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S U M M A R Y
Azimuthal anisotropy is a powerful tool to reveal information about both the present structure
and past evolution of the mantle. Anisotropic images of the upper mantle are usually obtained
by analysing various types of seismic observables, such as surface wave dispersion curves
or waveforms, SKS splitting data, or receiver functions. These different data types sample
different volumes of the earth, they are sensitive to different length scales, and hence are
associated with different levels of uncertainties. They are traditionally interpreted separately,
and often result in incompatible models. We present a Bayesian inversion approach to jointly
invert these different data types. Seismograms for SKS and P phases are directly inverted using
a cross-convolution approach, thus avoiding intermediate processing steps, such as numerical
deconvolution or computation of splitting parameters. Probabilistic 1-D profiles are obtained
with a transdimensional Markov chain Monte Carlo scheme, in which the number of layers, as
well as the presence or absence of anisotropy in each layer, are treated as unknown parameters.
In this way, seismic anisotropy is only introduced if required by the data. The algorithm is
used to resolve both isotropic and anisotropic layering down to a depth of 350 km beneath
two seismic stations in North America in two different tectonic settings: the stable Canadian
shield (station FFC) and the tectonically active southern Basin and Range Province (station
TA-214A). In both cases, the lithosphere–asthenosphere boundary is clearly visible, and
marked by a change in direction of the fast axis of anisotropy. Our study confirms that
azimuthal anisotropy is a powerful tool for detecting layering in the upper mantle.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Seismic
anisotropy; North America.

1 I N T RO D U C T I O N

Seismic anisotropy in the crust and upper mantle can be produced
by multiple physical processes at different spatial scales. In the
mantle, plastic deformation of olivine aggregates results in a crys-
tallographic preferential orientation (CPO) of minerals, and pro-
duces large-scale seismic anisotropy that can be observed seismo-
logically. These observations are usually related to the strain field,
and interpreted in terms of either present day flow, or ‘frozen’ flow
from the geological past. Furthermore, the spatial distribution of
cracks, fluid inclusions, or seismic discontinuities can induce appar-
ent anisotropy, called shape-preferred orientation (SPO) anisotropy
(Crampin & Booth 1985; Backus 1962). In this way, anisotropic
properties of rocks are closely related to their geological history
and present configuration, and hence reveal essential information

about the Earth’s structure and dynamics (e.g. Montagner & Guillot
2002).

Observations of seismic anisotropy depend on the 21 parameters
of the full elastic tensor. However, all these parameters cannot be
resolved independently at every location, and seismologists usually
rely on simplified assumptions on the type of anisotropy, namely
hexagonal symmetry. This type of anisotropy is defined by the five
Love parameters of transverse isotropy (A, C, F, L, N) and two angles
describing the direction of the axis of symmetry (Love 1927). Most
seismological studies assume one of two types of anisotropy: (1)
radial anisotropy, where the axis of hexagonal symmetry is vertical
and with no azimuthal dependence and (2) azimuthal anisotropy,
where the axis of hexagonal symmetry is horizontal with unknown
direction. Retrieving the tilt of the hexagonal axis of symmetry is in
principle possible (Montagner & Nataf 1988; Plomerová & Babuška
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2010; Xie et al. 2015), but in practice difficult, due to limitations in
the available azimuthal coverage, trade-offs with other competing
factors, such as tilted layers in the case of body waves and non-
uniqueness of the solution in the case of surface waves inversion.

Azimuthal anisotropy in the crust and upper mantle can be ob-
served from different seismic measurements, sampling the Earth
at different scales: surface wave observations, core-refracted shear
wave (SKS) splitting measurements and receiver functions. The lat-
ter two methods rely on relatively high-frequency teleseismic body
waves measurements, and therefore can provide good lateral resolu-
tion in those areas of continents where broad-band station coverage
is dense, if good azimuthal coverage is available.

Receiver functions have the potential of resolving layered
anisotropic structure locally. Large data sets from single seismic
stations have been used to image both anisotropic and dipping struc-
tures primarily at crustal depths (e.g. Kosarev et al. 1984; Levin &
Park 1997; Peng & Humphreys 1997; Savage 1998; Farra & Vinnik
2000; Frederiksen & Bostock 2000; Leidig & Zandt 2003; Vergne
et al. 2003; Schulte-Pelkum & Mahan 2014; Audet 2015; Bianchi
et al. 2015; Liu et al. 2015; Vinnik et al. 2016). Harmonic decompo-
sition methods have been developed to distinguish the contributions
from isotropic and anisotropic discontinuities, and dipping layers
(Kosarev et al. 1984; Girardin & Farra 1998; Bianchi et al. 2010).

Shear wave splitting measurements in core-refracted phases (SKS
and SKKS) provide constraints on the integrated effect of azimuthal
anisotropy across the thickness of the mantle beneath a single sta-
tion (e.g. Vinnik et al. 1984, 1989; Silver & Chan 1991; Vinnik
et al. 1992; Silver 1996; Long & Silver 2009), but depth resolu-
tion is generally poor, even when considering finite-frequency ker-
nels (Chevrot 2006), and there are trade-offs between the strength
of anisotropy and the thickness of the anisotropic domain. Due
to the lack of sufficient azimuthal coverage to distinguish more
than one layer, shear wave splitting measurements are usually in-
terpreted under the assumption of a single layer of anisotropy with
a horizontal axis of symmetry. We note however several attempts
to map multiple layers as well as a dipping fast axis (Silver &
Savage 1994; Levin et al. 1999; Hartog & Schwartz 2000; Yuan
et al. 2008).

Surface wave tomographic inversions provide constraints on
both radial (Gung et al. 2003; Plomerová et al. 2002; Nettles &
Dziewoński 2008; Fichtner et al. 2010) and azimuthal anisotropy at
the regional (Forsyth 1975; Simons et al. 2002; Deschamps et al.
2008; Beghein et al. 2010; Fry et al. 2010; Adam & Lebedev 2012;
Darbyshire et al. 2013; Zhu & Tromp 2013; Legendre et al. 2014;
Köhler et al. 2015) and global scale (Tanimoto & Anderson 1985;
Montagner & Nataf 1986; Trampert & van Heijst 2002; Trampert
& Woodhouse 2003; Debayle et al. 2005; Beucler & Montagner
2006; Visser et al. 2008; Debayle & Ricard 2012, 2013; Yuan &
Beghein 2013, 2014). Surface waves provide better vertical resolu-
tion than SKS data, but are limited in horizontal resolution due to
the long wavelengths. Still, the depth range where vertical resolu-
tion is achieved depends on the frequency range considered (longer
periods sample deeper depths), as well as the type of surface waves
considered. Most studies are based on the analysis of fundamental
mode surface wave dispersion up to about 200–250 s, which have
good resolution down to lithospheric depths, although inclusion of
surface wave overtones can improve resolution at depth (e.g. Yuan
& Beghein 2014; Durand et al. 2015).

These three different data types are therefore characterized by
different sensitivities to structure. They are modelled with different
approximations of the wave equation, and associated with different
noise levels. A well-known problem is that they often provide incom-

patible anisotropic models, and lead to contradictory interpretations.
For example, surface waves and SKS waves sample different vol-
umes in the earth, and SKS splitting measurements often disagree
with predictions made from surface wave tomographic models (e.g.
Montagner et al. 2000; Conrad et al. 2007; Becker et al. 2012; Wang
& Tape 2014). This discrepancy can be explained by the progressive
loss of resolution of fundamental mode surface waves below depths
of 200–250 km. Furthermore, body waves and surface waves are
measured in different frequency bands, and hence are sensitive to
structure at different wavelengths. The sharp discontinuities that can
be resolved by receiver functions are usually mapped into apparent
radial anisotropy in smooth models constructed from surface waves
(Capdeville et al. 2013; Bodin et al. 2015).

In order to improve resolution in anisotropy, several studies have
proposed joint inversion algorithms combining body waves and sur-
face waves. Marone & Romanowicz (2007), Yuan & Romanowicz
(2010b) and Yuan et al. (2011) iteratively combined 3-D waveform
tomography (including fundamental surface waves and overtones)
with constraints from shear wave splitting data in North Amer-
ica. They showed that by incorporating body waves, the anisotropy
strength significantly increases at the asthenospheric depth, while
the directions remain largely unchanged. However, these models
are obtained by linearized and damped inversions, where the pro-
duced seismic models strongly depend on choices made at the out-
set (reference model, regularization). This precludes propagation
of uncertainties from observations to inverted models, and hence
makes the interpretation difficult. In another approach, Vinnik et al.
(2007), Obrebski et al. (2010) and Vinnik et al. (2014) performed
a 1-D Monte Carlo joint inversion of SKS and receiver functions
at individual broad-band stations, but long-wavelength information
from surface waves was not used in this case. Therefore, two main
challenges remain in anisotropic imaging:

(i) To our knowledge, azimuthal variations of surface wave dis-
persion measurements have never been inverted jointly with receiver
functions.

(ii) It is difficult to jointly invert different data types, as inverted
models strongly depend on the choice of parameters used to weigh
the relative contribution of each data sets in the inversion.

