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Abstract We review the present status of global and regional mantle tomography 
and discuss how resolution has improved in the last decade with the advent of full 
waveform tomography and exact numerical methods for wave-field calculation. 
A remaining problem with full waveform tomography is computational cost. This 
leads seismologists to only interpret the long periods in seismic waveforms and 
hence only constrain long-wavelength structure. In this way, tomographic images 
do not represent the true Earth, but rather a smooth effective, apparent, or equiva-
lent model that provides a similar long-wavelength data fit. In this paper, we focus 
on the problem of apparent radial anisotropy due to unmapped small-scale radial 
heterogeneities (e.g., layering). Here, we propose a fully probabilistic approach to 
sample the ensemble of layered models equivalent to a given smooth tomographic 
profile. We objectively quantify the trade-off between isotropic heterogeneity and 
strength of anisotropy. The non-uniqueness of the problem can be addressed by 
adding high-frequency data such as receiver functions, sensitive to first-order dis-
continuities. We show that this method enables us to distinguish between intrinsic 
and artificial anisotropy in 1D models extracted from tomographic results.
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4.1  Introduction

For more than thirty years, seismologists have imaged the earth’s interior using 
seismic waves generated by earthquakes and traveling through different structures 
of the planet. A remaining challenge in seismology is to interpret the recovered 
Earth models in terms of physical properties (e.g., temperature, density, min-
eral composition) that are needed for understanding mantle dynamics and plate  
tectonics. For example, a region of slow wave speed can be either interpreted as 
anomalously warm, or rich in water, or iron.

Although seismic waves are sensitive to a large number of viscoelastic param-
eters as well as density, the mantle models constructed from seismic tomography 
are only parameterized with a few physical parameters, for example, average iso-
tropic shear-wave velocity and radial anisotropy (e.g., French et al. 2013). This 
is because given the available information observed at the surface, there is not 
enough resolution to entirely describe the local elastic tensor. In addition to the 
limited number of resolvable elastic (and anelastic) parameters, there is also the 
question of spatial resolution, namely the smallest spatial scale at which heteroge-
neities can be imaged.

The number of independent elastic parameters that can be constrained is intrin-
sically associated with the level of spatial resolution. For example, it is well 
known that a stack of horizontal isotropic layers will be equivalent, at large scales, 
to a homogeneous anisotropic medium (Backus 1962). As we increase the scale at 
which we “see” the medium (the minimum period in the observed waveforms), we 
lose the ability to distinguish different layers, as well as the ability to distinguish 
between isotropy and anisotropy. The anisotropy observed at large scales may be 
artificial and simply the effect of unmapped fine layering. In other words, whether 
a material is heterogeneous (and described by a number of spatial parameters) or 
anisotropic (described by different elastic parameters) is a matter of the scale at 
which we analyze its properties (Maupin and Park 2014).

Therefore, there is a trade-off between spatial roughness and anisotropy when 
inverting long-period seismic data. By introducing anisotropy as a free param-
eter in an inversion, tomographers are able to fit seismic data with smoother 
models and fewer spatial parameters (Montagner and Jobert 1988; Trampert and 
Woodhouse 2003).

In this manuscript, we will first describe the issues that limit resolution in 
seismic imaging at regional and global scales (uneven data sampling, limited  
frequency band, data noise, etc), with a focus on the significance of observed 
seismic anisotropy and on the problem of distinguishing its different possible 
causes. Following Wang et al. (2013) and Fichtner et al. (2013a), here, we make 
the distinction between intrinsic anisotropy and extrinsic (i.e., artificial) anisotropy 
induced by structure. In the last section, we propose a method to separate these 
two effects in a simplified 1D case with vertical transverse isotropy (i.e., ignoring 
azimuthal anisotropy).
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4.2  The Resolving Power of Regional and Global Seismic 
Tomography

It can be proven that if one had an unlimited number of sources, receivers, and 
an unlimited frequency band, one would be able to entirely describe an elas-
tic medium from the displacement of elastic waves propagating through it and 
observed at its surface. That is, the function linking an elastic medium subjected to 
excitation by a source to the displacement measured at its boundaries is bijective. 
For detailed mathematical proofs, see Nachman (1988), Nakamura and Uhlmann 
(1994), and Bonnet and Constantinescu (2005).

However, in seismology, there are a number of elements that limit the resolv-
ing power of seismic observations, i.e., the ability to image structure. Firstly, the 
seismic records are limited both in time and frequency, and the number of sources 
and receivers is limited. Furthermore, there are a number of observational and the-
oretical errors that propagate into the recovered images. Finally, the earth is not 
entirely elastic, and seismic energy is dissipated along the path.

In this section, we give a brief description of these limiting factors which 
directly condition the level of resolution. Note that here, the phrase “level of res-
olution” or “resolving power” will be used in a broad sense and defined as the 
quantity of information that can be extracted from the data (the maximum number 
of independent elastic parameters or the minimum distance across which heteroge-
neities can be mapped). Here, we do not consider the resolution as it is mathemati-
cally defined in linear inverse theory and represented by a resolution matrix (e.g., 
Backus and Gilbert 1968; Aki et al. 1977), which, for example, does not depend 
on data noise or theoretical errors.

4.2.1  Different Seismic Observables

There are a multitude of ways of extracting interpretable information from seis-
mograms. Due to practical, theoretical, and computational considerations, imaging 
techniques often only involve a small part of the seismic record. Different parts of 
the signal can be used, such as direct, reflected, and converted body waves, sur-
face waves, or ambient noise. Different components of the signal can be exploited 
such as travel times, amplitudes, shear-wave splitting measurements, waveform 
spectra, full waveforms, or the entire wave-field (for comprehensive reviews, see 
Rawlinson and Sambridge 2003; Romanowicz 2003; Liu and Gu 2012).

Each observable has its own resolution capabilities. For example, analysis of 
converted body waves, now widely called the “receiver function”, is used as a tool 
to identify horizontal discontinuities in seismic velocities (small-scale radial het-
erogeneities), but fails at determining long-wavelength anomalies. Conversely, 
surface wave measurements are sensitive to 3D absolute S wave velocities, but 
cannot constrain sharp gradients, and are poor at locating interfaces. Surface  
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wave-based imaging usually involves only the relatively low-frequency component 
of seismograms and is particularly effective in mapping the large-scale pattern of 
upper mantle structure. We will show how the seismic discontinuities that can be 
constrained with converted and reflected body waves are sometimes seen by sur-
face waves as anisotropic structure.

Hence, the gaps between existing models can be described in terms of seis-
mic wavelengths. The difficulty of assembling different databases with different  
sensitivities that sample the earth at different scales and the differences in the the-
ory relating earth structure to seismic data of different nature have resulted in most 
models being based only on a limited portion of potentially available observations.

4.2.2  An Uneven Sampling of the Earth

One of the most important causes of poor resolution in seismic tomography is 
limited sampling of the volume of interest. In global seismic mantle tomog-
raphy, there is no control on the distribution of the earthquake sources, which 
mostly occur at plate boundaries. Moreover, most receivers are located on conti-
nents, which cover only about one-third of the surface of the planet. This results 
in an uneven distribution of sources and receivers, especially in the southern 
hemisphere.

