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[1] Interpolation of spatial data is a widely used technique across the Earth sciences.
For example, the thickness of the crust can be estimated by different active and passive
seismic source surveys, and seismologists reconstruct the topography of the Moho by
interpolating these different estimates. Although much research has been done on
improving the quantity and quality of observations, the interpolation algorithms utilized
often remain standard linear regression schemes, with three main weaknesses: (1) the level
of structure in the surface, or smoothness, has to be predefined by the user; (2) different
classes of measurements with varying and often poorly constrained uncertainties are used
together, and hence it is difficult to give appropriate weight to different data types with
standard algorithms; (3) there is typically no simple way to propagate uncertainties in the
data to uncertainty in the estimated surface. Hence the situation can be expressed by
Mackenzie (2004): “We use fantastic telescopes, the best physical models, and the best
computers. The weak link in this chain is interpreting our data using 100 year old
mathematics”. Here we use recent developments made in Bayesian statistics and apply
them to the problem of surface reconstruction. We show how the reversible jump Markov
chain Monte Carlo (rj-McMC) algorithm can be used to let the degree of structure in the
surface be directly determined by the data. The solution is described in probabilistic terms,
allowing uncertainties to be fully accounted for. The method is illustrated with an
application to Moho depth reconstruction in Australia.

Citation: Bodin, T., M. Salmon, B. L. N. Kennett, and M. Sambridge (2012), Probabilistic surface reconstruction from multiple
data sets: An example for the Australian Moho, J. Geophys. Res., 117, B10307, doi:10.1029/2012JB009547.

1. Introduction

[2] Surface fitting, spatial prediction, regular griding or
data interpolation are problems which often occur in many
fields of geosciences. They are all specific cases of a general
well known problem in statistics: the regression problem.
Some noisy records of a continuous function (e.g., tempera-
ture, gravity, concentration of stable isotopes) are recorded at
some discrete locations in space or time, and the problem
consists of recovering this unknown function.
[3] Recent one-dimensional examples include time series

analysis of geochemical proxies [e.g., Large et al., 2009;
Burton et al., 2010; Kylander et al., 2010]. Two-dimensional
examples (i.e. surface reconstruction) include gridding of
satellite measurements for mapping gravity anomalies
[Sandwell and Smith, 1997], interpolation of digital elevation
data for landscape reconstruction [Atkinson and Lloyd,

2007], interpolation of monthly precipitation data [Lloyd
et al., 2010], interpolation of aeromagnetic data [Billings
et al., 2002], or reconstruction of the Moho discontinuity
from geophysical data [Kennett et al., 2011;Di Stefano et al.,
2011].
[4] There are a large number of surface fitting algorithms,

with different features and limitations (for a comparative
review within the geosciences, see El Abbas et al. [1990]).
For example, Kriging [Stein, 1999] is based on several
assumptions. First, the data are seen as random realizations of
a normal distribution whose mean and variance are constant
over the 2D field. Second, the spatial variability of data
(i.e. the data covariance or variogram function) is also assumed
constant over the 2D field. These stationarity assumptions
make Kriging only adapted to a certain range of problems in
geosciences.
[5] Generally, most 2D interpolation methods used in Earth

sciences estimate surface values from weighted averages of
nearby data points, a procedure justified by the assumption
that the surface varies smoothly with distance. Weighted-
average schemes differ in how they assign weights to the
constraining values. The simplest methods use a polynomial
or power law in distance [Smith and Wessel, 1990]. The
requirement is that the surface should minimize some global
norm (e.g., distance to a reference surface, level of smooth-
ness, spline tension,…) while fitting the data in a least square
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sense. A well known limitation of these weighted average
methods is that the solution strongly depends on the choice of
a global norm. In other words, the number of free parameters
in the solution (i.e. level of structure) has to be determined by
the user in advance. Furthermore, these standard optimization
schemes do not allow propagation of data uncertainties
towards confidence limits in the surface [Aster et al., 2005].
[6] One common problem in Earth sciences is that the level

of information provided by observations is unevenly dis-
tributed geographically. Thus, the density of observations
and the data noise are spatially variable. For example, in an
airborne geophysical survey, data are collected along roughly
parallel transects across the area of interest. In the inference
process this suggests that the level of resolvable detail in the
model will also vary spatially, however standard regression
algorithms often involve only a few tuneable parameters, the
selection of which is always a global compromise between
data fit and model complexity. Inevitably the use of globally
tuned damping parameters is likely to mean that sub-regions
of the spatial domain may be under or over damped indicat-
ing that data information content has not been fully utilized.
Regression techniques are the subject of much study, with
literally hundreds of publications proposing new approaches
to specific problems. For a literature review the reader is
referred to text books on spatial data analysis [Banerjee et al.,
2004; Kanevski et al., 2009; Lloyd, 2010, and references
therein]. For a discussion on statistics in model inference,
see Mackenzie [2004].
[7] In this study we propose an alternative approach to