In this work, we address these issues with a method for 1-D in-
version under a seismic station. We jointly invert Rayleigh wave
dispersion curves with their azimuthal variations, together with
converted body waves and SKS data. For body waves, standard
inversion procedures are usually based on secondary observables,
such as deconvolved waveforms (receiver functions) or splitting
parameters for SKS data. Here, we directly invert the different com-
ponents of seismograms with a cross-convolution approach, as this
allows us to better propagate uncertainties from recorded wave-
forms towards a velocity model (Menke & Levin 2003; Bodin et al.
2014). We cast the problem in a Bayesian framework, and explore
the space of earth models with a Markov chain Monte Carlo algo-
rithm. This allows us to deal with the non-linear and non-unique
nature of the problem, and quantify uncertainties. The solution is
a probabilistic 1-D profile describing shear wave velocity, strength
of azimuthal anisotropy and fast axis direction, at each depth. We
use a transdimensional formulation where the number of layers as
well as the presence of anisotropy in each layer are treated as free
variables.
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2 M E T H O D O L O G Y

2.1 Model parametrization

The full elastic tensor of 21 parameters is usually described with
the so-called Voigt notation 6 × 6 symmetric matrix Cmn (Maupin
& Park 2007). An elastic medium with hexagonal (i.e. cylindrical)
symmetry and horizontal axis of symmetry is called a horizontal
transverse isotropic model (HTI), and is usually defined by the five
Love parameters of transverse isotropy A, C, F, L, N (Love 1927):

Cmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A F (A − 2N ) 0 0 0

F C F 0 0 0

(A − 2N ) F A 0 0 0

0 0 0 L 0 0

0 0 0 0 N 0

0 0 0 0 0 L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Here, axis 3 is vertical and axis 2 is the horizontal axis of symmetry.
A, C, N and L can be related to P- and S-wave velocities in different
directions. If ψ fast is the angle of the fast axis relative to North, the
velocity of S waves propagating horizontally and polarized vertically
(SV waves) is given by (Crampin 1984):

ρV 2
sv(ψ) = (L + N )

2
+ (L − N )

2
cos(2(ψ − ψfast)) (2)

where ψ is the direction of propagation relative to North. The
velocity of P waves and SH waves propagating in the horizontal
plane are a bit more complicated as they contain cos(4ψ) terms.
The corresponding expressions can be found in Crampin (1984).

In this work, instead of using elastic parameters, we follow the
notation used in most body waves studies, and parametrize our
model in terms of seismic velocities, where the isotropic component
is given by the values of Vs and Vp, and the anisotropic component is
defined in terms of ‘peak to peak’ level of anisotropy δVp, δVs (e.g.
Farra et al. 1991; Romanowicz & Yuan 2012). These parameters are
related to the five elastic parameters A, C, F, L, N by the following
expressions:

C

ρ
=

(
Vp + δVp

2

)2

,
A

ρ
=

(
Vp − δVp

2

)2

, (3)

L

ρ
=

(
Vs + δVs

2

)2

,
N

ρ
=

(
Vs − δVs

2

)2

, (4)

The elastic parameter F controls the velocity along the direction
intermediate between the fast and the slow directions. It is com-
mon to parametrize it with the fifth parameter η = F/(A − 2L),
which we set to one (i.e. F = A − 2L) as in PREM (Dziewonski &
Anderson 1981). Following Obrebski et al. (2010), we also impose
Vp/VS = 1.7 for the sake of simplicity. The density ρ is calculated
through the empirical relation ρ = 2.35 + 0.036(Vp − 3)2 as done in
Tkalčić et al. (2006). In order to reduce the number of parameters,
the ratio between the percentage of anisotropy for the compres-
sional and shear waves (δVp/Vp)/(δVs/Vs) is fixed at 1.5 based on
the analysis of published data for the upper mantle (Obrebski et al.
2010). Here, we acknowledge that surface waves and normal modes
are sensitive to parameter η, Vp and density (Beghein & Trampert
2004; Beghein et al. 2006; Kustowski et al. 2008), and that we could
have easily treated these parameters as unknowns in the inversion.
It has been demonstrated that η trade-offs with P-wave anisotropy
(Beghein et al. 2006; Kustowski et al. 2008), implying that making

assumptions on either one of these parameters will likely affect re-
sults and inferred model uncertainties. Although one could invert
for the entire elastic tensor in each layer, this would be at increased
computational cost. Here instead, we use these empirical scaling
relations to determine the least constrained parameters.

As shown in Fig. 1, our model is parametrized in terms of a stack
of layers with constant seismic velocity. In our transdimensional
formalism, the number of unknowns is variable, as we want to
explain our data sets with the least number of free parameters. Each
layer can be either isotropic and described solely by its shear wave
velocity Vs (in this case, δVs = 0), or azimuthally anisotropic and
described by three parameters: Vs, δVs and ψ fast the direction of
the horizontal fast axis relative to the north. The layer thickness is
also variable and the last layer is a half-space. The other parameters
(ρ, Vp, δVs) are given by the scaling relations mentioned above.

The number of layers k as well as the number of anisotropic layers
l ≤ k are free parameters in the inversion (see Fig. 1). Therefore,
the complete model to be inverted for is defined as

m = [z, Vs, δVs, � fast], (5)

where the vector z = [z1, . . . , zk] represents the depths of the k dis-
continuities, Vs is a vector of size k and δVs, � fast are vectors of size
l. The total number of parameters in the problem (i.e. the dimension
of vector m) is therefore 2(k + l). We shall show how a Monte Carlo
algorithm can explore different types of model parametrizations.

As in any data inference problem, it is clear that observations can
always be better explained with more model parameters (with l and
k large). However, we will see that in a Bayesian framework, overly
complex models with a large number of parameters have a lower
probability and are naturally penalized. Between a simple and a
complex model that fit the data equally well, the simple one will be
preferred. With this formulation, anisotropy will only be included
into the model if required by the data.

When inverting long-period seismic waves, this flexible approach
to parametrizing an elastic medium allowed us to quantify the trade-
off between vertical heterogeneities (lots of small isotropic layers)
and radial anisotropy (fewer anisotropic layers) (Bodin et al. 2015).
This trade-off can be broken by adding higher frequency observa-
tions from body waves, thus allowing a consistent interpretation of
different data types.

2.2 The data

For surface waves, we assume that some previous analysis (local or
tomographic) provides us with the phase velocity dispersion at the
station and its azimuthal variation. To first order, the phase velocity
of surface waves in an anisotropic medium can be written as:

C(T, ψ) = C0(T ) + C1(T ) cos(2ψ) + C2(T ) sin(2ψ)

+ C3(T ) cos(4ψ) + C4(T ) sin(4ψ) (6)

where T is the period and ψ is the direction of propagation relative to
the north (Smith & Dahlen 1973). For fundamental mode Rayleigh
waves, the 2ψ terms C1 and C2 are sensitive to depth variations
of Vs, δVs and ψ fast, and the 4ψ terms are negligible, due to the
low amplitude of sensitivity kernels (Montagner & Tanimoto 1991;
Maupin & Park 2007). We will therefore only invert C0(T), C1(T)
and C2(T), and ignore 4ψ terms.

For body waves, recorded seismograms of P and SKS phases
for events coming from different backazimuths will be inverted.
To reduce the level of noise in P waveforms, individual events
coming from the same regions (i.e. within a small backazimuth–
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Figure 1. The 1-D model is parametrized with a variable number of layers, which can be either isotropic and described by one parameter Vs (light grey), or
anisotropic and described by three parameters Vs, δVs and ψ fast (dark grey). As our Monte Carlo parameter search algorithm samples the space of possible
models, different types of jumps (black arrows) are used to explore different geometries (change the depth of a discontinuity, add/remove an isotropic layer
and add/remove anisotropy to an existing layer).

distance range) will be stacked (Kumar et al. 2010). This reduces
the number of waveforms that need to be modelled by the inversion
algorithm, and hence reduces computational cost. The range of ray
parameters and backazimuths in each bin directly impacts the type
of errors in the stacked seismograms. A large bin allows one to
include more events resulting in ambient and instrumental noise
reduction, although 3-D and moveout effects also become more
significant in this case. A compromise needs to be found for each
experiment when defining the range of incident rays.

When analysing azimuthal variations of receiver functions or
SKS waveforms, a number of studies decompose waveforms into
angular harmonics, in order to isolate π -periodic variations that
can be explained by azimuthal anisotropy (e.g. Kosarev et al. 1984;
Girardin & Farra 1998; Farra & Vinnik 2000; Bianchi et al. 2010;
Audet 2015). However in this work, waveforms will not be filtered to
isolate π -periodic azimuthal variations, and our ‘raw’ data will also
contain azimuthal variations due to 3-D effects, such as dipping dis-
continuities (associated with 2π -periodic variations). These varia-
tions will be accounted for as data noise in our Bayesian formulation.

2.3 The forward calculation

We use a forward modelling approach, where at each step of a Monte
Carlo sampler, a new model m, as defined in Fig. 1, is tested, and
synthetic data predicted from this model are compared to actual
measurements.

For Rayleigh waves, dispersion curves and their azimuthal vari-
ations are computed with a normal mode formalism in a spherical
Earth (Smith & Dahlen 1973). The term C0(T) is computed in
a fully non-linear fashion with a Runge–Kutta matrix integration
(Saito 1967; Takeuchi & Saito 1972; Saito 1988). However, the re-
lation linking the model parameters to the terms C1(T) and C2(T) is
linearized around the current model m averaged azimuthally, which
is radially anisotropic (Maupin 1985; Montagner & Nataf 1986).
A detailed description of the procedure is given in Appendix A.
We acknowledge that we are limited to a linear approximation of
the problem for azimuthal terms. Future work includes treating the
problem fully non-linearly, and computing dispersion curves exactly
as done in Thomson (1997).