Traditional tomography relies primarily on the information contained in the 
travel times of seismic phases that are well separated on the seismic record: first 
arriving P and S body waves on the one hand and fundamental mode surface 
waves on the other. For the latter, which are dispersive, the measured quantity is 
the phase or group velocity as a function of period, in a period range accessible for 
teleseismic observations, typically ∼30 to ∼250 s.

The theoretical framework is typically that of infinite frequency  ray theory for 
body waves, or its equivalent for surface waves, the “path average approximation” 
(PAVA) [see reviews by Romanowicz (2002), Romanowicz et al. (2008)]. Below, 
we briefly discuss how body and surface waves sample the earth differently, and 
then discuss how waveform tomography allows us to compensate for the non-uni-
form distribution of sources and receivers by exploiting more fully the information 
contained in each seismogram.

4.2.2.1  Body Wave Tomography

Because of the lack of stations in the middle of the oceans, body wave tomography 
based on first arrival travel times achieves best resolution in regions where the den-
sity of both sources and stations is high, typically in subduction zone regions around 
the Pacific Ocean and in the Mediterranean region (e.g., Bijwaard et al. 1998; Kárason 
and Van Der Hilst 2000; Fukao et al. 2001; Rawlinson et al. 2015). Much progress has 
been made in the last few years, owing to improvements in both quality and quantity of 
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seismic data. Some technical improvements have also been made, such as the introduc-
tion of finite frequency kernels that take into account the sensitivity of the body wave 
to a broader region around the infinitesimal ray path (e.g., Dahlen et al. 2000). These 
improvements have led to increasingly high-resolution images in the last ten years 
indicating different behaviors of slabs in the transition zone, with some ponding on the 
660 km discontinuity, and/or around 1000 km depth, while others appear to penetrate 
deep into the lower mantle (e.g., Li et al. 2008; Fukao and Obayashi 2013).

In other parts of the world, where only teleseismic data can be used, resolution 
in body wave travel time tomography depends strongly on the density of stations. 
In the oceans and in poorly covered continental regions, there is very poor vertical 
and horizontal resolution in the upper mantle, even when considering finite fre-
quency effects, because of smearing effects due to the lack of crossing paths. In 
Fig. 4.1, we show an example of regional body wave tomography under Hawaii, 
where only teleseismic events originating at subducting zones around the Pacific 
are used (Cheng et al. 2015). Seismic rays arrive almost vertically under the array 
of stations, which results in poor vertical resolution as velocity anomalies are 
“smeared” along seismic rays. In this context, interpretation of the vertical plume-
like low-velocity anomalies must be done with caution, and extra constraints from 
surface waves are needed (Cheng et al. 2015).

On the other hand, in some continental regions, such as in North America, 
owing to the recent dense USArray deployment, improved resolution is pro-
gressively achieved (e.g., Burdick et al. 2008; Obrebski et al. 2011; Sigloch and 
Mihalynuk 2013). Nevertheless, at the global scale, resolution from body wave 
tomography remains uneven, even when surface or core reflected teleseismic 
phases are added. Also, these tomographic models generally provide high-reso-
lution information on P velocity, since S wave travel times are more difficult to 
measure accurately.
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Fig. 4.1  Example of teleseismic body wave tomography under Hawaii with poor vertical resolu-
tion, i.e., vertical smearing. a Vertical cross sections (parallel to the Pacific plate motion) through 
the HW13 model (Cheng et al. 2015). b Locations and orientation of the cross section, along 
with the distribution of stations. This is a typical example of limited resolution due to poor data 
sampling. Modified from Cheng et al. (2015)
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4.2.2.2  Surface Wave Tomography

Because their energy is concentrated near the surface along the source station 
great circle path, fundamental mode surface waves, in turn, allow the sampling 
of the upper mantle under oceans and continents alike. This leads to robust reso-
lution of the long-wavelength component of lateral heterogeneity in shear velocity 
in the upper mantle at the global scale. However, because the sensitivity to struc-
ture decreases exponentially with depth, resolution from fundamental mode surface 
wave tomography is best in the first 300 km of the upper mantle. In order to improve 
resolution at larger depths, i.e., into the transition zone , it is necessary to include 
surface wave overtone data (e.g., Debayle and Ricard 2012; Schaefer and Lebedev 
2015). These have similar group velocities, and hence, sophisticated approaches are 
required to separate and measure dispersion on individual overtone branches [see 
review by Romanowicz (2002)]. This presents a challenge for achieving comparable 
coverage to fundamental mode surface waves at the global scale.

This is why the recent global whole-mantle shear-velocity models that provide 
the best resolution in the transition zone (Kustowski et al. 2008; Ritsema et al. 
2011) are based on a combination of different types of data which provide comple-
mentary sampling of the mantle: (1) fundamental mode surface waves and over-
tones, which provide resolution across the upper mantle; (2) for the lower mantle, 
body wave travel times, which generally include, in addition to first arriving S 
waves, surface reflected SS and core reflected ScS waves, sometimes comple-
mented by core-propagating SKS travel time data. Some models, based on sec-
ondary travel time observables, also consider another type of data, normal mode 
“splitting functions”, which provide constraints on the longest wavelength struc-
ture throughout the mantle (e.g., Ritsema et al. 2011).

4.2.2.3  Global Waveform Tomography Based on Asymptotic Methods

Since body and surface waves sample the earth differently , a powerful way to 
improve the sampling of the mantle is to combine them by exploiting the infor-
mation contained in the entire seismogram (i.e., seismic waveforms). This idea 
was first introduced in global tomography by Woodhouse and Dziewonski 
(1984), where observed and synthetic seismograms were directly compared in 
the time domain. Introducing long-period seismic waveform tomography allowed 
these authors to include information from overtones in a simple way and thus to 
improve resolution in the transition zone. Synthetic seismograms were computed 
in a 3D earth using normal mode summation and the “path average” approximation 
(PAVA). A similar type approach has also been developed (Nolet 1990) and applied 
to upper mantle tomography at the continental (Van der Lee and Nolet 1997) and 
global scales (Lebedev and Van Der Hilst 2008; Schaeffer and Lebedev 2013).

In standard body wave tomography, the ensemble of body wave phases avail-
able through travel time measurements is largely limited. For example, the study 
of Kustowski et al. (2008) mentioned above was limited to measurements of SS,  
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ScS, and SKS phases. A clear advantage of waveform tomography is that one 
can include body phases that cannot be separated in the time domain such as, for 
example, ScS2 and SSS, as well as diffracted waves, whose propagation cannot be 
well described by ray theory (see Fig. 4.2).

However, when using body waveforms, the path average approximation (PAVA) 
may not be valid anymore. Indeed, the drawback of the PAVA is that it assumes 
that sensitivity of the waveforms is limited to the average 1D structure between the 
epicenter and the receiver, which is clearly inappropriate for body waves, whose 
sensitivity is concentrated along the ray path (Romanowicz 1987). In order to take 
into account the concentration of sensitivity along the ray path of body waves, 
across-branch coupling needs to be included (e.g., Li and Tanimoto 1993). Li and 
Romanowicz (1995) developed NACT (nonlinear asymptotic coupling theory), 
which introduced an additional term to PAVA that accounted for coupling across 
normal mode dispersion branches, bringing out the ray character of body wave-
forms [see Romanowicz et al. (2008) for details and a comparison of mode-based 
methods for modeling seismic waveforms]. This approach has been applied to the 
development of waveform-based global long-wavelength shear-velocity models 
since the mid-1990s (e.g., Li and Romanowicz 1996; Mégnin and Romanowicz 
2000; Panning and Romanowicz 2006; Panning et al. 2010).