surface reconstruction by applying the reversible jump
Markov chain Monte Carlo (rj-McMC) algorithm [Geyer
and Møller, 1994; Green, 1995]. The rj-McMC is a fully
non-linear stochastic parameter search scheme developed
in the area of Bayesian statistics. It allows simultaneous
inference on both model and parameter space, i.e., both the
number of basis functions and the functions themselves are
free to vary. With growing computational power in the last
decade, this new class of sampling algorithm has been
applied to a wide range of areas such as signal processing
[Andrieu and Doucet, 1999], genetics [Huelsenbeck et al.,
2004], medical imaging [Bertrand et al., 2001], image
analysis [Descombes et al., 2001], or computer vision
[Mayer, 2008].
[8] In this short paper we show how the rj-McMC approach

can be used for regression analysis in Earth sciences, and
how it allows the complexity of the recovered surface to be
spatially variable and directly determined by the data. Instead
of seeking a best fitting model within an optimization
framework, the full state of knowledge is represented in
probabilistic terms, thus allowing inference on constraints,
resolutions, and trade-offs. The method is presented and
illustrated with an application to Moho depth reconstruction
for Australia.

1.1. The Thickness of the Australian Crust

[9] The Moho discontinuity defines the base of the Earth’s
crust. It was first observed in 1909 by Mohorovičić, when he
noticed that seismograms from shallow-focus earthquakes
had two sets of P-waves and S-waves, one direct and one
refracted back from a higher velocity medium. The crust-
mantle boundary is therefore generally defined through a
transition in the velocity of seismic waves. Above the Moho

the velocity of P-waves is in the range 6.7–7.2 km s�1,
and below is 7.6–8.6 km s�1 corresponding to ultramafic
materials.
[10] Modes of Moho topography are usually constructed by

seismologists by interpolating compilations of local mea-
sures of Moho depth obtained from different types of seismic
data. For a global model, see Mooney et al. [1998]. For
examples of regional models, seeMarone et al. [2003] for the
Mediterranean, Lloyd et al. [2010] for South America, and
Kennett et al. [2011] for Australia. A recent local model for
Italy was constructed by Di Stefano et al. [2011].
[11] Improved knowledge of crustal thickness helps under-

standing of the geodynamical evolution of a continent. The
thickness of the crust directly determines the rate at which
heat is released to the Earth’s surface, influences the location
of earthquakes, and more generally defines the rules for plate
tectonic processes. Maps of crustal thickness have numerous
applications in geophysics. For example, in potential field
studies, the crustal thickness (together with density) is needed
to correct long-wavelength gravity data in order to infer
lateral variations in mantle density. Crustal density and
thickness are also used to calculate crustal isostasy [Mooney
et al., 1998].
[12] In this paper we show how to construct a probabilistic

Moho topography model for Australia, exploiting the use the
same data sets as Kennett et al. [2011]. The problem requires
simultaneous inferences from different data types, charac-
terized by different sensitivities to structure and different
levels of noise. With multiple sources of data we usually
would need to make somewhat arbitrary decisions about how
to weigh the relative contributions of each data set to the final
solution. However, using the rj-McMC formulation, we
show the choices of parameterization, level of data fit and
weighting between data types can be constrained by the data
themselves, rather than having to be specified in advance.

2. Data

[13] The results compiled by Kennett et al. [2011] consist
of an ensemble of data points providing the depth to the
Moho at a large number of geographical locations across
Australia (Figure 1). These local estimates of Moho depth do
not represent direct measurements; they have been derived
from a wide range of different seismological studies carried
out in the last few decades (see Kennett et al. [2011, and
references therein] for the complete description of the data
used here). As can be clearly seen in Figure 1, although there
is good coverage of the continent, the data sampling is non-
uniform and also highly anisotropic in places. The poorest
sampling occurs in remote areas where logistics make
experiments difficult such as the Simpson and Great Sandy
Deserts.
[14] The different sets of Moho estimates can be divided

into 6 classes, based on the nature of the seismic observations
employed: refraction (339 points), reflection (652 points),
broad-band receiver functions (225 points), short-period
receiver functions (41 points), and historical reflection stud-
ies (32 points). A seventh data set of Moho depths derived
from gravity measurements (11 points) was also included to
help define continent-ocean margins. We represent the full
set of depth estimates by combining 7 vectors of different
length: d = [d1, d2, … d7], where each data set di is a vector
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of Moho estimates measured at a number of geographical
locations with method i.
[15] Since the seismic wavetype, frequency band, and