For body waves, that is, P and SKS waveforms, the impulse re-
sponse of the model m to an incoming planar wave with frequency
ω and slowness p is computed with a reflectivity propagator-matrix
method (Levin & Park 1998). The transmission response is calcu-
lated in the Fourier domain at a number of different frequencies.
Particle motion at the surface is then obtained by an inverse Fourier
transform. The algorithm is outlined in detail in Park (1996) and

Levin & Park (1997). The computational cost of this algorithm
varies linearly with the number of frequencies ω and the number of
layers in m.

We note here that the Rayleigh wave dispersion curves are com-
puted in a spherical earth whereas body waves are predicted for a
flat Earth, which may produce some inconsistencies. However, P
and SKS waves propagate almost vertically under the station, and
hence are only poorly sensitive to the earth sphericity.

2.4 Bayesian inference

We cast our inverse problem in a Bayesian framework, where infor-
mation on model parameters is represented in probabilistic terms
(Box & Tiao 1973; Smith 1991; Gelman et al. 1995). Geophysi-
cal applications of Bayesian inference are described in Tarantola
& Valette (1982), Duijndam (1988a,b) and Mosegaard & Tarantola
(1995). The solution is given by the a posteriori probability distri-
bution (or posterior distribution) p(m|dobs), which is the probability
density of the model parameters m, given the observed data dobs.
The posterior is given by Bayes’ theorem:

posterior ∝ likelihood × prior (7)

p(m | dobs) ∝ p(dobs | m)p(m). (8)

The term p(dobs|m) is the likelihood function, which is the prob-
ability of observing the measured data given a particular model.
p(m) is the a priori probability density of m, that is, what we know
about the model m before measuring the data dobs.

In a transdimensional formulation, the number of unknowns (i.e.
the dimension of m) is not fixed in advance, and so the posterior
is defined across spaces with different dimensions. Below we show
how the likelihood and prior distributions are defined in our prob-
lem, and how a transdimensional Monte Carlo sampling scheme
can be used to generate samples from the posterior distribution,
that is, an ensemble of vectors m whose density reflects that of the
posterior distribution.

2.5 The likelihood function

The likelihood function p(dobs|m) quantifies how well a given model
m can reproduce the observed data. Assuming that different data
types are measured independently, we can write:

p(dobs | m) = p(C0 | m)p(C1 | m)p(C2 | m)p(dp | m)p(dSKS | m)

(9)
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where C0, C1 and C2 are surface wave dispersion curves (see eq. 6),
and where dP and dSKS are seismograms observed for P and SKS
waves.

2.5.1 Surface wave measurements

For Rayleigh wave dispersion curves (C0(T), C1(T) and C2(T)),
we assume that data errors (both observational and theoretical)
are not correlated and are distributed according to a multivariate
normal distribution with zero mean and variances σC0 , σC1 and
σC2 respectively. For C0(T), the likelihood probability distribution
writes:

p(C0 | m) = 1

(
√

2πσC0 )n
× exp

{−‖C0 − c0(m)‖2

2σ 2
C0

}
, (10)

where n is the number of data points, that is, the number of periods
considered and c0(m) is the dispersion curve predicted for model
m. In the same way, we define the likelihoods for 2ψ terms p(C1|m)
and p(C2|m).

2.5.2 A cross-convolution likelihood function for body waves

In traditional receiver function analysis, the vertical component
of a P waveform is deconvolved from the horizontal components,
to remove source and distant path effects (Langston 1979). The
resulting receiver function waveform can then be inverted for a 1-D
seismic model, by minimizing the difference between observed and
predicted receiver functions:

φ(m) =
∥∥∥∥Hobs(t)

Vobs(t)
− h(t, m)

v(t, m)

∥∥∥∥, (11)

where Vobs(t) and Hobs(t) are observed seismograms for vertical
and radial components, and v(t, m) and h(t, m) are the vertical
and radial impulse response functions of the near receiver structure,
calculated for model m. Here, the division sign represents a spectral
division, or deconvolution. Although receiver function analysis has
been extensively used for years, there are two well-known issues:

(i) The deconvolution is a numerical unstable procedure that
needs to be stabilized (e.g. water level deconvolution; use of a
low-pass filter). This results in a loss of resolution, which trade-offs
with errors in the receiver function.

(ii) Uncertainties in receiver functions are therefore difficult to
estimate.

These two issues have been well studied in the last decades (e.g.
Park & Levin 2000; Kolb & Lekić 2014). Following Menke & Levin
(2003), we propose a misfit function for inverting converted body
waves without deconvolution, by defining a vector of residuals as
follows (Bodin et al. 2014):

r(m, t) = v(t, m) ∗ Hobs(t) − h(t, m) ∗ Vobs(t), (12)

where the sign ∗ represents a time-domain discrete convolution.
The vector r is a function of observed and predicted data defined
such that the unknown source function and distant path effects
are accounted for in both terms giving r = 0 for the true model
parameters m and zero errors. The norm ‖r(m)‖ is used as a misfit
function, and is equivalent to the distance between observed and
predicted receiver functions in (11). However, (1) it does not involve
any deconvolution and no damping parameters need to be chosen;
(2) the probability density function for r(m, t) can be estimated from
errors statistics in observed seismograms. If we assume that errors

Table 1. Possible component pairs that can be used in an inversion based
on the cross-convolution misfit function defined by Menke & Levin (2003).
These four different pairs have complementary sensitivities to seismic dis-
continuities and anisotropy. The advantage of a cross-convolution misfit
function is that these different data types can all be inverted in the same
manner.

Conversions PSV R-Z components Phase P
Conversions PSH T-Z components Phase P
Conversions SP R-Z components Phase S
SKS splitting R-T components Phases SKS and SKKS

in Vobs(t) and Hobs(t) are normally distributed and not correlated
(Gaussian white noise), we have (see Appendix B for details):

p(r | m) = 1

(
√

2πσp)n
× exp

{−‖r(m)‖2

2σ 2
p

}
. (13)

For a given P waveform dp = [Vobs(t), Hobs(t)], resulting from a
stack of events coming from similar distances and backazimuths,
we use the distribution in (13) as the likelihood function p(dp|m) to
quantify the level of agreement between observations and the pre-
dictions from a proposed earth model. Then, we combine a number
of stacked waveforms measured at different backazimuths–distance
bins by simply using the product of their likelihoods, thus resulting
in a joint inversion of several waveforms with different incidence
angles. A clear advantage is that we can use the same formalism
to construct the likelihood function for SKS waveforms p(dSKS|m),
as the vertical and radial components need simply be replaced by
radial and transverse. The cross-convolution misfit function can
also be used for incoming S waves, that is, SP receiver functions,
or transverse receiver functions, where the vertical component of a
P waveform is deconvolved from its transverse component (see
Table 1). In this way, we can integrate various data types in a
consistent manner, with different sensitivities to the isotropic and
anisotropic seismic structure beneath a station.

However, we acknowledge here that p(r|m) is not exactly a like-
lihood function per se, as it does not represent the probability dis-
tribution of data vectors Vobs(t) and Hobs(t), but rather the distri-
bution of a vector of residuals conveniently defined. In a Bayesian
framework, the vector of residuals is usually defined as a difference
between observed data and predicted data: r(m) = dobs − dest(m).
In this case, the distribution of r for a given model m gives the
distribution of the observed data (p(r|m) = p(dobs|m)). However
here, p(r|m) does not strictly represent the probability of observing
the data, and hence cannot be strictly interpreted as a likelihood
function. We note that this way of approximating the likelihood by
the distribution of some residuals is also used by Stähler & Sigloch
(2014), who proposed a Bayesian moment tensor inversion based
on a cross-correlation misfit function. For a fully rigorous Bayesian
approach to inversion of converted body waves, we refer the reader
to Dettmer et al. (2015), who treated the source time function as an
unknown in the problem.

2.6 Hierachical Bayes

The level of data errors for different data sets (σC0 , σC1 , σC2 , σ p,
σ SKS, etc.) determines the width of the different Gaussian likelihood
functions in (9), and hence the relative weight given to different
data types in the inversion. Here, the level of noise also accounts
for theoretical errors, that is, the part of the signal that we are not
able to explain with our simplified 1-D parametrization and forward
theory (Gouveia & Scales 1998; Duputel et al. 2014). For example,
surface waves are sensitive to a larger volume around the station,
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compared to higher frequency body waves arriving at the station
with a near vertical incidence angle. Lateral inhomogeneities in the
earth will then produce an incompatibility between these two types
of observations, which here will be treated as data uncertainty.

In this work, we use a Hierarchical Bayes approach, and treat
noise parameters as unknown in the inversion (Malinverno & Briggs
2004; Malinverno & Parker 2006). That is, each noise parameter is
given a uniform prior distribution, and different values of noise (i.e.
different weights) will be explored in the Monte Carlo parameter
search. The range of possible noise parameters, that is, the width of
the uniform prior distribution, is set large enough so that it does not
affect final results (Bodin et al. 2012b). We then avoid the choice
for arbitrary weights from the user, and the relative quantity of
information brought by different data types is directly constrained
by the data themselves.

2.7 The prior distribution

The Bayesian formulation enables one to account for prior knowl-
edge, provided that this information can be expressed as a prob-
ability distribution p(m) (Gouveia & Scales 1998). In a transdi-
mensional case, the prior distribution prevents the algorithm from
adding too many layers, as it naturally penalizes models with a large
number of parameters [l, k].