Comparing models obtained by different groups using different datasets and 
methodologies is one way to evaluate the robustness of the retrieved structure. 
The advantage of using full waveform tomography is that, by including a variety 
of phases that illuminate the mantle in different ways, the sampling is improved 
in ways that cannot be attained using only travel times of well isolated phases, 
largely because the distribution of earthquake sources and receivers is limited 
resulting in many redundant paths even as new data are added. Thus, at the very 
least, the same resolution can be achieved using considerably fewer source sta-
tion paths. This is illustrated in Fig. 4.3 which shows a comparison of three recent 
global shear-velocity tomographic models at a depth of 100 km. Models (a and c)  
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Fig. 4.2  Example of wave packet selection procedure for time-domain waveforms, as used in 
Mégnin and Romanowicz (2000) and following models from the Berkeley group, that are based 
on time-domain waveform inversion. Shaded areas indicate wave packets picked. Note in the 
third wave packet, the combination of two body wave phases (SSS, ScS2) that are not separable 
for travel time computation, but that sample very different parts of the mantle (courtesy of Scott 
French)
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were obtained using a conventional approach: Ritsema et al. (1999) used over 2M 
fundamental mode and overtone measurements combined with over 20,000 body 
wave travel time measurements to construct model S20RTS (a), while Kustowski 
et al. (2008) used several million dispersion measurements and about 150,000 body 
wave travel time measurements to construct model 362ANI. In contrast, Panning 
and Romanowicz (2006) used “only” 20,000 long-period time-domain seismo-
grams (i.e., waveforms) and NACT to construct model SAW36ANI and were able 
to resolve the long-wavelength structure in the upper mantle just as well. With 
the ability to include increasingly shorter periods, i.e., constraints from phases 
that sample the mantle in yet other ways, as well as improving the accuracy with 
which the interactions of the wave-field  with heterogeneity are computed, this 
opens the way to increased resolution in the future, as will be discussed in the next 
section. For now, beyond details of the datasets and theories used, Figs. 4.3 and 
4.4 indicate that the level of agreement between global shear-velocity models is  
presently excellent up to at least degree 12 in a spherical harmonics expansion of 
the model, both in the upper and the lowermost mantle (e.g., Lekic et al. 2012).

Fig. 4.3  Comparison of maps of isotropic versus at a depth of 100 km from three whole-
mantle tomographic models: a S362ANI (Kustowski et al. 2008); b SAW642AN (Panning and  
Romanowicz 2006); and c S20RTS (Ritsema et al. 1999). Model a was constructed using a com-
bination on body wave travel times, surface wave dispersion, and long-period waveforms, albeit 
with the PAVA approximation; Model c was constructed using a combination of surface wave 
dispersion and body wave travel times. Both models used over 200,000 data. Model b was con-
structed using time-domain waveforms exclusively and the NACT theoretical framework, obtain-
ing an equivalent resolution to the two other models, albeit with an order of magnitude fewer 
data (20,000 waveform packets)

W

Fig. 4.4  Comparison of 4 recent shear-wave tomographic models at a depth of 2800 km. a Kus-
towski et al. (2008). b Ritsema et al. (2011). c Mégnin and Romanowicz (2000). d Houser et al. 
(2008). Model c was developed using only time-domain waveforms (about 20,000), while all 
other models are based on a combination of secondary observables (travel times of body waves 
and surface waves), except model a which includes long-period waveforms, albeit in the surface 
wave (PAVA) approximation. After Lekic et al. (2012)
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4.2.2.4  Global Waveform Inversion Based on Direct Numerical Solvers

In the previous section, we have described how, in principle, full waveform tomog-
raphy provides access to more of the information contained in seismograms than 
a collection of travel times of a limited number of seismic phases. As mentioned 
above, normal mode summation has provided a successful theoretical approach for 
computation of waveforms and led to several generations of whole-mantle shear-
velocity models in the last 20 years. However, asymptotic normal mode perturba-
tion theory (Li and Romanowicz 1995) is only valid for earth models for which 
the wavelength of the structure is large compared to that of the seismic waves con-
sidered (i.e., smooth models) and heterogeneity is weak (nominally, lateral varia-
tions of up to ∼10%). Yet, in the earth’s boundary layers, i.e., in the upper mantle 
and in the D″ region, there is ample evidence for the presence of stronger heter-
ogeneity, whereas throughout the mantle, heterogeneity at many different scales 
may be present. First-order mode perturbation theory is not appropriate in this 
case, and more accurate numerical methods must be used. The challenge then is 
how to compute the synthetic seismograms in a 3D earth model without the weak 
heterogeneity approximation.

Finite difference methods are the traditional approach used for numerical cal-
culation of seismograms  (Kelly et al. 1976; Virieux 1986). In the 1990s, pseudo-
spectral methods have also become a popular alternative and have been applied 
to regional (Carcione 1994) and global (Tessmer et al. 1992) problems. However, 
both finite difference and pseudo-spectral schemes perform poorly at represent-
ing surface waves. This issue can be addressed with the spectral element method 
(SEM) where the wave equation is solved on a mesh that is adapted to the free 
surface and to the main internal discontinuities of the model. The SEM was first 
introduced by Priolo et al. (1994) and Seriani and Priolo (1994) for wave-field cal-
culation in 2D and later perfected by Komatitsch and Vilotte (1998), Komatitsch 
and Tromp (1999), and Komatitsch and Tromp (2002) for the 3D case. See Virieux 
and Operto (2009) for a review of numerical solvers in exploration geophysics.

Although these approaches started earlier in the exploration community than in 
global seismology, they are now reaching similar advance levels. Numerically com-
puted seismograms automatically contain the full seismic wave-field, including 
all body and surface wave phases as well as scattered waves generated by lateral 
variations of the model Earth properties. The amount of exploitable information 
is thus significantly larger than in methods mentioned above. The accuracy of the 
numerical solutions and the exploitation of complete waveform information result 
in tomographic images that are both more realistic and better resolved (Fichtner 
et al. 2010). In seismology, the use of SEM has now been applied to tomographic 
inversions for crustal structure at the local scale (e.g., Tape et al. 2010) and upper  
mantle structure at regional scales (e.g., Fichtner et al. 2009, 2010; Rickers et al. 
2013; Zhu et al. 2012; Zhu and Tromp 2013).

The forward numerical computation is generally combined with an “adjoint” 
formulation for the numerical computation of the kernels for inversion (Tromp 
et al. 2005; Fichtner et al. 2006) or, alternatively, with a “scattering integral 
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formalism” (e.g., Chen et al. 2007). In this context, Fichtner and Trampert (2011) 
showed how a local quadratic approximation of the misfit functional can be used 
for resolution analysis.