processing technique vary between the different classes of
observations, the level of constraint on Moho depth differs
between data types. The depth of Moho may be clear in
certain experiments, such as reflection profiling, which are
sensitive to sharp discontinuities; whereas in smoothed
tomographic images the expression of Moho tends to be
through a gradient in wavespeed. In order to keep consis-
tency between the different classes of constraints, the Moho
was defined by Kennett et al. [2011] as the boundary where
the velocities on the lower side are greater than 7.8 km s�1 for
P waves and 4.4 km s�1 for shear waves. Where the crust-
mantle transition occurs as a gradient zone, the base of the
transition was taken. The individual estimates of Moho depth
have associated measures of quality. But, since the inverse
methods used to interpret seismic records often provide just a
single best fitting Earth model to a often highly non-unique
and ill-posed problem, there is scant information about the
true level of uncertainty on the Moho depths employed.
Further, the relative uncertainties for results from different
data types are not well constrained.

3. Regression With B-Spline Interpolation

[16] As a first step we reconstruct a Moho topography
model in the same way as in Kennett et al. [2011]. First,
a uniform grid of 0.5 deg � 0.5 deg cells is constructed and
the data points are average over each cell. This preliminary
smoothing process restricts the likelihood of close points

with highly varying values. Second, average points are
interpolated with a standard B-spline interpolating scheme
[Wessel and Smith, 1998], where the user defines a priori a
spline-tension parameter (see Smith and Wessel [1990] for
details). Here all data-type are equally weighted in the min-
imization scheme, since there is no a priori information about
relative quality between different experiments.
[17] In Figure 2 we show results for two different tension

values. Figure 2 (left) might be over-complicated and may
contain features due to data errors. Conversely, Figure 2
(right) is missing details present in the data. Kennett et al.
[2011] use the spline tension shown in Figure 2 (left) but
the weakness of this approach is that it relies on the judgment
of the user to determine the appropriate level of smoothing.
There is no clear quantitative way to choose the appropriate
level of detail, or data fit. We acknowledge that a range of
statistical techniques have been developed for judging
whether the choice of the model dimension is warranted
by the data, for example, the Bayesian information criterion
[Schwarz, 1978], the Akaike information criterion [Akaike,
1974] or F-tests [Aster et al., 2005]. However, such proce-
dures rely on an accurate knowledge of data error statistics,
which is not the case here, nor in a wide range of regression
problems across the Earth sciences.

4. Transdimensional Regression

[18] In this section we show how the rj-McMC algorithm
can be used to allow the number of free parameters in the
representation of the surface of Moho depth to be a free
parameter in the regression process. This situation is known
as a transdimensional inversion, that is, one where the

Figure 1. Location of Moho estimates used for the construction of the Moho surface from Kennett et al.
[2011]. There are 7 classes of data with different levels of uncertainty, spatial sampling, and consistency.
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dimension of the parameter space is itself variable [Sisson,
2005; Sambridge et al., 2006].

4.1. Surface Parameterization

[19] The surface is parameterized with an irregular mesh
consisting on a variable number of Voronoi cells [Voronoi,
1908; Okabe et al., 1992] as shown in Figures 3 and 4.
Although Voronoi cells seem complex structures, the mesh
is uniquely controlled by a small number of nodes (blue
squares in Figure 3). Any point inside a cell is closer to the
node of that cell than any other node, so the shape of the
parameterization is entirely defined by the location of nodes
C = [c1,c2,…,ck]. Boundaries between neighboring nodes are
simply the perpendicular bisectors of the direct line between
the center of the cells.
[20] The position C and number k of nodes are unknown

variables to be directly inferred from the data. Here we use
only the simplest possible representation of a surface within
each cell, that is, a constant. This means that a single Moho
depth parameter is assigned to each Voronoi cell v = [v1,
v2, …,vk], yielding a surface made of piecewise constant
polygons (Figure 4). Higher order polynomials are possible,
for example, a linear gradient or quadratic, which would
require additional unknowns for each cell. We expect this
parameterization of the surface to self-adapt to the geometry
of the problem. At a first glance this way of describing the
surface seems coarse, as we only allow infinite gradients at
boundaries. However, we shall show that in a probabilistic
framework the expected model tends to be a continuous
surface.
[21] The number of cells, and hence the fit to data becomes

an unknown in the problem. It is worth noting that the data
can be perfectly fitted by simply placing a Voronoi node at
the location of each data point (i.e. with the number of cells
equal to the number of data points). However, contrary to
optimization schemes (where the goal is to minimize a misfit
measure), the rj-McMC algorithm is able to automatically
adjust the number of model parameters, in order to fit the data

up to the level of data noise. For example, given a choice
between a simple model with fewer cells and a more complex
model that provides a similar fit to data, the simpler one will
be favored. This is due to a fundamental property of Bayesian
inference called ‘natural parsimony’ which gives preference
for the least complex explanation for an observation (see
Malinverno [2002] and MacKay [2003] for a discussion).

