. In the absence of information on
the measurement error, there is no way to objectively quantify
which of these two solutions better describes the true velocity
model.
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Figure 8. Posterior distribution for hyperparameters σ 1 (top panel) and σ 2 (bottom panel) for three iterations of the algorithm, with an update of ray geometries
at each iteration(see Fig. 5). The posterior distribution after the first iteration is shown in light blue, second iteration in blue, and third iteration in dark blue.
Red lines indicate the true values of noise added to the data. The bounds of the uniform prior distribution on the noise parameters are shown with dashed lines.

Figure 9. Fixed B-spline node parametrization used for the subspace inversion.

Fig. 11 shows the L-curve and its curvature obtained for the finer
grid in 10(b) for a fixed damping value (ε = 3) and with a vary-
ing smoothing parameter η. The curve shows the model roughness
against the data fit for several values of η. The sharpness of the
corner is not very well defined, resulting from the fact that different
data sets with different properties (error and scale) are inverted to-
gether. The subspace inversion only uses a single global smoothing
value although the optimal regularization parameter may be dif-
ferent according to data sets. This L-curve solution gives a mean
residual of 3.1 s (which is a weighted average between the two true
values of data noise 1 and 4), and there is no way to discriminate
between different data types.

Smoothing constraints are applied equally to all parts of the model
regardless of the actual resolution capability which depends on the
ray coverage. This smoothing prevents unconstrained artefacts from
appearing in areas of poor sampling, but also suppresses model
details in the well-sampled areas.

6 F I E L D DATA A P P L I C AT I O N

We applied the transdimensional Hierachical Bayes tomography
algorithm to the three real data sets in Fig. 2 and constructed a
multiscale tomographic image of Rayleigh wave group velocities at
a period of 5 s.

6.1 Data noise parametrization

As previously, errors are assumed to be independent and normally
distributed with zero mean and standard deviation σ i. As a conse-
quence, the data covariance matrix is diagonal and σ i represent its
diagonal elements.

In the synthetic example shown earlier, the data noise was
parametrized with only two hyperparameters σ 1 (for the large scale
data set) and σ 2 (for WOMBAT arrays). Here, different arrays are
also modelled separately but the nature of the data may require
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Figure 10. Solution models obtained with the subspace inversion for the two different grid sizes shown in Fig. 9. The smoothing and damping regularization
parameters have been chosen by successively finding the point of maximum curvature of the L-curve.

the noise parametrization to be slightly more complex rather than a
single constant number for each array type. This subsection presents
the noise parametrization chosen for each array and explains how it
is based on physical arguments.

6.1.1 WOMBAT arrays

Arroucau et al. (2010) produced traveltime picking uncertainties
for WOMBAT arrays following the procedure presented by Cotte &

Laske (2002) and Harmon et al. (2007). Uncertainties were defined
as the half-width of the time interval during which the amplitude
of the envelope was 50 per cent of its peak amplitude. The afore-
mentioned authors state that this choice for error bars sometimes
results in a large scatter that may not reflect the actual precision of
the measurements. Thus their error estimates need to be empirically
rescaled, that is, to be multiplied by a constant factor.

These traveltime error estimates for WOMBAT arrays are shown
as a function of the interstation distance in Fig. 12, and appear
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Figure 11. Upper panel: L-curve for the 112 × 78 nodes grid, ε is kept con-
stant and η is changed Lower panel: curvature of the L-curve. The maximum
curvature gives the corner of the L-curve and provides the optimum η.

positively correlated with interstation distance. Short traveltimes
are well constrained with an estimated uncertainty of around 1.5 s
while those for stations further apart are less precise. For an angular
distance of three degrees, the estimated noise is around 3 s.

In an optimization based inversion, this estimate of relative errors
is sufficient to weight the information in the data. However, the
Bayesian sampling approach depends on absolute errors, and so we
invert for a scaling factor applied to the data covariance matrix. In
particular, the σ ′

i in (5) take the form

σ ′
i = λ × σ i

rel (7)

where σ i
rel corresponds to the relative uncertainty, and λ is the un-

known model hyperparameter. In this way, the algorithm uses the
information available on relative errors in conjunction with poste-
rior inference on a scaling factor provided by the Hierarchical Bayes
procedure.

6.1.2 Large scale data set

For the large scale data set, no information is available on data
uncertainties. Instead of parametrizing the data noise with a single
hyperparameter, as in the synthetic example, we treat the noise
as a linear function of the interstation distance and use two noise
parameters, and write:

σ ′
i = a × di + b, (8)

where di is the interstation distance, and a and b are hyperparameters
to be inverted for.

The linear trend described earlier is a common observation in
real data sets and is called a proportional effect (Aster et al. 2005).