Here, we note that the inverse step is currently approached differently by dif-
ferent investigators. Following the nomenclature of the geophysical exploration 
community, the term FWI (full waveform inversion) is often used synonymously 
to “adjoint inversion,” which relies, at each iteration, on the numerical computa-
tion of the gradient followed by a conjugate-gradient step. An alternative method, 
which has been used so far in SEM-based global waveform inversions, is to com-
pute an approximate Hessian using mode-coupling theory in the current 3D model, 
followed by a Gauss–Newton (GN) inversion scheme. While it might be argued 
that the partial derivatives computed in this manner are more “approximate,” the 
GN scheme is much faster converging (less than 10 iterations typically, compared 
to 30–40 or more) and can now take advantage of efficient methods for the assem-
bly and inversion (ScalaPak) of large full matrices.

At the global scale, because the wave-field needs to be computed for a long 
time interval, in order to include all seismic phases of interest, the use of the SEM 
is particularly challenging computationally (Capdeville et al. 2005). Furthermore, 
computational time increases as the fourth power of frequency and limits the fre-
quency range of waveforms to relatively long periods (typically longer than 40 
or 50 s). The first global shear-velocity models developed using SEM (Lekić and 
Romanowicz 2011; French et al. 2013) are limited to the upper mantle due to the 
use of relatively long periods (longer than 60 s). In these models, the numerical 
computation of the forward step is restricted to the mantle and coupled with 1D 
mode computation in the core (CSEM, Capdeville et al. 2003). For the inverse 
step, kernels are computed using a mode-based approximation.

These modeling efforts have demonstrated the power of the SEM to sharpen 
tomographic images at the local, regional, and global scales and have led to the 
discovery of features previously not detected, such as the presence of low-velocity 
channels in the oceanic asthenosphere (e.g., French et al. 2013; Colli et al. 2013; 
Rickers et al. 2013). This is shown in Fig. 4.5 where model SEMum2 (French 
et al. 2013) is compared to other global shear-velocity models. SEMum2 more 
accurately recover both the depth and strength of the low-velocity minimum under 
ridges. It also shows stronger velocity minima in the low-velocity zone, a more 
continuous signature of fast velocities in subduction zones and stronger, clearly 
defined, low-velocity conduits under the Pacific Superswell, while confirming 
the robust long-wavelength structure imaged in previous studies, such as the pro-
gressive weakening and deepening of the oceanic low-velocity zone with overly-
ing plate age. Of course, a more objective way to compare tomographic methods 
would be to conduct a blind test using numerically generated data, but this is 
beyond the scope of this study.

Because the frequency range of global inversions remains limited and because 
features smaller than the shortest wavelength cannot be mapped, this approach 
is not able, however, to resolve sharp discontinuities. The resulting tomographic 
images can therefore be seen as a smooth representation of the true Earth. 
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However, they are not a simple spatial average of the true model, but rather an 
effective, apparent, or equivalent model that provides a similar long-wave data  
fit (Capdeville et al. 2010a, b). Hence, the geological interpretation of global 
tomographic models is limited, mainly due to two reasons:

1. The constructed images are smooth and do not contain discontinuities that are 
crucial to understand the structure and evolution of the earth.

2. The relations that link the true Earth to the effective (and unrealistic) earth that is 
seen by long-period waves are strongly nonlinear, and their inverse is highly non-
unique. As a result, it is difficult to quantitatively interpret the level of imaged 

Fig. 4.5  Upper mantle depth cross sections across the Pacific superswell, comparing two recent 
global models obtained using classical approaches based on a combination of travel times, dis-
persion measurements, and approximate wave propagation theories (S362ANI, Kustowski et al. 
2008; S40RTS, Ritsema et al. 2011) and a recent model constructed using waveforms and wave-
field computations using SEM (SEMum2, French et al. 2013). While all three models agree 
in their long-wavelength structure in the transition zone, model SEMum2 shows more sharply 
delineated structures, both in subduction zones (highlighted by seismicity) and in the central 
Pacific, where the large low-velocity region is now resolved into two separate vertically oriented 
features. Model SEMum2 also exhibits stronger low-velocity minima in the uppermost mantle 
low-velocity zone. After French et al. (2013), courtesy of Scott French
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anisotropy in tomographic models, as it may be the effect of either “real” local 
anisotropy or unmapped velocity gradients, or a combination of both.

4.3  Seismic Anisotropy

4.3.1  Observation of Anisotropy

It is well known that anisotropic structure is needed to predict a number of seismic 
observations such as:

1. Shear-wave splitting (or birefringence), the most unambiguous observation of 
anisotropy, particularly for SKS waves (Vinnik et al. 1989).

2. The Rayleigh–Love wave discrepancy. At global as well as at regional scale, 
the lithosphere appears faster to Love waves than to Rayleigh waves. It is 
impossible to simultaneously explain Rayleigh and Love wave dispersion by a 
simple isotropic model (Anderson 1961).

3. Azimuthal variation of the velocity of body waves. For example, Hess (1964) 
showed that the azimuthal dependence of Pn-velocities below oceans can be 
explained by anisotropy.

The goal here is not to provide a review of seismic anisotropy, but to address 
the issue of separating intrinsic and extrinsic anisotropy in apparent (observed) 
anisotropy. There are excellent review papers and books that have been written 
on anisotropy. For example, the theory of seismic wave propagation in aniso-
tropic media has been described in Crampin (1981), Babuška and Cara (1991), and 
Chapman (2004). See also Maupin and Park (2014) for a review of observations of 
seismic anisotropy. Montagner (2014) gives a review of anisotropic tomography at 
the global scale. Montagner (1994); Montagner and Guillot (2002) give a review 
of geodynamic implications of observed anisotropy. Finally, a review of the sig-
nificance of seismic anisotropy in exploration geophysics has been published by 
Helbig and Thomsen (2005).

Seismic waves are sensitive to the full elastic tensor (21 parameters), density, 
and attenuation. As seen above, it is not possible to resolve all 21 components of 
the anisotropic tensor at every location. Therefore, seismologists rely on simpli-
fied (yet reasonable) assumptions on the type of anisotropy expected in the earth’s 
upper mantle, namely hexagonal symmetry. This type of anisotropy (commonly 
called transverse isotropy) is defined by the 5 Love parameters A, C, F, L, and N 
(love 1927), and two angles describing the tilt of the axis of symmetry (Montagner 
and Nataf 1988). In this manuscript, we will limit ourselves to the case of radial 
anisotropy, which corresponds to transverse isotropy with a vertical axis of sym-
metry and no azimuthal dependence.

It can be shown (Anderson 1961; Babuška and Cara 1991) that for such a verti-
cally transversely isotropic (VTI) medium, long-period waveforms are primarily 
sensitive to the two parameters:
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where ρ is density, VSV is the velocity of vertically traveling S waves or horizon-
tally traveling S waves with vertical polarization, and VSH is the velocity of hori-
zontally traveling S waves with horizontal polarization. The influence of other 
parameters A (related to VVH), C (related to VPV), and F can be large (Anderson 
and Dziewonski 1982) and is usually taken into account with petrological con-
straints (Montagner and Anderson 1989). That is, once VSH and VSV are con-
strained from long-period seismic waves, the rest of the elastic tensor and density 
is retrieved with empirical scaling laws (e.g., Montagner and Anderson 1989). 
Globally, SH waves propagate faster than SV waves in the upper mantle. The 
velocity difference is of about 4 % on average in the preliminary reference Earth 
model (PREM) of PREM Dziewonski and Anderson (1981) in the uppermost 
220 km of the mantle.