Figure 3. Construction of a surface with a Voronoi tessel-
lation. The boundaries of each cell are defined by the per-
pendicular bisector of each pair of nodes. A constant
surface value is assigned to each cell. As the number and
position of the nodes changes the Voronoi diagram corre-
sponds to a multi-scale parameterization of the surface.

Figure 2. Moho depth surfaces constructed with a B-spline interpolation of averages over 5� � 5� cells,
with two different spline tension values. A white mask is applied to all points that are further than 250 km
from a data constraint. This illustration shows how an arbitrary user-defined global norm (here the mini-
mum tension for B-splines) influences the solution in an standard linear optimization regression scheme.
Without accurate knowledge of data uncertainties, there is no way to objectively discriminate between
these two solutions.
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In this way the level of structure in the solution is directly
determined by estimates of the data errors.
[22] In our problem the uncertainty associated with each

class of data is poorly constrained. This lack of knowledge on
errors statistics can be accounted for in a probabilistic
framework by using a hierarchical formulation [Malinverno
and Briggs, 2004; Malinverno and Parker, 2006; Dettmer
et al., 2012] where the data noise is parameterized and also
becomes an unknown to be inverted for in the regression
problem. Here we assume an independent, random Gaussian
noise with a different variance for each data type. That is,
within a data type i, errors are assumed to be normally dis-
tributed with variance si

2, and we define 7 parameters
h = [s1,s2, …,s7], each representing the level of uncertainty
for a data class.

[23] We recognize that the Gaussian assumption may itself
be questionable in some cases. Furthermore, by assuming a
normal distribution has zero mean, we do not account for
systematic errors. With this representation, the full set of
unknown model parameters can be described by:

m ¼ k;C; v; h½ �; ð1Þ

giving 3k + 8 unknowns in total.
[24] Note that it is possible to include a priori information

about data errors. For example one might have some indi-
cation about relative uncertainties between data points. In
this case, weights can be applied to different measurements
in the likelihood function, and the standard deviation of data
errors si can be written as proportional to the weighting

Figure 4. Four Voronoi models for Moho depth randomly drawn out of the ensemble solution provided
by the reversible jump Markov chain Monte Carlo algorithm (rj-McMC). The full ensemble solution
consists of 106 such models with variable complexity and parameterization. Each of these models mi

is associated with a set of noise estimates hi. The statistical distribution of these models is proportional
to the posterior PDF, and hence meaningful statistical information can be extracted from the ensemble
for interpretation of the nature of the Moho surface (see Figures 5–7).
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factor, with the constant of proportionality being the
parameter to invert for [Bodin et al., 2012a].

4.2. Probabilistic Bayesian Inference

[25] In a Bayesian framework the solution is a probability
distribution representing the level of knowledge one has
about model parameters, after combining a priori information
with observations [Tarantola and Valette, 1982]. This for-
mulation relies on Bayes’ rule [e.g., Bernardo et al., 1994]
which, up to a constant of proportionality, can be written as

posterior ∝ likelihood � prior ð2Þ

p m dj Þ ∝ p d mj Þp mð Þðð ð3Þ

where p(m|d) is the posterior probability density function
(PDF) of the model parameters m, given the data vector, d.
p(m) is the prior PDF on the model, which represents what
we consider reasonable for the values of the model parameters.
The prior information p(m) used in this paper consists of
bounded, uniform distributions with a range of parameter
values chosen to represent physically reasonable limits, wide
enough that the data dominate the posterior PDF (e.g., a
uniform distribution for Moho depth between 10 and 50 km).
[26] The likelihood function, p(d|m), quantifies the prob-

ability of obtaining the data, d, given the model, m. This is a
measure of the data fit and increases as the model fits the data
better. Effectively the likelihood updates the prior informa-
tion, transforming it to the posterior. If the prior and posterior
distributions are the same, then we have learnt nothing from
the data. Here we define it as the product of seven multi-
variate Gaussian distributions, one for each data type