To illustrate this, let us look at the prior on the vector of isotropic
velocity parameters Vs = [v1, . . . , vk]. We consider the velocity in
each layer as a priori independent, that is, no smoothing constraint
is applied, and then write:

p(Vs | k) =
k∏

i=1

p(vi ). (14)

For each parameter vi, we use a uniform prior distribution over the
range [Vmin Vmax]. This uniform distribution integrates to one, and
hence p(vi) = 1/
V, where 
V = (Vmax − Vmin). Therefore, for a
given number of layers k we can write the prior on the vector Vs

as:

p(Vs | k) =
(

1


V

)k

. (15)

Here, the prior on velocity parameters decreases exponentially with
k, and complex models with many layers are penalized. The com-
plete mathematical form of our prior distribution including all model
parameters is detailed in Appendix C.

In this way, the prior and likelihood distributions in our problem
are in competition as complex models providing a good data fit
(high likelihood) are simultaneously penalized with a low prior
probability. This is an example of an implementation of the general
principle of parsimony (or Occam’s razor) that states that between
two models (or theories) that predict the data equally well, the
simplest should be preferred (see Malinverno 2002, for details).
Although k is a free parameter that will be constrained by the data,
the user still needs to choose the width of the prior distribution

V, which directly determines the volume of the model space, and
hence the relative balance between the prior and the likelihood. The
choice of 
V therefore directly determines the number of layers in
the solution models.

As expected, there is also a trade-off between the complexity
of the model and the inferred value of data errors (σC0 , σC1 , σC2 ,
σ p, σ SKS, etc.). As the model complexity increases, the data can be
better fit, and the inferred value of data errors decrease. However,
this degree of trade-off is limited and the data clearly constrains the

joint distribution of different parameters reasonably well (see Bodin
et al. 2012b, for details).

2.8 Transdimensional sampling

Given the Bayesian framework described above, our goal is to gen-
erate a large number of 1-D profiles, the distribution of which ap-
proximates the posterior function. In our problem, the posterior
distribution is defined in a space of variable dimension (i.e. transdi-
mensional), and can be sampled with the reversible-jump Markov
chain Monte Carlo (rj-McMC) sampler (Geyer & Møller 1994;
Green 1995, 2003), which is a generalization of the well-known
Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings
1970). A general review of transdimensional Markov chains is given
by Sisson (2005).

The first use of these algorithms in the Geosciences was by Ma-
linverno (2002) in the inversion of DC resistivity sounding data to
infer 1-D depth profiles. Further applications of the rj-McMC have
recently appeared in a variety of geophysical and geochemical data
inference problems, including regression analysis (Gallagher et al.
2011; Bodin et al. 2012a; Choblet et al. 2014; Iaffaldano et al. 2014),
geochemical mixing problems (Jasra et al. 2006), thermochronol-
ogy (Stephenson et al. 2006; Fox et al. 2015b), geomorphology (Fox
et al. 2015a), seismic tomography (Young et al. 2013a,b; Zulfakriza
et al. 2014; Pilia et al. 2015), inversion of receiver functions (Pi-
ana Agostinetti & Malinverno 2010; Bodin et al. 2012b; Fontaine
et al. 2015), geoacoustics (Dettmer et al. 2010, 2013; Dosso et al.
2014) and exploration geophysics (Malinverno & Leaney 2005; Ray
et al. 2014). For an overview of the general methodology and its
application to Earth Science problems, see also Sambridge et al.
(2006), Gallagher et al. (2009) and Sambridge et al. (2013).

Here, we follow the implementation presented in Bodin et al.
(2012b) for joint inversion of receiver functions and surface waves,
but expand the parametrization to the case where a variable number
of unknown parameters is associated to each layer, that is, where
each layer can be either isotropic or anisotropic. In this section, we
only briefly present the procedure, and give mathematical details of
our particular implementation in Appendices C–E.

The algorithm produces a sequence of models, where each is a
random perturbation of the last. The first sample is selected ran-
domly (from the uniform distribution) and at each step, the pertur-
bation is governed by the so-called proposal probability distribution
which only depends on the current model. The procedure for a given
iteration can be described as follows:

(i) Randomly perturb the current model m, to produce a pro-
posed model m′, according to some chosen proposal distribution
q(m′|m) (e.g. add/remove a layer, add/remove anisotropy to an ex-
isting layer, change the depth of a discontinuities, etc.). For details,
see Appendix D.

(ii) Randomly accept or reject the proposed model (in terms of
replacing the current model), according to the acceptance criterion
ratio α(m′|m). For details, see Appendix E.

Models generated by the chain are asymptotically distributed ac-
cording to the posterior probability distribution (for a detailed proof,
see Green 1995, 2003). If the algorithm is run long enough, these
samples should then provide a good approximation of the poste-
rior distribution for the model parameters, that is, p(m|dobs). This
ensemble solution contains many models with variable parametriza-
tions, and inference can be carried out by plotting the histogram of
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Figure 2. Synthetic body waves for the model shown in black in Fig. 3. Left: three component waveforms for an incoming P wave. Right: three component
waveforms for four incoming SV waves arriving at different backazimuths (10◦, 55◦, 100◦, 145◦).

the parameter values (e.g. velocity at a given depth) in the ensemble
solution.

3 S Y N T H E T I C T E S T S

We first test our algorithm on synthetic data, and design an Earth
model consisting of eight layers, among which only three are
anisotropic (black line in Fig. 3). We use a reflectivity scheme
(Levin & Park 1998) to propagate an incoming P wave, as well as
four SV waves coming from different backazimuths (10◦, 55◦, 100◦,
145◦). There is only one P waveform here, and hence anisotropy
will be constrained only from S waves in this experiment. Synthetic
waveforms (Fig. 2) are created by convolving the Earth’s impulse
response (a Dirac comb), with a smoothed box car function. Then,
some random Gaussian white noise is added to the waveforms.
We acknowledge that these synthetic seismograms are far from be-
ing realistic, as for example observed S waves usually have a lower
frequency content than P waveforms. The goal here is only to test the
ability of the inversion procedure to integrate different data types.
We also generate synthetic Rayleigh wave dispersion curves C0(T),
with 2ψ azimuthal terms C1(T) and C2(T), for periods between 20
and 200 s, with added random noise (see Fig. 5).

The top panels of Fig. 3 show results when only Rayleigh wave
dispersion measurements are inverted, that is, an ensemble of mod-
els distributed according to p(m|C0, C1, C2). Surface waves are
long-period observations, and hence are only sensitive to the long-
wavelength structure of the Earth. The sharp seismic discontinuities
present in the true model (in black in Fig. 3A) cannot be resolved,
and as expected, only a smooth averaged structure is recovered. In
our method, there is no need for statistical tests or regularization
procedures to choose the adequate model complexity or smooth-
ness corresponding to a given degree of data uncertainty. Instead,
the reversible jump technique automatically adjusts the underlying
parametrization of the model to produce solutions with appropriate
level of complexity to fit the data to statistically meaningful levels.
This probabilistic scheme therefore allows us to quantify uncer-

tainties in the solution, and level of constraints. For example, we
observe that the direction of anisotropy in Fig. 3C is clearly better
resolved than its amplitude in Fig. 3B.

Bottom panels of Fig. 3 show results for a joint inversion of sur-
face waves and body waves. For body waves, we jointly invert four
data types: PSV, PSH, SP and SKS waveforms, given by all pairs of
components described in Table 1. Here, both discontinuities and
amplitude of anisotropy are better resolved, due to the complemen-
tary information brought by body waves, although we acknowledge
that the distribution for the direction of anisotropy becomes bimodal
below 250 km, certainly due to the lack of resolution at these depths.

Our Monte Carlo sampling of the model space allows us to treat
the problem in a fully non-linear fashion (although we acknowledge
that the function linking the model to C1(T), and C1(T) has been
linearized around the isotropic average of the model). Contrary to
linear or linearized inversions, here the solution is not simply de-
scribed by a Gaussian posterior probability function, and can be
multimodal. We illustrate this in Fig. 4 by showing the full distribu-
tion for Vs, δVs and � fast at 150 km depth. The posterior distribution
is shown in grey and the true model in red. This shows how adding
body waves reduces the width of the posterior distribution as more
information is added. Note that the distribution of the direction of
anisotropy is multimodal, with two secondary peaks corresponding
to directions of other anisotropic layers in the model (green and
blue lines). We acknowledge that a multimodal distribution is hard
to interpret, as in this case the mean and standard deviation of the
distribution are meaningless.

Since the misfit function in eq. (12) is not a simple difference
between observed and estimated data, it is difficult to get a visual
idea of the level of data fit. Instead, in Fig. 5 we show the two terms
of the misfit function, that is, vp(t, m)∗H(t) and hp(t, m)∗V(t) for the
best-fitting model m in the ensemble solution. Although these two
waveforms do not have any intuitive physical meaning, the misfit
function has a minimum when these two vectors are equal, and
plotting them together helps give a visual impression for the level
of fit. Right-hand panels of Fig. 5 show observed and best-fitting
data for surface wave observations C0(T), C1(T) and C2(T).
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Inc

Figure 3. Transdimensional inversion of synthetic data shown in Fig. 2. Density plots show the probability of the model given the data for our three unknown
parameters: Vs (left), δVs (middle) and �fast (right). Black lines show the true model used to create noisy synthetic data. Top: inversion of surface wave
dispersion only. Bottom: joint inversion of surface waves and body waves (i.e. PSV, PSH, SP and SKS waveforms).