Although early global radially anisotropic models were developed in terms of 
VSH and VSV, more recent models are parameterized in terms of an approximate 
Voigt average isotropic shear velocity (Montagner 2014) and radial anisotropy as 
expressed by the ξ parameter (e.g., Gung et al. 2003; Panning and Romanowicz 
2006):

4.3.2  Anisotropy of Minerals: Intrinsic Anisotropy

Anisotropy can be produced by multiple physical processes at different spatial 
scales. It exists from the microscale (crystal scale) to the macroscale, where 
it can be observed by seismic waves that have wavelengths up to hundreds of 
kilometers. We name intrinsic anisotropy, the elastic anisotropy still present 
whatever the scale of investigation, down to the crystal scale. Most minerals 
in the earth’s upper mantle are anisotropic. Olivine, the most abundant min-
eral in the upper mantle, displays a P wave anisotropy larger than 20 %. Other 
important constituents such as orthopyroxene or clinopyroxene are anisotropic 
as well (>10 %). Under finite strain accumulation, plastic deformation of these 
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minerals can result in a preferential orientation of their crystalline lattices. This 
process is usually referred to as LPO (lattice-preferred orientation) or CPO 
(crystalline-preferred orientation). This phenomenon is often considered as 
the origin of the observed large-scale seismic anisotropy in the upper mantle. 
With increasing the depth, most of minerals undergo a series of phase transfor-
mations. There is some tendency (though not systematic) that with increasing 
pressure, the crystallographic structure evolves toward a more closely packed, 
more isotropic structure, such as cubic structure. For example, olivine trans-
forms into β-spinel and then γ-spinel in the upper transition zone (410–660 km 
of depth) and into perovskite and magnesiowustite in the lower mantle and pos-
sibly into post-perovskite in the lowermost mantle. Perovskite, post-perovskite 
(Mg,Fe)SiO3, and the pure end-member of magnesiowustite MgO are still ani-
sotropic. That could explain the observed anisotropy in some parts of the lower 
mantle and D″-layer.

Mantle rocks are assemblages of different minerals which are more or less ani-
sotropic. The resulting amount of anisotropy is largely dependent on the compo-
sition of the aggregates. The relative orientations of crystallographic axes in the 
different minerals must not counteract in destroying the intrinsic anisotropy of 
each mineral. For example, the anisotropy of peridotites, mainly composed of oli-
vine and orthopyroxene, is affected by the relative orientation of their crystallo-
graphic axes, but the resulting anisotropy is still larger than 10 %.

In order to observe anisotropy due to LPO at very large scale, several condi-
tions must be fulfilled. The crystals must be able to re-orient in the presence of 
strain and the deformation due to mantle convection must be coherent over large 
scales to preserve long-wavelength anisotropy. These processes are well known for 
the upper mantle, and in oceanic plates, and anisotropy remains almost uniform 
on horizontal length scales in excess of 1000 km. The mechanisms of alignment 
are not so well known in the transition zone and in the lower mantle. In addition, 
a significant water content such as proposed by Bercovici and Karato (2003) in 
the transition zone can change the rheology of minerals, would make the defor-
mation of the minerals easier, and change their preferential orientation. A com-
plete discussion of these different mechanisms at different scales can be found in 
Mainprice (2007).

At slightly larger scale (but smaller than the seismic wavelength), a coher-
ent distribution of fluid inclusions or cracks (Crampin and Booth 1985) can give 
rise to apparent anisotropy due to shape-preferred orientation (SPO). This kind of 
anisotropy related to stress field can be considered as the lower lilt of extrinsic 
anisotropy.

Anisotropic properties of rocks are closely related to their geological his-
tory and present configuration and reveal essential information about the earth’s 
structure and dynamics (Crampin 1981). This justifies the great interest of geo-
physicists in all seismic phenomena which can be interpreted in the framework of 
anisotropy. However, the observation of large-scale anisotropy is also due to other 
effects such as unmapped velocity gradients.
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4.3.3  Apparent Anisotropy Due to Small-Scale 
Inhomogeneities

It has been known for a long time in seismology and exploration geophysics that 
small-scale inhomogeneities can map into apparent anisotropy (Postma 1955; 
Backus 1962). The problem is very well described in the abstract by Levshin and 
Ratnikova (1984): “ln homogeneities in a real material may produce a seismic 
wave-field pattern qualitatively indistinguishable from one caused by anisotropy. 
However, the quantitative description of such a medium as an apparently aniso-
tropic elastic solid may lead to geophysically invalid conclusions.”

The scattering effect of small-scale heterogeneities on seismograms has been 
extensively studied in seismology (e.g., Aki 1982; Richards and Menke 1983; Park 
and Odom 1999; Ricard et al. 2014). As an example, Kennett and Nolet (1990) 
and Kennett (1995) demonstrated the validity of the great circle approximation 
when modeling long-period waveforms. However, despite all these studies, poor 
attention has been given to the theoretical relations between small-scale heteroge-
neities and equivalent anisotropy. By definition, an anisotropic material has physi-
cal properties which depend on direction, whereas a heterogeneous material has 
properties which depend on location. But the distinction between heterogeneity 
and anisotropy is a matter of the scale at which we analyze the medium of interest. 
Alternating layers of stiff and soft material will be seen at large scales as a homo-
geneous anisotropic material. At the origin of any anisotropy, there is a form for 
heterogeneity. In this way, the most basic form of anisotropy, related to the regular 
pattern made by atoms in crystals, can also be seen as some form of heterogeneity 
at the atomic scale (Maupin and Park 2014).

Although poorly studied theoretically, this phenomenon has been recognized in 
a number of studies. Maupin (2001) used a multiple-scattering scheme to model 
surface waves in 3D isotropic structures. She found that the apparent Love–
Rayleigh discrepancy (VSH − VSV) varies linearly with the variance of isotropic 
S wave velocity anomalies. In the case of surface wave phase-velocity measure-
ments done at small arrays, Bodin and Maupin (2008) showed that heterogeneities 
located close to an array can introduce significant biases which can be mistaken 
for anisotropy. For the lowest mantle, Komatitsch et al. (2010) numerically 
showed that isotropic velocity structure in D″ can explain the observed splitting of 
Sdiff, traditionally interpreted as LPO intrinsic anisotropy due to mantle flow.

In the context of joint inversion of Love and Rayleigh waveforms, a number 
of studies acknowledged that the strong mapped anisotropy is difficult to recon-
cile with mineralogical models. This discrepancy may be explained in part by 
horizontal layering, or by the presence of strong lateral heterogeneities along the 
paths, which are simpler to explain by radial anisotropy (Montagner and Jobert 
1988; Friederich and Huang 1996; Ekström and Dziewonski 1998; Debayle and 
Kennett 2000; Raykova and Nikolova 2003; Endrun et al. 2008; Bensen et al. 
2009; Kawakatsu et al. 2009).

Bozdağ and Trampert (2008) showed that the major effect of incorrect crustal 
corrections in surface wave tomography is on mantle radial anisotropy. This is 
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because the lateral variation of Moho depth trade-offs with radial anisotropy [see 
also Montagner and Jobert (1988), Muyzert et al. (1999), Lebedev et al. (2009), 
Lekić et al. (2010), and Ferreira et al. (2010)].