Figure 12. Estimated traveltime picking error as a function of interstation
distance for WOMBAT arrays. According to Cotte & Laske (2002) and
Harmon et al. (2007), this method of estimating uncertainties only provides
relative errors between data points.

It occurs when the size of measurement errors are proportional to
the measurement magnitude, and is clearly observable in Fig. 12.
There are some theoretical arguments to explain the proportional
effect in ambient noise data. At longer distances, the coherent part of
the noise between two stations is more attenuated, and hence more
recording time may be needed to construct the Green’s function
(Bensen et al. 2007). There is also a decrease in signal-to-noise ratio
with distance due to the smaller range of azimuths of propagating
surface waves that contribute constructively to the cross-correlation
and to the scattering and multipathing along the great circle path
between stations (Harmon et al. 2007; Weaver et al. 2009).

6.2 Results

The Hierarchical Bayes algorithm was run using two different
choices for the likelihood. Data sets were first inverted with an
L2 misfit measure as in (5), and then with an L1 norm, that is

φL1 (m) =
N∑

i=1

|di − g(m)i |
σ ′

i

. (9)

The likelihood function associated with the L1 norm is a double
sided exponential distribution, which is commonly named a Lapla-
cian probability distribution

p(dobs|m) =
N∏

i=1

[
(2σ ′

i )−1
]

× exp{−φL1 (m)}. (10)

The advantage of using a Laplacian likelihood distribution is that
the average solution will be more outlier resistant, or robust, than the
expected Earth model obtained with a Gaussian likelihood (Aster
et al. 2005).

In an optimization framework, finding the L1 norm solution is
complicated because the misfit function is then a non differentiable
function of m at any point where one of the residuals di − g(m)i

is zero. However, Monte Carlo schemes do not use derivatives and
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Figure 13. Hierarchical Bayes average solution (km s−1). Top panel: data misfit defined with an L2 norm, that is, the likelihood is a Gaussian distribution.
Bottom panel: data misfit defined with an L1 norm, that is, the likelihood is Laplacian distribution.

sampling a Laplacian distribution is no more difficult as sampling
a Gaussian distribution. Fig. 13 shows the average solution maps
for both L1 and L2 misfit definitions. Both were obtained after four
updates of the ray paths. For each iteration, a total of 96 independent
Markov chains were run independently on separate processors and
posterior inference was made using an ensemble of 57 600 models.
Each chain was run for 3 × 106 steps, the first half of which were

discarded as burn-in. Then, every 250th model visited was taken
in the ensemble. In our case, it turns out that the solution model
obtained with an L1 norm is relatively similar to the one obtained
with an L2 norm.

The frequencies of ambient noise used here are largely sensitive
to structure in the first 3–8 km of the crust, so one would expect
the solution models in Fig. 13 to most readily discriminate between
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Figure 14. Simplified geological map of the Australian continent which shows regions containing significant sedimentary basins and exposed orogens classified
according to age. WTT, West Tasmania Terrane; ETT, East Tasmania Terrane.

sedimentary and hard rock regions in the shallow crust. Fig. 14
shows a simplified broad-scale geological map of the Australian
continent with terranes marked according to age and dominant
exposure type. The correlation between higher velocities and the
presence of exposed crystalline basement, and lower velocities and
the presence of sedimentary basins of substantial thickness, is quite
distinct. The Archean terranes of central and western Australia,
comprising the Gawler, Yilgarn and Pilbara cratons (Fig. 14), are
clearly revealed as regions of elevated velocity, although the full
extent of the Pilbara craton is somewhat masked by the presence of
overlying sediments. Although sampling much deeper in the litho-
sphere, the shear wave speed images obtained from regional surface
wave tomography (Fishwick et al. 2005) of the Australian continent
show a very similar pattern of high velocities beneath the Archean
cratons.

Although less distinct, there is also a relationship between el-
evated velocities and the presence of Proterozoic and Palaeozoic
basement. For example, the Kimberly Craton and Lachlan Oro-
gen appear to correspond to regions of higher velocity; in the
latter case, this region includes much of the southern Great Di-
viding Range, which contains extensive exposure of igneous rocks
and metamorphosed sediments (Foster & Gray 2000). Sedimentary
basins, which cover vast tracts of the Australian continent, are gen-
erally responsible for most of the low velocity features present in
Fig. 13. For example, the Great Artesian Basin in central eastern
Australia, which encompasses the Eromanga, Surat and Carpentaria
basins (Fig. 14) contains large regions in which the sediment thick-
ness exceeds 2 km (Laske & Masters 1997). The presence of such
thick sediments would be responsible for the distinct low velocity

zone observed in central and central eastern Australia (Fig. 13).
The Canning Basin in northwest Australia also hosts extremely
thick sedimentary sequences—up to 6 km in some places (Laske &
Masters 1997); this would explain the presence of the low velocity
zone dividing the Kimberley and Pilbara Cratons.