4 A P P L I C AT I O N T O T W O D I F F E R E N T
T E C T O N I C R E G I O N S I N N O RT H
A M E R I C A

We apply this method to seismic observations recorded at two dif-
ferent locations in North America. First, we invert data from station
FFC (Canada), which is a permanent, reliable and well-studied sta-
tion located at the core of the Slave Craton. Since a large number of
studies have already been published about the structure under this
station (e.g. Ramesh et al. 2002; Rychert & Shearer 2009; Miller
& Eaton 2010; Yuan & Romanowicz 2010b), we view this as an
opportunity to test and validate the proposed scheme.

In a second step, we invert seismic data recorded in Arizona at
station TA-214A, of the US transportable array, which is a much
noisier, recent, and less studied station, located in the southern Basin
and Range Province, close to a diffuse plate boundary, where we

expect more complex 3-D structure due to recent tectonic activity.
Here, 3-D effects in our data would not be able to be accounted
for by our 1-D model, and hence will be treated as data errors by
our Bayesian scheme. The goal is to see how our inversion per-
forms in a more difficult setting. The final results are summarized
in Fig. 11, where velocity gradients observed under the two sta-
tions are interpreted in terms of well-known upper-mantle seismic
discontinuities.

4.1 The North American craton

4.1.1 Tectonic setting

The North American craton comprises the stable portion of the
continent, and differs from the more tectonically active Basin and



Bayesian imaging of anisotropic layering 9

Figure 4. Synthetic test. Posterior marginal distribution for Vs (left), δVs (middle) and �fast (right) at 150 km depth. Those are simply cross-sections of the
density plots showed in Fig. 3. Red lines show the true model. In panels C and F, green and blue lines show the direction of anisotropy for the first and third
layer in the true model.

Figure 5. Synthetic data experiment. (a) Fit obtained by the cross-convolution modelling for the best-fitting model in the ensemble solution. (b) Fit to Rayleigh
wave dispersion data for the best-fitting model.

Range province to the west. In general, cratonic regions represent
areas of long-lived stability within the lithosphere that have re-
mained compositionally unchanged, and have resisted destruction
through subduction since as early as the Archean. Previous work in
this region reveals anomalously high seismic velocities in the upper
mantle. Numerous seismic tomography studies detect the base of
the lithosphere at a depth between 150 and 300 km throughout the
stable craton (e.g. Gung et al. 2003; Kustowski et al. 2008; Net-
tles & Dziewoński 2008; Romanowicz 2009; Ritsema et al. 2011;
Pasyanos et al. 2014; Schaeffer & Lebedev 2014), but most receiver
function studies fail to detect a corresponding drop in velocity at
this depth.

Receiver functions studies do show, however, a decrease in ve-
locity within the cratonic lithosphere, suggesting the potential exis-
tence of an intralithospheric discontinuity in this region (Abt et al.
2010; Miller & Eaton 2010; Kind et al. 2012; Hansen et al. 2015;
Hopper & Fischer 2015). For recent reviews on studies of the mid-

lithospheric discontinuity (MLD), see Rader et al. (2015), Karato
et al. (2015) and Selway et al. (2015). Evidence for anisotropic
layering within the cratonic lithosphere has also been previously
shown (Yuan & Romanowicz 2010b; Wirth & Long 2014; Long
et al. 2016).

The exact nature of the layered structure and composition of cra-
tons, however, remains poorly understood. Competing hypotheses
based on geochemical and petrologic constraints describe possible
models for craton formation; these include underplating by hot man-
tle plumes and accretion by shallow subduction zones in continental
or arc settings (Arndt et al. 2009).

4.1.2 The data

For Ps converted waveforms, we selected two regions with high
seismicity (Aleutian islands and Guatemala) each defined by a
small backazimuth and distance range (Fig. 6). For both regions, we
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Figure 6. Body wave observations made at station FFC, Canada. For P waves, vertical and horizontal components are stacked over a set of events, at two
different locations (blue and green). For SKS data, the waveform of 12 individual events are used (red). SKS waveforms are normalized to unit energy, and
there is no amplitude information in the lower right-hand panel.
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computed stacks of seismograms following the approach of Kumar
et al. (2010) and described in Bodin et al. (2014). Waveforms of first
P arrival are normalized to unit energy, aligned to maximum am-
plitude, and sign reversal is applied when the P arrival amplitude is
negative. Moveout corrections are not needed here as stacked events
have similar ray parameters. Both regions provide a pair of Vobs and
Hobs stacked waveforms. Since we only use two backazimuths, re-
ceiver functions will not bring a lot of information about azimuthal
anisotropy, which rather will be constrained from Rayleigh waves
and SKS waveforms.

For shear wave splitting measurements, a number of individual
SKS waveforms have been selected at different backazimuths (red
circles in Fig. 6). The waveforms were manually picked based on
small signal–noise ratio and large energy split onto the transverse
component.

We also used fundamental mode Rayleigh wave phase velocity
measurements (25–150 s) given by Ekström (2011) at this location.
We recognize that these measurements are the result of a global
tomographic inversion, and hence are not free from artefacts due
to regularization and linearization. Better measurements could be
obtained from local records obtained at small aperture arrays (e.g.
Pedersen et al. 2006).

4.1.3 Results at station FFC

In Fig. 7, we show results obtained after three types of inversions
with different data types at station FFC. The prior distribution is de-
fined as a uniform distribution around a reference model consisting
of a two-layered crust above a half-space. The structure of the crust
is given by H–κ stacking method of receiver functions measured at
this station (Zhu & Kanamori 2000).

Top panels show results for inversion of Rayleigh waves alone.
The distribution of shear wave velocity shows a low-velocity zone
in the range 150–300 km with no clear boundaries, as observed in
some long-period tomographic models. The fast axis direction of
azimuthal anisotropy is varying with depth, but again with no clear
discontinuities.

Middle panels in Fig. 7 show results when receiver functions are
added to the inversion. In this case, the isotropic velocity profile
reaches very high values (4.9 km s−1) in the upper part of the litho-
sphere, between 100 and 150 km depth, compatible with results
from full waveform tomography (Yuan & Romanowicz 2010b).
These high values are also observed in the Australian craton from
multimode surface wave tomography (Yoshizawa & Kennett 2015).
A sharp negative velocity jump appears at 150 km (also observed
by Miller & Eaton 2010), that we shall interpret as an MLD, and
defines the top of a low-velocity zone within the lithosphere be-
tween 150 and 180 km depth, as described by Thybo & Perchuć
(1997) and Lekić & Romanowicz (2011). The sharp MLD can
be interpreted in different ways, and a number of models can be
invoked such as different hydration and melt effects, or metasoma-
tism (Foster et al. 2014; Karato et al. 2015). At 250 km depth, we
observe a small negative velocity drop, associated with a strong
gradient in the direction of fast axis of anisotropy, going from 15◦

to 90◦.
When SKS waveforms are added to the data set (lower panels in

Fig. 7), the fast axis direction below 250 km reduces to 55◦, and be-
comes aligned with the absolute motion of the North American plate
in the hotspot reference frame (Gripp & Gordon 2002). This has
two strong implications: (1) it demonstrates the sensitivity of SKS
observations to structure below 250 km, poorly constrained by fun-

damental mode surface waves and (2) this allows us to interpret the
discontinuity at 250 km as the lithopshere–asthenosphere bound-
ary (LAB), below which the anisotropy would result from present
day mantle flow associated with the motion of the North America
plate. Above the LAB, the anisotropy in the lithosphere would be
‘frozen-in’ and related to past tectonic processes. This interpreta-
tion is depicted in the upper panels of Fig. 11. Fig. 8 shows the data
fit for the best-fitting model in the ensemble solution. Overall, the
results obtained here are quite compatible with the 3-D model from
Yuan & Romanowicz (2010b) obtained by combining SKS splitting
parameters and full waveform tomography.

4.2 The Southern Basin and Range

We apply now the method to station 214A of the Transportable
Array, located in the South West, close to Organ Pipe National
monument in Arizona, at the Mexican border.

4.2.1 Tectonic setting

The station is located at the northern end of the California Gulf
extensional province, a dynamic boundary plate system. Here, the
structure of the crust and upper-mantle results from the complex
tectonic interaction between the Pacific, Farallon and North America
plates. This region has been affected by a number of different major
tectonic processes, such as the cessation of subduction, continental
breakup and early stage of rifting (Obrebski & Castro 2008). An
extensive review of the geology of the whole Golf of California
region is given by Sedlock (2003).

At the regional scale, the station is located in the southern
Basin and Range province, which underwent Cenozoic exten-
sional deformation. Although an extension in the EW direction
has been widely observed in numerous studies, the causes of the
extension of the Basin and Range province are diverse and still
debated: NA-Pacific plate interaction along San Andreas fault,
gravity collapse of overthickened crust in early orogens, or in
response to some upper-mantle upwelling (see Dickinson 2002,
for a review).

From a seismological point of view, the site is at the southeast-
ern corner of the intriguing ‘circular’ SKS pattern observed in the
western US (Savage & Sheehan 2000; Liu 2009; Eakin et al. 2010;
Yuan & Romanowicz 2010a).