Therefore, it is clear that both vertical and lateral isotropic heterogeneities can 
contribute to the observed radial anisotropy. The problem of separating intrin-
sic and apparent anisotropy is too complex in full generality. We can, however, 
examine a simple and illustrative problem. Following the recent work of Wang 
et al. (2013) and Fichtner et al. (2013a), we will place ourselves in the 1D radi-
ally symmetric case (VTI medium) and assume that apparent radial anisotropy is 
only due to vertical gradients, i.e., layering. Indeed, apart from the crust, the D’ 
layer and around subducting slabs, to first order the earth is radially symmetric, 
with sharp horizontal seismic discontinuities separating different “layers” PREM 
(Dziewonski and Anderson 1981). In such a layered  earth, vertical velocity gradi-
ents are much stronger than lateral ones and will significantly contribute to appar-
ent anisotropy.

4.4  The Elastic Homogenization

We have seen that the limited resolution of long-wavelength seismic tomography 
only allows us to probe a smooth representation of the earth. However, this smooth 
equivalent Earth is not a simple spatial average of the true Earth, but the result 
of highly non-linear “upscaling” relations. In solid mechanics, these “upscaling” 
relations that link properties of a rapidly varying elastic medium to properties of 
the effective medium as seen by long waves have been the subject of extensive 
research (e.g., Hashin and Shtrikman 1963; Auriault and Sanchez-Palencia 1977; 
Bensoussan et al. 1978; Sanchez-Palencia 1980; Auriault et al. 1985; Murat and 
Tartar 1985; Sheng 1990; Allaire 1992, and many others).

In global seismology, upscaling schemes, also called elastic homogenization, 
have been recently developped for different kinds of settings (Capdeville and Marigo 
2007; Capdeville et al. 2010a, b; Guillot et al. 2010; Capdeville et al. 2015). This 
class of algorithms enables to compute the effective properties of complex media, 
thus reducing the meshing complexity for the wave equation solver and hence the 
cost of computations. Elastic homogenization has been used to model complex crus-
tal structures in full waveform inversions (Fichtner and Igel 2008; Lekić et al. 2010) 
and to combine results from different scales (Fichtner et al. 2013b).

4.4.1  The Backus Homogenization

Following the pioneering work by Thomson (1950), Postma (1955), and Anderson 
(1961), it was shown by Backus (1962) that a vertically transversely isotropic 
(VTI) medium is a “long-wave equivalent” to a smoothly varying medium of same 
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nature (i.e., transversely isotropic). For parameters concerning shear-wave veloci-
ties, the smooth equivalent medium is simply described by the arithmetic and har-
monic spatial average of elastic parameters N and L:

where ⟨·⟩ refers to a spatial average with length scale given by the shortest wave-
length defining our “long-wave.” In the rest of the manuscript, the symbol ~ will 
be used to describe long-wave equivalent parameters. Note that these two relations 
are analogous to computing the equivalent spring constant (or equivalent resistance) 
when multiple springs (or resistors) are mounted either in series or parallel. In simple 
words, a horizontally traveling wave VSH will see a set of fine horizontal layers “in 
parallel” (5), whereas a vertically traveling wave VSV will see them “in series” (6). 
The apparent density ρ̃ is also given by the arithmetic mean of the local density:

In the case of a locally isotropic medium (N = L), i.e., with no intrinsic anisot-
ropy, the homogeneous anisotropy is simply given by the ratio of arithmetic to har-
monic mean:

It can be easily shown that the arithmetic mean is always greater than the harmonic 
mean, which results in having artificial anisotropy in (8) always greater than unity 
in the case of an underlying isotropic model. In the case where the underlying lay-
ered model contains anisotropy (N ̸= L), the observed anisotropy is given by

Here, it is clear that when inverting waveforms with a minimum period of 
∼40 s (i.e., with minimum wavelength is 160 km) that sample a medium with 
velocity gradients occurring at much smaller scales, the observed apparent anisot-
ropy ξ̃ is going to be different from the intrinsic anisotropy ξ = N/L. Therefore, as 
shown by Wang et al. (2013) and Fichtner et al. (2013a), interpreting the observed 
effective ξ̃ in terms of ξ may lead to misinterpretations.

4.4.2  The Residual Homogenization

In this study, the goal was to interpret smooth tomographic models in terms of 
their layered and hence more realistic equivalent. However, tomographic models 

(4.5)Ñ = ⟨N⟩

(4.6)L̃ = ⟨1/L⟩−1

(4.7)ρ̃ = ⟨ρ⟩
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are not completely smooth and they are instead constructed as smooth anomalies 
around a discontinuous reference model. This is because the function linking the 
unknown model to the observed waveforms is linearized around a local point in 
the model space. This reference model often contains global discontinuities such 
as the Moho, or transition zone discontinuities at 410 and 660 km, which are fixed 
in the inversion and preserved in the model construction.

In the previous section, we have summarized an absolute homogenization for 
which no small scale is left in the effective medium. To account for the presence of 
a reference model, Capdeville et al. (2013), Capdeville and Cance (2015) recently 
described a modified homogenization, carried out with respect to a reference model, 
which we refer to as the residual homogenization. It allows us to homogenize only 
some interfaces of a discontinuous medium, while keeping the others intact.

Let us define the reference earth model by its density and elastic properties: 
(ρref, Aref, Cref, Fref, Lref, and Nref). Capdeville et al. (2013) showed that an equiva-
lent model to the layered (A, C, F, L, and N) medium can be constructed with sim-
ple algebraic relations. For elastic parameters related to shear-wave velocities, we 
have:

Note that no particular assumption on the reference model is made, which can 
contain any wavelengths, and can be discontinuous. Furthermore, there is no line-
arity assumption, and this results holds for large differences between the reference 
and the layered model.

We show in Fig. 4.6 an example of residual homogenization. The layered 
VTI Model is shown in red with layers either isotropic (ξ = 1) or anisotropic 
(ξ ̸= 1). A smooth equivalent model (for long waves of minimum wavelength 
of 100 km) that preserves the small scales of the reference model is shown in 
blue. The homogenization is done on the difference between the layered model 
in red and the reference model in thick light blue. After homogenization, we 
lose information about both the number and locations of discontinuities which 
are not in the reference model, as well as the location and level of intrinsic 
anisotropy.

It can be verified numerically that waveforms computed in the residual effec-
tive model and in the true layered model are identical when filtered with mini-
mum period of 25 s (which corresponds to a minimum wavelength of 100 km). 
Figure 4.7 shows an example of seismogram computed by normal mode summa-
tion (Gilbert and Dziewonski 1975) in the residual effective model and compared 
with the solution computed in the true layered model. In both cases, the reference 
and homogenized traces show an excellent agreement.

(4.10)Ñ = Nref + ⟨N − Nref⟩
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4.4.3  An Approximation of “the Tomographic Operator”

Global full waveform tomography is always carried out with frequency band lim-
ited data. Intuitively, it makes sense to assume that such inversions can retrieve, at 
best, what is “seen” by the wave-field, i.e., an homogenized equivalent, and not the 
real medium.
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Although it is difficult to mathematically prove this conjecture in general, 
Capdeville et al. (2013) numerically showed with synthetic examples that this is 
indeed the case for VTI media. That is, the inverted medium coincides with the 
residual homogenized version of the target model. Given a radially symmetric 
Earth and given enough stations and earthquakes, an inversion of full waveforms 
carried out around a reference model will therefore produce the residual homoge-
neous model defined above.