In southeast Australia, the vast intracratonic Murray Basin is not
very clearly defined in the velocity images (Fig. 13), but this is
probably due to the sediment layer being relatively thin (Knight
et al. 1995). However, the small scale length low velocity lineations
that can be observed, due to the multiscale nature of the tomo-
graphic technique used to recover structure, probably represent the
presence of pre-Tertiary infra-basins that underlie the Murray Basin
(Arroucau et al. 2010). One remarkable feature of the tomography
results is that all three Cainozoic basins in Bass Strait—the Bass,
Otway and Gippsland basins (Fig. 14) appear as distinct low velocity
zones, even though they are largely resolved by the continent-wide
data set alone. In Tasmania, the divide between the Proterozoic West
Tasmania Terrane and Phanerozoic East Tasmania Terrane is repre-
sented by a lower velocity transition zone, which is consistent with
the recent results of (Young et al. 2011).

The posterior information on hyperparameters (n, λ, a, b) is
shown in Fig. 15. Note that the collected velocity models in the
ensemble solution have an average of 1200 cells. Each cell is de-
fined by three parameters (2-D location of nodes + velocity) which
makes the dimension of the model space around 3600. The Monte
Carlo integration is feasible because it was implemented on parallel
computing architecture. To give the reader an idea of the computa-
tional cost of such an inversion, each ‘outer-loop’ iteration of the
algorithm (as shown in Fig. 5) requires approximatively five days,
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Figure 15. Posterior probability distribution on hyperparameters for the L1 misfit solution shown in Fig. 13(b). The three inferred noise parameters λ, a and b
define the level of data noise in data sets as given by (7) and (8).

so each panel of Fig. 13 represents about 15 days of computation
time. The inferred information on the level of noise in traveltimes
indicates that the uncertainties provided for the WOMBAT arrays
have been rescaled to around λ = 0.28. The posterior value on
hyperparameter a indicates that the data noise for the large scale
is expected to increase 0.85 s each time the interstation distance
increases by 1 degree with an expected data error of 0.6 s at 0◦

degrees (see lower panels in Fig. 15).
Fig. 16(a) shows the error map for the L1 solution obtained with

transdimensional tomography. This is constructed by taking the
standard deviation of the ensemble of sampled Voronoi models at
each point of the velocity field. This locally shows how well the
solution model in 13(b) is constrained. As expected, well sampled
areas in Western Australia, South East Australia and Tasmania show
a lower velocity uncertainty.

Because the underlying parametrization is mobile, it is also in-
teresting to look at the spatial density of Voronoi nodes across the
ensemble of models collected. To do this we discretized the re-
gion into cells of 0.5 × 0.5◦, and calculated the average number of
Voronoi nodes per cell over the posterior ensemble (see Fig. 16b).
This map displays the average size of Voronoi cells at each point
of the velocity field. A large number of small Voronoi cells are
concentrated within WOMBAT arrays with larger cells elsewhere,
thereby demonstrating the adaptive character of the transdimen-
sional parametrization.

It is interesting to see that the estimated error on the model is
not necessarily correlated with the density of cells. The Archaean
cratons in Western Australia are well constrained without need of
small cells (This area shows low values for model uncertainty in
16(a) with the lowest density of cells in 16b). There is good ray
coverage in Western Australia, and one might expect the algorithm
to introduce a lot of small cells to provide a high level of detail.
However, the velocity field seems to be quite homogeneous and
there is no need to introduce high levels of complexity in this region.
This example shows the parsimonious nature of the algorithm and
indicates that the transdimensional parametrization not only adapts
to the density of rays but also to the character of the velocity structure
itself.

6.3 Comparison with the Subspace Inversion

Finally, we compare our results with maps obtained with a standard
fixed grid optimization approach. As described in Section 5.5, the

three data sets are simultaneously inverted with the subspace method
(Kennett et al. 1988; Rawlinson et al. 2006, 2008). Here the inverse
problem is regularized using ‘ad-hoc’ damping and smoothing, and
the level of data noise is not accounted for. Fig. 17 shows two
solutions obtained with the two grid sizes showed in Fig. 9. For
each grid size, regularization parameters were successively ‘tuned’
with an iterative L-curve method as in Rawlinson et al. (2006).