4.2.2 The data

We use similar observations to those collected for station FFC. For
Ps converted waveforms, we averaged seismograms for a number
of events from Japan and northern Chile (see Fig. 9). We also
invert a single SKS waveform (red dot) and five SKKS wave-
forms. Rayleigh wave dispersion curves are extracted from global
phase velocity tomographic maps given by Ekström (2011) at this
location.

4.2.3 Results at station TA-214A

Results for station TA-214A are shown in Fig. 10 and a final in-
terpretation is given in Fig. 11. The prior distribution is defined
as a uniform distribution around a reference model consisting of a
crust above a half-space. When only surface waves are inverted (top
panels), a clear asthenospheric low-velocity zone is visible with a
peak minimum at 120 km depth. As expected, no discontinuities
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Figure 7. Inversion results at station FFC, located in the North American Craton. Density plots represent the ensemble of models sampled by the reversible
jump algorithm, and represent the posterior probability function. The number of layers in individual models was allowed to vary between 2 and 60. For lower
plots, the maximum of the posterior distribution on the number of layers is 41.
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Figure 8. Station FFC (Canada). Data fit for best-fitting model collected by the Monte Carlo sampler. For body waves (left-hand panels), the cross-convolution
misfit function is not constructed as a difference between observed and estimated data. Instead, we plot the two vectors H∗v(m) and V∗h(m), which difference
we try to minimize.

in the upper mantle are visible, due to the lack of resolution of
surface waves. Middle panels in Fig. 10 are obtained after adding
converted P waves as constraints. As previously, seismic disconti-
nuities are introduced. The bottom panels show results with SKS
data, providing deeper constrains on anisotropy, below 200 km.
Fig. 12 shows the data fit for the best-fitting model in the ensemble
solution.

A clear negative discontinuity in Vs is visible at 100 km depth
with a positive jump at 150 km, thus producing a 50 km thick low-
velocity zone that could be interpreted as the asthenosphere. In this
case, the shallow LAB at 100 km is compatible with a number of SP

receiver functions studies in the region (Levander & Miller 2012;
Lekić & Fischer 2014). This low-velocity zone lying under a higher
velocity 100 km thick lithospheric lid has been also observed in the
shear wave tomographic model of Obrebski et al. (2011). Here, the
sharp LAB discontinuity cannot be solely explained by a thermal
gradient, and hence suggests the presence of partial melt in the

asthenosphere in this region as proposed by Gao et al. (2004),
Schmandt & Humphreys (2010) and Rau & Forsyth (2011).

The vertical distribution of fast axis direction (lower right-hand
panel in Fig. 10) clearly shows three distinct domains:

(i) The lithospheric extension of the Basin and Range in the
east–west direction (90◦) is visible in the first 100 km. This direc-
tion of anisotropy in this depth range is also observed in surface
wave (Zhang et al. 2007) or full waveform (Yuan et al. 2011) to-
mographic models. This E-W direction of fast axis is close to being
perpendicular to the North America–Pacific plate boundary, and
corresponds to the direction of opening of the Gulf of Califor-
nia; it is also similar to the direction of past subduction (Obrebski
et al. 2006). We also note that the direction of fast axis in the litho-
sphere is gradually shifting to the North America absolute plate mo-
tion direction when approaching 100 km depth (75◦ in the hotspot
frame).
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Figure 9. Body wave observations used for the 1-D inversion under station 214A, located in the Basin and Range province. We use two stacks of P wave
seismograms, from Japan (blue) and North Chile (green), as well as five SKKS individual waveforms (black) and one SKS waveform (red). SKKS and SKS
waveforms are normalized to unit energy, and there is no amplitude information in the lower right-hand panel.

(ii) There is a sharp change of direction of anisotropy at 100 km
depth, which confirms the interpretation of the negative discontinu-
ity as the LAB. A distinct layer between 100 and 180 km is clearly
visible with a direction of 150◦, that is, parallel to the absolute
plate motion of the Pacific Plate, and in agreement with tomo-
graphic inversions combining surface waveforms and SKS splitting
data (Yuan & Romanowicz 2010b). Also in agreement with the
latter study, anisotropy strength decreases beneath 200 km depth.

This direction is also compatible with shear wave splitting observa-
tions obtained in the Mexican side of the southern Basin and Range
province (Obrebski et al. 2006). Interestingly, this Pacific APM par-
allel direction continues down to 180–200 km, that is, a bit below
the bottom of the low-velocity zone as defined from the isotropic
plot.

(iii) The jump at 180–200 km in the direction of anisotropy to
about 60◦ is a very interesting feature which seems associated with
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Figure 10. Inversion results at station TA-214A, located in the southern Basin and Range Province. Density plots represent the ensemble of models sampled
by the reversible jump algorithm, and represent the posterior probability function. The number of layers in individual models was allowed to vary between 2
and 80. For lower plots, the maximum of the posterior distribution on the number of layers is 55.

a positive step in the velocity, and could be the ‘Lehmann’ disconti-
nuity (Gung et al. 2003). In that case, either Lehmann is not the base
of the asthenosphere, or the asthenosphere extends to ∼ 200 km, but
consists of two levels. The 60◦ direction between 200 and 350 km
might reflect some secondary scale convection/dynamics in this
depth range. However, the anisotropy signal is much weaker, or

more diffuse below 200 km, and one should not over interpret re-
sults at these depths.

As expected, here the structure is clearly less well resolved than
for station FFC, and in particular the amplitude and direction of
anisotropy below 200 km. This may be due to higher noise levels at
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Figure 11. Interpretation of results for both stations. Top: results at FFC (North American Craton) for joint inversion of surface waves, P and SKS waveforms.
Bottom: results at TA-214A for joint inversion of surface waves, P and SKS waveforms. Vertical black lines represent the direction of the absolute motion of
the North American plate in the hotspot reference frame (Gripp & Gordon 2002).

this temporary station, or because the structure is more complex and
the 1-D assumption less appropriate. In a complex 3-D setting, the
fact that the data see different volumes results in incompatibilities,
and here in wider posterior distributions.

5 C O N C LU S I O N S

We have presented a 1-D Bayesian Monte Carlo approach to con-
strain depth variations in azimuthal anisotropy, by simultaneously
inverting body and Rayleigh wave phase velocity measurements
observed at individual stations. We use a flexible parametrization
where the number of layers, as well as the presence or absence of

anisotropy in each layer, are treated as unknown parameters, and
are directly constrained by the data. This adaptive parametrization
turns out to be particularly useful, as the different types of data
involved are sensitive to different volumes and length scales in the
Earth. The level of noise in each data type (i.e. the required level
of fit) is also treated as an unknown to be inferred by the data. In
this manner, both observational and theoretical data errors (effect
of 3-D structure and dipping layers) are accounted for in the in-
version, without need to choose weights to balance different data
sets.

For the first time, azimuthal variations of dispersion curves were
jointly inverted with receiver functions and SKS data, for both
crust and upper-mantle structure. The procedure was applied to



Bayesian imaging of anisotropic layering 17

Figure 12. Station TA-214A (Arizona). Data fit for best-fitting model collected by the Monte Carlo sampler. For body waves (left-hand panels), the cross-
convolution misfit function is not constructed as a difference between observed and estimated data. Instead, we plot the two vectors H∗v(m) and V∗h(m), the
difference between which we try to minimize.

data recorded at two different stations in North America, in two
different tectonic regimes. In both cases, results are compatible with
previous studies, and allow us to better image anisotropic layering.
In both cases, we observed a LAB characterized by both isotropic
and anisotropic sharp discontinuities in the mantle, thus implying
that the LAB cannot be defined as a simple thermal transition, but
also reflects changes in composition and rheology.

A C K N OW L E D G E M E N T S

TB wishes to acknowledge support from the Miller Institute for
Basic Research at the University of California, Berkeley. This work
was partially supported by a Labfees research collaborative grant
from the U.C.O.P. (12-LR-236345) and by NSF Earthscope grant
EAR-1460205.

R E F E R E N C E S

Abt, D.L., Fischer, K.M., French, S.W., Ford, H.A., Yuan, H. & Romanow-
icz, B., 2010. North American lithospheric discontinuity structure im-
aged by Ps and Sp receiver functions, J. geophys. Res., 115, B09301,
doi:10.1029/2009JB006914.

Adam, J.M.-C. & Lebedev, S., 2012. Azimuthal anisotropy beneath South-
ern Africa from very broad-band surface-wave dispersion measurements,
Geophys. J. Int., 191(1), 155–174.

Arndt, N., Coltice, N., Helmstaedt, H. & Gregoire, M., 2009. Origin
of archean subcontinental lithospheric mantle: some petrological con-
straints, Lithos, 109(1), 61–71.

Audet, P., 2015. Layered crustal anisotropy around the San Andreas Fault
near Parkfield, California: crustal anisotropy around San Andreas, J. geo-
phys. Res., 120, 3527–3543.

Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal
layering, J. geophys. Res., 67(11), 4427–4440.

Becker, T.W., Lebedev, S. & Long, M.D., 2012. On the relationship between
azimuthal anisotropy from shear wave splitting and surface wave tomog-
raphy, J. geophys. Res., 117(B1), B01306, doi:10.1029/2011JB008705.



18 T. Bodin et al.

Beghein, C. & Trampert, J., 2004. Probability density functions for radial
anisotropy: implications for the upper 1200 km of the mantle, Earth
planet. Sci. Lett., 217(1), 151–162.