p djmð Þ ¼
Y7
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ið Þni
q exp

� di � gi mð Þk k2
2s2

i

( )2
64

3
75 ð4Þ

where gi(m) is the vector of Moho depths estimated by the
model m for data type di of size ni. Note that the level of
data uncertainty si for a data type di determines the width of
the probability distribution in this direction, and hence the
importance given to this particular data set in the final
solution. Therefore, by treating the different noise levels as
unknowns, we implicitly let the weights between data types
to be variable and directly determined by the data.
[27] By setting data errors to be unknown parameters in

the problem, one would expect a tendency for high values to
be preferred, since a larger si will increase the likelihood
by increasing the exponent in equation (4). However, this
effect is counter-balanced by the normalizing constant of the
Gaussian distribution which also contains si in the denomi-
nator. Hence, when inverting for noise levels, the algorithm
will be driven towards values which are a compromise
between these competing forces. Here we define measure-
ment errors to as all factors contributing to an inability to fit
the data including theoretical errors due to parameterization.

4.3. The Reversible Jump Algorithm

[28] Since the unknown model is described with a spatially
variable parameterization with variable number of cells, the
regression problem is highly non-linear, and there is no
analytical formula for the posterior PDF. Instead we use

the rj-McMC algorithm [Green, 1995, 2003] to sample the
posterior distribution. This algorithm is able to generate a
collection of models m, whose statistical distribution is pro-
portional to the posterior PDF (Figure 4). The rj-McMC
algorithm is a generalization of the well-known Metropolis-
Hastings algorithm [Metropolis et al., 1953; Hastings, 1970]
to the case where the dimension of the solution space is
variable. A sequence of models are generated in a chain,
where typically each is a random perturbation of the last.
Recent descriptions of the algorithm have been given by
Sambridge et al. [2006] and Gallagher et al. [2009]. Exam-
ples of applications in Earth sciences can be found in
Malinverno [2002], Stephenson et al. [2004, 2006], Jasra
et al. [2006], Bodin and Sambridge [2009], Hopcroft et al.
[2009], Charvin et al. [2009], Gallagher et al. [2011],
Dettmer et al. [2010], Luo [2010], Piana Agostinetti and
Malinverno [2010], Bodin et al. [2012b], Minsley [2011],
Dettmer et al. [2012], and Bodin et al. [2012a].
[29] The implementation used here is identical to that

described by Bodin et al. [2012a] applied to the joint
tomographic inversion of different seismic data types with
unknown noise levels. In this work, the same inversion
scheme is used, but instead of fitting travel times of seismic
rays, we fit regression points. Below we give a brief
description of the algorithm, but refer the reader to Bodin
and Sambridge [2009] and Bodin et al. [2012a] for a com-
plete description of the algorithm.
[30] Having randomly initialized the model parameters

m = [k,C,v,h] by drawing values from the prior distribution
of each parameter, the algorithm proceeds iteratively. Each
step of the Markov chain is divided into two stages:

First, propose a new model by drawing from a proba-
bility distribution q(m′|m) such that the proposed modelm′ is
conditional only on the current model m. This involves one
randomly selected type of change, with probability 1/5, out
of five possible:

1. Change a depth value: Randomly pick one Voronoi
cell (from a uniform distribution) and change the depth value
assigned to this cell according to a Gaussian probability
distribution q v′i vij Þð centered at the current value vi.

2. Move a Voronoi node: Randomly pick on Voronoi
cell, and randomly perturb the position of its node according
to a 2D Gaussian proposal probability density q c′i cij Þð cen-
tered at the current position ci.

3. Birth: Create a new Voronoi cell by randomly
drawing a point in the 2D map. A depth value needs to be
assigned to the new cell. This is drawn from a Gaussian
proposal probability centered on the current depth value
where the birth takes place.

4. Death: Delete a Voronoi node chosen randomly
from the current set of k cells.

5. Change one noise parameter: Randomly pick one
component of the vector h, and randomly perturb its value
according to a Gaussian proposal probability density q h′i hij Þð
centered at the current value hi.

Second, randomly accept or reject the proposed model
(in terms of replacing the current model) with probability
a(m′|m) given by :

a m′jmð Þ ¼ min 1;
p m′ð Þ
p mð Þ �

p dobsjm′ð Þ
p dobsjmð Þ �

q mjm′ð Þ
q m′jmð Þ

� �
ð5Þ
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[Bodin and Sambridge, 2009]. When the proposed model is
rejected, the current model is retained for the next step and
also added again to the output ensemble.
[31] The first part of the chain (called the burn-in period) is

discarded, after which the random walk is assumed to be
stationary and models generated by the chain are asymptoti-
cally distributed according to the posterior probability dis-
tribution p(m|d).