In this way, for any given layered model, one is able to predict with simple non-
linear algebraic smoothing operations what an inversion will find, without actually 
running the inversion. Therefore, we can view the residual homogenization as a 
first-order approximation of the “tomographic operator.”

In practice, several practical issues complicate the situation: The real inversions 
are damped, producing unknown uncertainties in the recovered model, which can 
potentially bias our results. Furthermore, as seen above, ray coverage is not perfect 
and tomographic schemes may actually recover less than the effective medium.

4.5  Downscaling Smooth Models: The Inverse 
Homogenization

As we have seen, a tomographic inversion of long-period waves can only retrieve 
at best a homogenized model (and less in the case of an incomplete data coverage). 
Homogenization can lead to non-trivial and misleading effects that can make the 
interpretation difficult. We propose to treat the interpretation of tomographic images 
in terms of geological structures (discontinuities in our layered case) as a separate 
inverse problem, allowing to include a priori information and higher frequency data.

We call this inverse problem the inverse homogenization: For a given smooth 
1D profile extracted from a tomographic model, what are the possible fine-scale  
(i.e., layered) models that are equivalent to this smooth 1D profile? Since the upscaling  
relations are based on nonlinear smoothing operators, it is not trivial to invert them 
to derive the true Earth from tomographic images, i.e., from its residual equivalent. 
In this section, we show that, although there is an infinite number of layered mod-
els that are equivalent to the smooth model in blue (Fig. 4.6), these models share 
common features, and Bayesian statistics can be used to constrain this ensemble of 
possible models. Furthermore, higher frequency data sensitive to discontinuities in 
radially symmetric models, such as receiver functions, can be used to constrain the 
location of horizontal discontinuities and reduce the space of possible earths.

4.5.1  Major Assumptions

Given the simple machinery presented in previous sections, there are obvious limi-
tations to the proposed procedure. Let us here acknowledge a few of them.
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1. We will assume here that long-period waves are only sensitive to the elastic 
parameters N and L (i.e., VSH and VSV). However, in a VTI medium, long-
period seismograms, and hence the observed radial anisotropy, are also sensi-
tive to the 3 other Love parameters (i.e., A, C, and F). Fichtner et al. (2013a) 
recently showed that P wave anisotropy is also important to distinguish 
between intrinsic and extrinsic anisotropy. Here, P wave anisotropy will be 
ignored.

2. Here, we restrict ourselves to transverse isotropy with a vertical axis of sym-
metry. Although this simple parameterization in terms of radial anisotropy is 
widely used in global seismology, it clearly represents an over-simplification, 
adopted for convenience in calculation. This is because the separation of intrin-
sic and apparent anisotropy can be studied analytically. The Earth is certainly 
not transversely isotropic, and there are indisputable proofs of azimuthal ani-
sotropy. Azimuthal anisotropy might map into radial anisotropy in global 
models. These effects could be analyzed using the 3D version of non-periodic 
homogenization  (Capdeville et al. 2010a, b).

3. We assume that 1D vertical profiles extracted from 3D tomographic models 
are the true Earth that has been homogenized with Backus relations. However, 
the smoothing operator applied to the true Earth during an inversion, namely 
the “tomographic operator,” is determined by an ensemble of factors such as 
poor data sampling, the regularization and parameterization imposed, the level 
of data noise, the approximations made on the forward theory, and limited 
frequency band. It is very difficult to estimate how these averaging processes 
are applied to the true Earth during a tomographic inversion. What we assume 
here is that all these effects are negligible compared to the last one (limited 
frequency band), for which the smoothing operator is simply given by elastic 
homogenization. This only holds if data sampling is perfect, if no strong reg-
ularization has been artificially applied, and if the forward theory is perfect. 
Therefore, it is going to be most true in the case of full waveform inversion, 
and full waveform tomographic models are the most adequate for such a pro-
cedure. However, it is clear that other types of observations could be used as 
any tomographic method unavoidably produces apparent anisotropic long-
wavelength equivalents. For example, our proposed procedure could be used 
to describe the ensemble of discontinuous models that fit a set of dispersion 
curves as in Khan et al. (2011).

4.5.2  Bayesian Inference

Using the notation commonly employed in geophysical inversion, the problem 
consists in finding a rapidly varying model m, such that its homogenized equiva-
lent profile g(m) is “close” to a given observed smooth model d. Here, the for-
ward function g is the residual homogenization procedure in (4.10) and (4.11). 
Since the long-period waveforms are sensitive to smooth variations of the  
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“Backus parameters” (Capdeville et al. 2013), the observed tomographic profile is 
parameterized as d =

[

Ñ , 1/L̃
]

.
This takes the form of a highly nonlinear inverse problem, and a standard lin-

earized inversion approach based on derivatives is not adequate since the solution 
would strongly depend on the initial guess. Furthermore, the problem is clearly 
under-determined and the solution non-unique, and hence, it does not make 
sense to look for a single best fitting model that will minimize a misfit meas-
ure ∥d − g(m)∥. For example, one can expect strong correlations and trade-offs 
between unknown parameters as homogeneous anisotropy can be either explained 
by discontinuities or intrinsic anisotropy. An alternative approach is to embrace 
the non-uniqueness directly and employ an inference process based on parameter 
space sampling. Instead of seeking a best model within an optimization frame-
work, one seeks an ensemble of solutions and derives properties of that ensemble 
for inspection. Here, we use a Bayesian approach and tackle the problem probabil-
istically (Box and Tiao 1973; Sivia 1996; Tarantola 2005). We sample a posterior 
probability distribution p(m|d), which describe the probability of having a discon-
tinuous model m given an observed tomographic homogeneous profile d.

An important issue is the degree of freedom in the layered model. Since the 
inverse homogenization is a downscaling procedure, the layered model may be 
more complex (i.e., described with more parameters) than its smooth equiva-
lent. As discussed above, the smooth model may be equivalent to either isotropic 
models with a large number of spatial parameters (layers), or anisotropic mod-
els described with more than one parameter per layer. This raises the question of 
the parameterization of m. How many layers should we impose on m? Should the 
existence (or not) of anisotropy be a free parameter? If yes, how many isotropic 
and anisotropic layers?

We propose to rely on Occam’s razor, or the principle of parsimony, which 
states that simple models with the least number of parameters should be preferred 
(Domingos 1999). The razor states that one should favor simpler models until sim-
plicity can be traded for greater explanatory power. Although we acknowledge that 
the definition of “simplicity” is rather subjective, in our problem, we will be giv-
ing higher probability to layered models described with fewer parameters.

We impose on m to be described with constant velocity layers separated by infi-
nite gradients. As shown in Fig. 4.8 , we use a transdimensional parameterization, 
where the number of layers, as well as the number of parameters per layer, is free 
variables, i.e., unknown parameters (Sambridge et al. 2013). In this way, the num-
ber of layers will be unknown in the inversion, as well as the number of parame-
ters in each layer: 1 for isotropic layers (VS) and 2 for anisotropic layers (VS and ξ). 
The goal here is not to describe the algorithm and its implementation in detail, but 
instead to give the reader a general description of the procedure, and show how it 
can be used to distinguish between intrinsic and extrinsic anisotropy. For a details 
on the algorithm, we refer the reader to Bodin et al. (2012b).