Beghein, C., Trampert, J. & van Heijst, H.J., 2006. Radial anisotropy
in seismic reference models of the mantle, J. geophys. Res.,
111, B02303, doi:10.1029/2005JB003728.

Beghein, C., Snoke, J.A. & Fouch, M.J., 2010. Depth constraints on az-
imuthal anisotropy in the Great Basin from Rayleigh-wave phase velocity
maps, Earth planet. Sci. Lett., 289(3), 467–478.
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A P P E N D I X A : C O M P U T I N G
D I S P E R S I O N C U RV E S

Our model is parametrized in terms of a stack of layers with constant
velocity Vs, δVs, Vp, δVp and � fast. The full elastic tensor of HTI
is given by

Cmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A − 2L (A − 2N ) 0 0 0

A − 2L C A − 2L 0 0 0

(A − 2N ) A − 2L A 0 0 0

0 0 0 L 0 0

0 0 0 0 N 0

0 0 0 0 0 L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

where axis 3 is vertical (1 and 2 are horizontal) and axis 2 is the
axis of symmetry. Elastic parameters can be derived from velocity
parameters from the following equations (Farra et al. 1991):

C = ρ

(
Vp + δVp

2

)2

, A = ρ

(
Vp − δVp

2

)2

,

L = ρ

(
Vs + δVs

2

)2

, N = ρ

(
Vs − δVs

2

)2

.

Theoretical expressions relating the anisotropic elastic tensor Cmn

to surface wave observations have been developed in the asymptotic
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limit by Smith & Dahlen (1973). Ignoring 4ψ terms, the phase
velocity of Rayleigh waves is given by:

C(T, ψ) = C0(T ) + C1(T ) cos(2ψ) + C2(T ) sin(2ψ) (A2)

where T is the period. C0(T) does not depend on azimuthal terms, it
is equal to the dispersion curve of phase velocities predicted from
for the equivalent vertical transverse isotropic (VTI) medium, that
is, after averaging (A1) over all azimuths. The equivalent VTI tensor
is given by:

Cmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 (A0 − 2N0) F0 0 0 0

(A0 − 2N0) A0 F0 0 0 0

F0 F0 C0 0 0 0

0 0 0 L0 0 0

0 0 0 0 L0 0

0 0 0 0 0 N0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, the vertical axis (axis 3) is the axis of hexagonal symmetry.
The VTI parameters are given by the following relation (Montagner
& Nataf 1986):

A0 =
(

5

8
A + 3

8
C

)

C0 = A

F0 = A − N − L

L0 = (L + N )/2

N0 =
(

1

8
C − 1

8
A + L

)

For both Love and Rayleigh waves, the isotropic phase velocity
C0(T) can be easily computed from A0, C0, F0, L0, N0 by normal
mode summation in a fully non-linear fashion (Saito 1988).

The other terms C1(T) and C2(T) are given by the following
linearized relation (Maupin 1985; Montagner & Nataf 1986):

C1(T )=
∫ ∞

z=0

(
∂C0(T )

∂A0(z)
Bc(z) + ∂C0(T )

∂F0(z)
Hc(z) + ∂C0(T )

∂L0(z)
Gc(z)

)
dz

(A3)

C2(T )=
∫ ∞

z=0

(
∂C0(T )

∂A0(z)
Bs(z) + ∂C0(T )

∂F0(z)
Hs(z) + ∂C0(T )

∂L0(z)
Gs(z)

)
dz

(A4)

where the partial derivatives indicates the sensitivity kernels of C0

with regards to elastic parameters A0, F0 and L0 for the equivalent
VTI medium. These kernels can be easily computed by normal
mode summation (Saito 1988). Since C0 is poorly dependent on
elastic parameter F0, we set ∂C0(T )

∂F0(z) = 0. The elastic parameters Gc,
Gs, Bc and Bs are given by:

Gc = G cos(2� fast)

Gs = G sin(2� fast)

Bc = B cos(2� fast)

Bs = B sin(2� fast)

where

G = (L − N )/2 (A5)

B = (C − A)/2 (A6)

In this way, for each period T, C0(T), C1(T) and C2(T) can be
computed from Vs(z), δVs(z) and � fast(z).

A P P E N D I X B : A C RO S S - C O N V O LU T I O N
L I K E L I H O O D F U N C T I O N

For a given earth model m, consider that the observed seismograms
can be written as:

Vobs(t) = s(t) ∗ v(t, m) + εv(t) (B1)

Hobs(t) = s(t) ∗ h(t, m) + εh(t) (B2)

where s(t) is the source time function, v(t, m) and h(t, m) are the
vertical and radial impulse response functions of the near receiver
structure, calculated for model m, and εh(t) and εv(t) are random
errors.

The vector of residuals is defined as follows:

r(m, t) = v(t, m) ∗ Hobs(t) − h(t, m) ∗ Vobs(t) (B3)

Hence, we have:

r = v ∗ εh − h ∗ εv. (B4)

Since each term of (B4) is a discrete time-series, we can write:

r[i] =
n∑

k=1

v[i − k]εh[k] −
n∑

k=1

h[i − k]εv[k], (B5)

where n is the number of samples in the seismograms. In this way,
each component of r is a linear combination of random variables.
With simple algebra of random variables, the multivariate probabil-
ity density function for vector r can easily be computed from the
distribution of εh(t) and εv(t). In matrix form, we have:

r = Mvεh − Mhεv. (B6)

where Mv[i, j] = v[i − j] and Mh[i, j] = h[i − j] are matrices
representing a linear transformation. If εh(t) and εv(t) are normally
distributed with covariance matrices Cv and Ch, each component of
r is therefore also normally distributed, and the covariance matrix
for r is given by:

Cr = MvCvMT
v + MhChMT

h (B7)

The probability distribution of residuals r then writes:

p(r | m) = 1√
2πn |Cr |

× exp

{
− 1

2

(
rT C−1

r r
)}

. (B8)

For simplicity, we assume that εh(t) and εv(t) are white noise
with standard deviation σ p (i.e. Ch = Cv = σ 2

p In). For seismograms
normalized to unit energy (

∑n
i=1 h2

i + v2
i = 1) and after ignoring

off-diagonal terms in Cr, we have:

Cr = σ 2
p In (B9)

and hence, we can approximate the distribution of residuals with
the following expression:

p(r | m) = 1

(
√

2πσp)n
× exp

{−‖r(m)‖2

2σ 2
p

}
, (B10)

which is used as a likelihood probability density function in our
formulation of the problem.
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A P P E N D I X C : T H E P R I O R

We use a prior distribution following Bodin et al. (2012b), where
the number of layers k was variable. However in this study, among
the k layers, we also allow for a variable number l of anisotropic
layers, and have modified the prior accordingly. The prior can be
separated into two terms:

p(m) = p(k)p(m|k) (C1)

where p(k) is the prior for the number of layers. We use a uniform
distribution over the range [kmin kmax] and hence p(k) = 1/(kmax −
kmin) = 1/
k. Among these k layers, l layers are anisotropic (with
0 ≤ l < k). The prior p(m|k) can then be also separated into two
terms:

p(m|k) = p(l|k)p(m|l, k). (C2)

Given k layers, we let the number of anisotropic layers l be uniformly
distributed over the range [0 k − 1] (the last layer is a half-space
and cannot be anisotropic), and set p(l|k) = 1/k.

For a given pair of k, l, the prior probability distributions for the
model parameters are independent from each other, and so can be
written in separable form

p(m|l, k) = p(z, Vs, δVs,� fast | k, l) (C3)

p(m|l, k) = p(z | k)p(Vs | k)p(δVs | l, k)p(� fast | l, k). (C4)

Each of the terms in (C4) are a uniform distribution over the range
of possible values, and integrate to one.

As in Bodin & Sambridge (2009), for mathematical conve-
nience, let us for the moment assume that the depths of discon-
tinuities z can only take place on an underlying grid of finite
points defined by N possible depths. For k discontinuities, there
are Ck

N = (N !)/(k!(N − k)!) possible configurations on the N pos-
sible depths of the underlying grid. We give equal probability to
each of these configurations, and hence

p(z | k) = (Ck
N )−1. (C5)

For velocity, the prior for each component vi of the vector Vs is also
uniform over a defined interval [Vmin Vmax]. Hence, we have

p(vi | k) = 1/(
Vs) (C6)

where 
V = (Vmax − Vmin). If vi is outside the interval, the prior is
zero. Since the velocity in each layer is considered independent a
priori,

p(Vs | k) =
k∏

i=1

p(vi | k) =
(

1


V

)k

. (C7)

Similarly, for anisotropic layers we shall also account for the
fact that there are a number of possible configurations. There are
Cl

k = (k!)/(l!(k − l)!) different ways to choose l anisotropic layers
among k. Once the locations of anisotropic layers is set, the two
extra anisotropic parameters can vary over the range [�max �min]
and [δVmax δVmin], and the prior probability for those parameters
writes:

p(δVs | l, k)p(� fast | l, k) = (Cl
k)−1

(
1


δV 
�

)l

(C8)

where 
� = (�max − �min) and 
δV = (δVmax − δVmin). Combin-
ing all terms, the full prior distribution writes:

p(m) = 1

kCk
N Cl

k
k(
V )k(
δV )l (
�)l
(C9)

when model parameters are inside defined intervals and zero other-
wise. Here, it is clear how the prior probability decreases as the
dimension of the space l and k increase, or as the volume δV
�
δV
increases.