5. Appraising the Ensemble Solution

[32] The solution to the self-adaptive regression is repre-
sented by an ensemble of 106 Voronoi modelsm = [k,C,v,h]
with variable parameterizations (Figure 4), and noise esti-
mates, distributed according to the posterior PDF. This large
multivariate probability distribution can be visualized and
interpreted by looking at the distribution of marginals, i.e., by
projecting inferred quantities on a small set of meaningful
variables. For example, at any geographical location, the
ensemble of sampled Moho depths give the 1-dimensional
posterior probability of Moho depth at this location.
[33] Thus one can extract at any point of the map, the

posterior mean and standard deviation for Moho depth. In
this way, an expected Moho surface as well as a point by
point error map can be constructed by simply stacking
individual models. We show in Figure 5 maps for the first
four statistical moments (mean, standard deviation, skewness
and kurtosis) for the Moho distribution. These are quantita-
tive measures of the shape of the posterior solution at each
“pixel” of the map. Note that when these posterior expecta-
tions are computed, models with variable geometries overlap
providing continuous smooth maps that have an effective
spatial resolution higher than any single model in the ensem-
ble. This way, information is extracted from the ensemble as
a whole, and the approach provides a parsimonious solution
with no need for explicit smoothing.
[34] The first moment (Figure 5a) is the mean, and can be

seen as the expected Moho surface. The square root of the
second moment is the standard deviation (Figure 5b) and can
be interpreted as an error map. As expected, surface errors are
correlated with data coverage (Figure 1), although they also
contain information about data consistency. The skewness
in Figure 5c gives information about the asymmetry of the
depth distribution at each point of the map. Qualitatively,
a negative skew (green in Figure 5c) indicates that the tail
on the shallower side of the probability density function is
longer than the deep side and the bulk of the values lies
shallower than the mean. The 4th moment or Kurtosis
(Figure 5c) is a measure of ‘peakedness’ of the distribution
(a high kurtosis indicates heavy tails). For this measure,
higher kurtosis means more of the variance is the result of
infrequent extreme deviations (heavy tails), as opposed to
frequent modestly sized deviations. In our case, high kurtosis
appears to be a an indicator of data control. When no data is
available, the posterior is equal to the uniform prior distri-
bution which has a low kurtosis. Low kurtosis is also an
indicator of a bi-modal distribution, which happens at sharp
discontinuities in the Moho surface (see Figure 7).
[35] Some aspects of the moment distribution appear to

link directly to the availability of information. A particular
case is in the offshore environment where in the absence

of data the Moho tends to drift back to a value of 30 km
(the center of the allowed uniform distribution). The effect
could be reduced by introducing a spatially varying pre-
scription of the prior distribution on the Moho. The largest
values of the standard deviation for the ensemble occur where
the data controls are weakest and takes very large values
in the offshore zone where there is no data. With only weak
constraints the Voronoi cellular representations have more
freedom in their representation and this is reflected in a larger
standard deviation.
[36] Changes in the skewness and kurtosis can be linked to

the presence of dense directional data particularly from
reflection profiling, e.g., in Western Australia around 120�E,
and again near 20�S, 130�E. Skewness and kurtosis are
higher order moments, and hence are mostly determined by
values far from the mean (they are sensitive to outliers). They
are sensitive to poorly constrained tails of the posterior, and
also to the limits chosen for the prior distribution. Therefore,
interpretation of these quantities should always be under-
taken with caution, although here it would appear that they
have information content.
[37] It is important to emphasize that, contrary to optimi-

zation schemes, here there is no unique solution for the
surface, but rather the level of information is described
probabilistically, and different statistical measures can be
extracted. We illustrate this in Figure 6 where four measures
of the characteristic value of the Moho distribution are
plotted at each pixel, namely the arithmetic mean, the har-
monic mean (i.e. the inverse of the average of the inverses),
the median and the mode or maximum a posteriori (MAP).
The arithmetic mean is appropriate to a purely Gaussian PDF
and the other forms give different weighting to the outliers in
the distribution. The median is a robust statistic that can be
effectively applied to a wide range of PDFs. The map for
the mode (maximum) in Figure 6d) has the most distinctive
character, as it tends to preserve the sharp jumps in the
underlying Voronoi models. It also preserves some signifi-
cant information about the nature of the controls on the
Moho distribution.
[38] We show in Figure 7 the complete posterior PDF