As with the synthetic experiments, the coarse grid solution in
Fig. 17(a) misses the details and small scale features under WOM-
BAT arrays that have been recovered with transdimensional tomog-
raphy. Although the node spacing seems appropriate for the large
scale data set, it is too coarse and cannot map information present
under Southeast Australia and Tasmania. By using a finer grid, in
Fig. 17(b) the velocity field in Southeast Australia presents more
details but the structure under Tasmania is still missing. In this
case, small artefacts resulting from data noise are introduced such
as under Yilgarn craton, and overall the amplitudes are worse due
to damping.

By visual inspection of the two images on Fig. 17, one can ob-
serve a striking feature of fixed grid inversion approaches: the scale
of recovered velocity heterogeneities is spatially constant over the
velocity field. Here the various scales of structural heterogeneities
in the Earth, as well as inhomogeneities in data coverage, are not
accounted for.

Although results are generally similar to transdimensional to-
mography for both choices of grid size, information appears to be
lost in the well sampled areas compared to the transdimensional
solution. Furthermore, here there is no way to measure which of
these two solutions best describes the underlying seismic structure,
which can result in misinterpretation. These are best fitting models
and there is no information available on the level of uncertainty on
the recovered velocity field.

7 C O N C LU S I O N A N D F U T U R E
D I R E C T I O N S

We have shown here that transdimensional tomography is particu-
larly suited for inversion of multiple data sets that sample the Earth
at different scales. Synthetic and real data examples have illustrated
the adaptive character of the parametrization which enables us to
image small scale features in well sampled areas without introduc-
ing spurious artefacts elsewhere. The level of smoothing is spatially
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Figure 16. Top panel: error map (km s−1) associated with the L1 norm solution in 13(b). Bottom panel: density of Voronoi nuclei across the ensemble of
sampled models. The colour scale represents the expected number of nuclei per pixel.

variable and is naturally determined by the data. Contrary to other
multiscale tomography methods, recovered structure is not only reg-
ulated by the density of rays, but also by the inferred data noise and
by the structure of the underlying velocity field.

As the complexity of the model is variable, the estimated level
of data noise takes an important role in the inversion as it directly
determines the number of model parameters needed to fit the data
to the required level. We have shown that an extended Bayesian
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Figure 17. Solution models obtained with the subspace inversion for the two different grid sizes shown in Fig. 9. The smoothing and damping regularization
parameters have been chosen by successively finding the point of maximum curvature of the L-curve.

formulation called Hierarchical Bayes can take into account the
lack of knowledge on data uncertainty. When assessment of mea-
surement errors is difficult to achieve a priori (as in ambient noise
tomography), this procedure treats the standard deviation of data
noise as an unknown and makes a joint posterior inference on both
model complexity and data uncertainty. The Hierarchical Bayes
procedure turns out to be particularly useful when dealing with

multiple data types having different unknown levels of noise. With
scant prior knowledge on data errors, the algorithm is able to infer
the level of information brought by each data type and to naturally
adjust the fit to different data sets.

In our ambient noise tomography application, the data noise from
WOMBAT arrays was naturally rescaled while the noise for the large
scale data set was parametrized as a linear function of the interstation
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distance. The inversion resulted in a parsimonious velocity map with
a spatial resolution adapted to the quantity of information present
in the data.

Uncertainty assessment on apparent traveltimes from ambient
noise cross-correlation is an active area of research and Hierar-
chical Bayes could be used as a tool in the future to quantify the
behaviour of noise with different parameters like interstation dis-
tance, azimuthal source distribution, or recording time.

It will be soon possible to incorporate new data from on-going de-
ployments at different scales in Australia. Saygin & Kennett (2012)
recently processed additional traveltimes that sample the crust at
the continental scale. There are also supplementary ambient noise
data for Tasmania available (Young et al. 2011). Furthermore, 67
short-period seismometers have recently been positioned across the
Gawler and Curnamona Cratons in South Australia (Salmon & Ar-
roucau 2010). Station spacing was approximately 60 km and covers
the area from the Streaky Bay in the west to the New South Wales
border in the east. Stations recorded continuous three component
data for a period of 6–8 months and ambient noise traveltime are
currently being processed.

Another possibility is the inclusion of azimuthal anisotropy in
the inversion. It is possible to observe an azimuthal dependence
on the path-averaged velocities extracted from WOMBAT arrays.
Therefore, instead of inverting for a single velocity value within
each cell, one could invert for three anisotropic parameters per cell
(a maximum velocity, a minimum velocity and a direction).

Other possible extensions include combining ambient noise
recordings with receiver functions, earthquake surface wave dis-
persion measurements, regional and teleseismic traveltimes or SKS
splitting measurements. The Hierachical Bayes procedure may
prove to be practically useful for joint inversion, because it is able to
naturally weight the contribution of different data types in the mis-
fit function, thus removing the user driven selection of weighting
factors.
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