A P P E N D I X D : P RO P O S A L
D I S T R I B U T I O N S

Having randomly initialized the model parameters by drawing val-
ues from the prior distribution of each parameter, the algorithm
proceeds iteratively. At each iteration of the chain, we propose a
new model by drawing from a probability distribution q(m′|m) such
that the new proposed model m′ is conditional only on the current
model m. At each iteration of the reversible jump algorithm, one
type of move is uniformly randomly selected from the five following
possibilities:

(i) Change the depth of a discontinuity. Randomly pick a layer
i from a uniform distribution and randomly change the position of
its discontinuity according to

qz(z
′
i | zi ) = 1

θz

√
2π

exp

{
− (z′

i − zi )2

2θ2
z

}
. (D1)

The variance θ2
z of the proposal distribution is defined by the user.

(ii) Change the velocity in one layer. Randomly select a layer
and randomly propose a new value v′

i using a Gaussian probability
distribution centred at the current value vi:

qv1(v′
i | vi ) = 1

θv1

√
2π

exp

{
− (v′

i − vi )2

2θ2
v1

}
. (D2)

Again, the variance θ2
v1 of the Gaussian function is a parameter to

be chosen. Hence, we have

v′
i = vi + u (D3)

where u is a random deviate from a normal distribution N(0, θv1).
All the other model parameters are kept constant, and hence this
proposal does not involve a change in dimension.

(iii) Birth of an isotropic layer. Create a new isotropic layer.
Add a new discontinuity with the position zk + 1 found by choosing
uniformly randomly a point from the underlying grid that is not
already occupied. There are (N − k) discrete points available. Then,
a new velocity value v′

k+1 needs to be assigned to the new layer.
This is drawn from a Gaussian proposal probability density with
the same form as (D2)

qv2(v′
k+1 | vi ) = 1

θv2

√
2π

exp

{
− (v′

k+1 − vi )2

2θ2
v2

}
(D4)

where vi is the current velocity value at this depth where the birth
takes place. The variance θ2

v2 of the Gaussian function is a parameter
to be chosen.

(iv) Death of an isotropic layer. Remove at random one isotropic
layer by drawing a number from a uniform distribution over the
range [1, k − l]. The velocity of the neighboring layers remain
unchanged.

(v) Birth of an anisotropic layer. Create a new anisotropic layer by
simply adding two extra parameters to one of the already existing
k − l isotropic layers. The number of layers k is unchanged. A
new δv and ψ parameter must be assigned to this layer. There are
drawn from a uniform distribution over the ranges [�max �min]
and [δVmax δVmin].

(vi) Death of an anisotropic layer. Choose at random one
anisotropic layer by drawing a number from a uniform distribution
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over the range [1, l]. The anisotropic parameters δv for this layer is
set to zero, and the layer becomes isotropic. The isotropic parameter
v stays unchanged.

(vii) Change the estimated data noise. Randomly select a data
type and perturb its noise amplitude (e.g. σC0 , σC1 , σC2 , σ p, σ SKS). As
before, the new value is proposed by drawing a number according
to a Gaussian distribution around the current value. This type of
perturbation changes the weight given to the chosen data type in the
joint inversion.

The standard deviations (θz, θv1, θv2, θσi ) of the Gaussian pro-
posal functions are parameters to be fixed by the user. As shown in
MacKay (2003), the magnitude of perturbations does not affect the
solution but rather the sampling efficiency of the algorithm. Thus,
the width of proposal distributions are ‘tuned’ by trial-and-error in
order to have an acceptance rate as close to 44 per cent for each
type of perturbation (Rosenthal 2000).

A P P E N D I X E : A C C E P T I N G O R
R E J E C T I N G T H E P RO P O S E D M O D E L

Once a proposed model has been drawn from the distribution
q(m′|m), the new model is then accepted with a probability
α(m′|m), that is, a uniform random deviate, r, is generated be-
tween 0 and 1. If r ≤ α, the move is accepted, the current model
m is replaced with m′ and the chain moves to the next step. If
r > α, the move is rejected and the current model is retained for the
next step of the chain where the process is repeated. The acceptance
probability, α(m′|m), is the key to ensuring that the samples will be
generated according to the target density p(m|dobs). It can be shown
(Green 1995, 2003) that the chain of sampled models will converge
to the transdimensional posterior distribution, p(m|dobs), if

α(m′ | m) = min

[
1,

p(m′)
p(m)

.
p(dobs | m′)
p(dobs | m)

.
q(m | m′)
q(m′ | m)

.|J|
]

(E1)

where the matrix J is the Jacobian of the transformation from m to
m′ (Green 2003). As shown in Bodin et al. (2012b), the Jacobian is
one for our problem and can therefore be ignored.

For the proposal types that do not involve a change of dimension
(i.e. perturbations in velocity, depth of discontinuities and noise
parameters) distributions are symmetrical. That is, the probability
to go from m to m′ is equal to the probability to go from m′ to m,
and hence q(m|m′) = q(m′|m). Furthermore, since the dimension
is unchanged, we have k = k′ and l = l′, and according to (C9), the
prior ratio is also one (p(m) = p(m′)).

In this way, for perturbations not involving a change of dimension
(proposals 1, 2 and 7), the probability of acceptance in (E2) reduces
to the classical metropolis rule, where only the likelihood ratio need
to be computed:

α(m′ | m) = min

[
1,

p(dobs | m′)
p(dobs | m)

]
(E2)

Below we detail the form of the acceptance rule for transdimen-
sional moves (proposals 3–6).

E1 Give birth/death to an isotropic layer

When a new isotropic layer is added to the model, the algorithm
jumps between a model m with k layers and l anisotropic layers
to a model m′ with (k + 1) layers and l anisotropic layers. A new

discontinuity is added, among the (N − k) discrete points available.
The probability of a birth at position z′

k+1 is then given by

q(z′ | m) = 1/(N − k). (E3)

A new velocity value v′
k+1 is given to the newborn layer, with

probability given in (D4):

q(V′
S | m) = qv2(v′

k+1|vi ) (E4)

For the reverse step, where the discontinuity at z′
k+1 is removed from

m′, the probability of deleting the interface at position z′
k+1 is

q(z | m′) = 1/(k + 1 − l) (E5)

and the probability of removing velocity v′
k+1 when cell k + 1 is

deleted is:

q(Vs | m′) = 1. (E6)

We have therefore(
q(m | m′)
q(m′ | m)

)
birth

= (N − k)

(k + 1 − l)qv2(v′
k+1|vi )

. (E7)

For the prior ratio, according to (C9), we have:

p(m′)
p(m)

= kCk
N Cl

k
k(
Vs)k(
δV )l (
�)l

(k + 1)Ck+1
N Cl

k+1
k(
Vs)k+1(
δV )l (
�)l
(E8)

which reduces to

p(m′)
p(m)

= k(k − l + 1)


Vs(N − k)(k + 1)
(E9)

After combining (E7) and (E9) , the full acceptance term is then
given by

α(m | m′)birth = min

[
1,

1

qv2(v′
k+1|vi )
Vs

(
k

k+1

)
p(d|m′)
p(d|m)

]
.

(E10)

Here, note that if instead of a normal distribution for proposing the
new velocity v′

k+1, we use a uniform proposal distribution qv2 equal
to the prior, we have qv2(v′

k+1|vi )
Vs = 1.
For a death move, where the Markov chain jumps between a

model with k layers to a model with k − 1 layers, that is, where one
of the k − l isotropic layers is removed, we can similarly show that

α(m | m′)death = min

[
1, qv2(vi |v′

j )
Vs

(
k

k − 1

)
p(d|m′)
p(d|m)

]
(E11)

where vi is velocity of the layer that gets deleted, and v′
j is the

velocity in the proposed model at depth zi, where the discontinuity
was deleted.

E2 Give birth/death to an anisotropic layer

In the case where we give birth to an anisotropic layer, we randomly
choose one of the k − l isotropic layers, and add two parameters
to this layer: δv and ψ , which values are drawn from a uniform
distributions over the ranges 
δV and 
�. In this case, the total
number of layers k is unchanged. The probability of proposing m′

is therefore given by:

q(m′ | m) = 1


δV 
�

1

(k − l)
. (E12)

For the reverse step, we remove one anisotropic layer among the
(l + 1) possibilities and

q(m | m′) = 1

l + 1
. (E13)
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The proposal ratio is then given by

(
q(m | m′)
q(m′ | m)

)
birth

= 
δV 
�
(k − l)

(l + 1)
. (E14)

The prior ratio is given by:

p(m′)
p(m)

= kCk
N Cl

k(
Vs)k(
δV )l (
�)l

kCk
N Cl+1

k (
Vs)k(
δV )l+1(
�)l+1
(E15)

which reduces to

p(m′)
p(m)

= 1


δV 
�

(l + 1)

(k − l)
. (E16)

And hence, the full acceptance term in (E2) simply reduces to

α(m | m′)birth = min

[
1,

p(d|m′)
p(d|m)

]
. (E17)

For a death of an anisotropic layer, the Markov chain jumps from
a model with l anisotropic layers to a model with (l − 1) anisotropic
layers. The number of layers k is unchanged. In this case, we can
similarly show that the probability of accepting m′ is

α(m | m′)death = min

[
1,

p(d|m′)
p(d|m)

]
(E18)

Therefore, the birth and death acceptance terms for anisotropic
parameters are identical to fixed dimension moves.