at locations along two sections of constant longitude f =
130 deg and constant latitude Q=�21 deg (red lines in
Figure 6a) For each point on the cross-section, the entire
posterior marginal is plotted in a color scale. White dashed
lines show the 95% credible interval. These 2D probability
marginals seem ‘patchy’, and one can easily recognize the
underlying parameterization with constant cells. However,
the red line following the mean of the Moho depth distri-
bution at each geographical location is smooth and does not
exhibit obvious artifacts of the parameterization. It is clear
that this plot of the posterior PDF contains much more
information than is given by the average map in Figure 6a.
It is interesting to see that in some areas, the marginal pos-
terior is far from being a normal distribution. In this case,
the mean and the standard deviation are not so representative
of the nature of the function.
[39] As an example, Figure 7 (bottom) shows the probability

distribution for Moho depth where the two cross-sections
intersect. At this particular location, it is striking how the
distribution is bi-modal. The mean of the distribution falls
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between the two modes and has a very low predictive power,
and hence the maximum of the distribution (Figure 6d)
might be better suited to describe the solution. In fact, in the
presence of spatial discontinuities in data due to a sharp
topological gradient in the Moho, the Voronoi cells alterna-
tively take the depth values of each side of the topographic
transition. This results in having a marginal posterior that has
2 modes that lie at the depths on each side of the topographic

discontinuity. Another potential cause of bi-modality could
be inconsistency between data points from different sources,
where the solution is jumping between them to alternatively
try to maximize the likelihood.
[40] We can also make inferences about the level of errors

for each of the seven data types through the noise parameters
h = [s1,s2, …,s7]. The posterior solution for each standard
deviations p(si|d) is given by a 1D non-parametric probability

Figure 5. Maps of statistical moments extracted at each point of the 2D field of Moho depth. (a) Average
map simply obtained by stacking all Voronoi models in the ensemble solution. This map can be interpreted
as the expected Moho surface. (b) Map of standard deviation than can be seen as an error map for the
expected surface. (c) The skewness map shows the asymmetry of the distribution at each points. Points with
a symmetric distribution (0 Skewness) are shown in white. (d) Kurtosis map describing the“peakedness” of
the distribution. Distributions less ‘spiky’ than a Gaussian are in yellow, ‘spikier’ than a Gaussian are in
blue, and Gaussian-like are in white.
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density function plotted in Figure 8. Again, these distributions
are simply obtained from the histogram of sampled values of
noise parameters during the search algorithm. The differ-
ences of uncertainties between data types can be explained
by the nature of the different processing schemes used to
interpret the seismic wave-field in terms of Moho depths. The
smaller standard deviation for reflection profiling is probably
linked to the relative close spatial sampling (Figure 1), which
yields a high data consistency, and also to the fact that

noisy records have already been discarded (there has to be
something to pick before a value is declared). The gravity
spread is also linked to the wide geographic dispersal.
[41] One difficulty in the interpretation of the PDF’s for

the different data classes is that the same method can have
been applied in regions with very different Moho depth and
character. Thus, the results for tomography mix two distinct
data sets, one from central Australia where the Moho is deep
and the other from Tasmania where the Moho is quite

Figure 6. Different measures of the characteristic value of the Moho depth at a point can be extracted
from the ensemble solution, and the corresponding maps can be used for interpretation. (a) The arithmetic
mean is the standard average measure (equivalent to Figure 5a). The two red lines show the cross-sections
where the full posterior solution is shown in Figure 7. (b) The harmonic mean is the inverse of the
averages of inverses. (c) Median map. (d) Maximum map following the maximum (or mode) of the dis-
tribution at each point.
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Figure 7. (top and middle) Full posterior probability distribution for Moho depth along the lines shown
in red in Figure 6a (red is high probability and blue is low). White dashed lines show the 95% credible
interval, and red lines follow the mean of the distribution at each location. (bottom) The full probability
distribution where the 2 lines intersect.
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shallow, and so the broad distribution is not surprising.
Similarly the historical reflection results are point measure-
ments scattered across the continent so little coherence is to
be expected.
[42] There is an interesting difference in the nature of the

PDF for the two different classes of receiver function
information. The high-frequency receiver functions show a
skewed distribution with a long tail to large values, even
though they are concentrated in southeastern Australia. This
approach will perform well where the Moho is sharp, but
will be less effective where the Moho is transitional and this
may well lead to estimates that are less consistent with other
information. With a full broad-band signal gradients in the
crust-mantle transition are better recovered and there is a
much more clustered PDF.
[43] How does the result for the self adaptive approach

compare with that published by Kennett et al. [2011]? We
can get a good idea by comparing Figures 2a and 5a, since
the B-spline interpolation in Figure 2a is carried out using
the same spline tension values as in the Kennett et al. [2011]
study. The self-adaptive surface is smoother, but displays the
same long wavelength distribution of deeper Moho. The
rapid transition from thick to relatively shallow Moho near
135�E in southern central Australia is preserved with a very
similar geometry. Similarly the two promontories of thicker
crust into the west of Western Australia have a similar
configuration. The merits of the more sophisticated proce-
dure are that we have a much more complete characteriza-
tion of the properties of the Moho distribution across the
continent, particularly with respect to reliability. In addition
we gain insight into the statistical properties of the different
classes of data constraints.
[44] Furthermore, one important result of this method is

the ability to recover sharp discontinuities in surfaces.
Figure 7 illustrates one such discontinuity in continental
Australia. At 21 S 130 E there is a �8 km step in the Moho.

This region is Proterozoic in origin implying that Moho
discontinuities may have considerable longevity.

6. Discussion

[45] The approach developed in this work can be viewed as
the combination of two separate and independent procedures.
The first is transdimensional Bayesian inference, where the
problem is to produce a large number of models with dif-
ferent parameterizations and variable complexities that
describe the posterior PDF. This model distribution repre-
sents the complete solution of the inverse problem from the
Bayesian viewpoint, in that it contains all the available
information and uncertainty about the Earth model, as well as
the correlation between parameters (not shown in this paper).
However, the final goal of regression is to produce an inter-
pretable solution, and a single Earth surface is required for
practitioners who are not familiar with Bayesian methods.
This is a reason why optimization methods are often pre-
ferred by Earth scientists (the true Earth is unique after all).
As shown in Figure 4, the individual members of the
ensemble do not have a simple character, and cannot be
directly interpreted.
[46] Hence, the second part of the procedure consists in

extracting interpretable information (e.g., a solution surface
and an error map) from this ensemble of models, that is to
construct a comprehensive view of the Bayesian solution.
In Bayesian studies, the standard way of extracting infor-
mation from the ensemble is to use marginal and conditional
distributions on model parameters [Box and Tiao, 1973;
Sivia, 1996]. To obtain a ‘solution model’ for analysis pur-
poses, the Voronoi models are simply averaged, i.e., a solu-
tion surface is constructed by taking the mean of the
distribution of values at each point across the Earth model.
Instead of the mean value, other possibilities include taking
the median or the mode of the distribution of values at each
pixel (Figure 6).

Figure 8. Posterior probability distribution for the standard deviation of errors associated with each class
of Moho estimate: h = [s1,s2, …,s7].
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[47] There is a relative freedom in the design of solution
schemes. Different choices may lead to different Earth
models, and hence to different interpretations. Therefore it
can be argued that there is an inherent contradiction in the
proposed method, as the initial philosophy is to remove any
subjective choices made at the outset (e.g. number of free
parameters, level of smoothing). Indeed, as we introduce
parameters such as the number of cells and produce a parsi-
monious ensemble solution that accounts for all states of
uncertainty, the geometry of model space becomes very
complex, and then arbitrary projections of the posterior PDF
need to be chosen for interpretation. It is important to
emphasize that in a Bayesian formulation, the only true
solution to the problem is the posterior distribution, and any
single model derived from the ensemble must be seen by
interpreters just as a projection of the posterior solution.
[48] Furthermore, it must be noted that we gain our extra

information on the nature of the Moho distribution at a high
computational price. If the true surface is too complex, the
number of Voronoi models needed to sample the posterior
distribution becomes colossal. Since the predicted data have
to be computed each time a Voronoi model is proposed,
the algorithm may become computationally expensive. In
section 3, we have compared our results to solutions obtained
with a conventional regression scheme, and showed the
advantages of transdimensional sampling. However we did
not compare computational times, and here it is necessary to
recognize that, even with a parallelized and optimized code,
the method used here is between 1 and 3 orders of magnitude
slower than standard linear regression. Yet, with available
computing power, it now becomes possible to handle such
a problem using modern McMC techniques, a feat which
would have been infeasible even 10 years ago.
[49] As we have demonstrated above, the self-adaptive

parameterization procedure and the ensemble of solutions
interpreted as a Bayesian posterior PDF, provide signifi-
cantly more information about the nature of theMoho surface
than is obtained in any form of simple surface fitting. Kennett
et al. [2011] were forced to use the variability in nearby data
estimates to provide a measure of the reliability of their
Moho surface. In contrast the ensemble approach can give
direct estimates and even recognize the likelihood of local
discontinuities that cannot be incorporated in any scheme
that forces a fit to a smooth surface.
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