Bayes’ theorem (1763) is used to combine prior information on the model with 
the observed data to give the posterior probability density function:
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p(m) is the a priori probability density of m, that is, what we (think we) know 
about the model m before considering d. Here, we use poorly informative uniform 
prior distributions, and let model parameters vary over a large range of possible 
values.

The likelihood function p(d|m) quantifies how equivalent a given discontinu-
ous model is to our observed smooth profile d. The form of this probability den-
sity function is given by what we think about uncertainties on d. In our case, the 
form of the error statistics for a tomographic profile must be assumed to formulate 
p(d|m). A problem with tomographic images is that they are obtained with lin-
earized and regularised inversions, which biases uncertainty estimates. Therefore, 
we adopt a common and conservative choice (supported by the central limit theo-
rem) and assume Gaussian-distributed errors. Since the data vector d is smooth, 
its associated errors must be correlated, and the fit to observations, !(m), is no 
longer defined as a simple ‘least-square’ measure but is the Mahalanobis distance 
between observed, d, and estimated, g(m), smooth profiles:

where Ce represents the covariance matrix of errors in d. In contrast to the 
Euclidean distance, this measure takes in account the correlation between data 

(4.12)posterior ∝ likelihood × prior

(4.13)p(m|d) ∝ p(d)|m)p(m)

(4.14)!(m) = (g(m) − d)TC−1
e (g(m) − d)
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Fig. 4.8  Adaptive parameterization used for the inverse homogenization. The number of layers 
as well as the number of parameter in each layer (one for isotropic layers and two for anisotropic 
layers) is unknown in the inversion. This is illustrated here with three different models with dif-
ferent parameterizations. The parameterization is itself an unknown to be inverted for during the 
inversion scheme. Of course, data can always be better fitted as one includes more parameters 
in the model, but within a Bayesian formulation, preference will be given to simple models that 
explain observations with the least number of model parameters
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(equality being obtained where Ce is diagonal). Note that there is no user-defined 
regularization terms in (4.14) such as damping or smoothing constraints. This mis-
fit function only depends on the observed data.

The general expression for the likelihood probability distribution is hence:

This is combined with the prior distribution to construct the posterior prob-
ability density function, which is thus defined in a space of variable dimension 
(transdimensional).

4.5.3  Sampling a Transdimensional Probability Density 
Function

Since the problem is transdimensional and nonlinear, there is no analytical  
formulation for the posterior probability density function, and instead we  
approximate it with a parameter search sampling algorithm (Monte Carlo). That 
is, we evaluate the posterior at a large number of locations in the model space. 
We use the reversible jump Markov chain Monte Carlo (rj-McMC) algorithm 
(Geyer and Møller 1994; Green 1995, 2003), which is a generalization of the 
well-known Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 
1970) to variable dimension models. The solution is represented by an ensemble 
of 1D models with variable number of layers and thicknesses, which are statis-
tically distributed according to the posterior distribution. For a review of trans-
dimensional Markov chains, see Sisson (2005). For examples of applications in 
the Earth sciences, see Malinverno (2002), Dettmer et al. (2010), Bodin et al. 
(2012a), Ray and Key (2012), Iaffaldano et al. (2012, 2013), Young et al. (2013), 
Tkalčić et al. (2013), Pilia et al. (2015) and Choblet et al. (2014).

In order to illustrate the power of the proposed Bayesian scheme, we applied 
it to the synthetic homogenized profile shown in Fig. 4.6, polluted with some 
Gaussian random correlated (i.e., smooth) noise. The solution is a large ensem-
ble of models parameterized as in Fig. 4.8, for which the statistical distribution 
approximates the posterior probability distribution. As will be shown below, there 
are a number of ways to look at this ensemble of models. Here, in Fig. 4.9, we 
simply plot the 2D marginal distribution on the number of layers and number of 
anisotropic layers. This allows us to quantify the trade-off between anisotropy and 
heterogeneity. The distribution is clearly bimodal, meaning that the smooth equiv-
alent profile can either be explained by many isotropic layers or a few anisotropic 
ones. From this, it is clear that we have not been able to distinguish between real 
and artificial anisotropy. However, we are able (given a layered parameterization) 
to quantify probabilistically the non-uniqueness of the problem.

(4.15)p(d|m) =
1

√
(2π)n|Ce|

× exp

{

−"(m)

2

}

.
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This trade-off may be “broken” by adding independent constraints from other 
disciplines such as geology, mineral physics, or geodynamics. Here, we will show 
how higher frequency seismic data can bring information on the number and loca-
tions of discontinuities and hence enable us to investigate the nature of radial ani-
sotropy in tomographic models.

4.6  Incorporating Discontinuities with Body Waves—
Application to the North American Craton

A smooth equivalent profile brings little information about location of discontinui-
ties, and extra information from higher frequency data is needed. Here, we show in 
a real case how adding independent constraints from converted P to S phases can 
help locating interfaces. Again, here, we place ourselves in the simplest case and 
assume horizontal layering when modeling converted phases. We acknowledge 
that dipping interfaces, or a tilted axis of anisotropy would produce apparent azi-
muthal anisotropy. Accounting for these effects is the subject of current work. We 
construct a 1D probabilistic seismic profile under northwest Canada, by combin-
ing in a joint Bayesian inversion a full waveform tomographic profile (SEMum2, 
French et al. 2013) with receiver functions. The goal here is to incorporate hori-
zontal lithospheric discontinuities into a smooth image of the upper mantle and 
thus investigate the structure and history of the North American craton.

Archean cratons form the core of many of Earth’s continents. By virtue of their 
longevity, they offer important clues about plate tectonic processes during early 
geological times. A question of particular interest is the mechanisms involved in 
cratonic assembly. The Slave province is one of the oldest Archaen cratons on 
Earth. Seismology has provided detailed information about the crust and upper 
mantle structure from different studies, such as reflection profiling (e.g., Cook 
et al. 1999), receiver function analysis (e.g., Bostock 1998), surface wave tomog-
raphy (e.g., Van Der Lee and Frederiksen 2005), or regional full waveform (Yuan 
and Romanowicz 2010).

Fig. 4.9  Posterior 
probability distribution for 
the number of layers and 
number of anisotropic layers. 
This 2D marginal distribution 
allows us to quantify 
the trade-off between 
heterogeneity and anisotropy. 
Indeed, the smooth model 
in Fig. 4.6 can be either 
be explained with a large 
number of isotropic layers or 
a few anisotropic layers
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Recent studies (Yuan et al. 2006; Abt et al. 2010) have detected a structural 
boundary under the Slave craton at depths too shallow to be consistent with the 
lithosphere–asthenosphere boundary. Yuan and Romanowicz (2010) showed that 
this mid-lithospoheric discontinuity (MLD) may coincide with a change in the 
direction of azimuthal anisotropy and thus revealed the presence of two distinct 
lithospheric layers throughout the craton: a top layer chemically depleted above 
a thermal conductive root. On the other hand, Chen et al. (2009)showed that this 
seismic discontinuity as seen by receiver functions overlapped with a positive con-
ductivity anomaly and interpreted it as the top of an archean subducted slab.

This type of fine structure within the lithosphere is not resolved in global tomo-
graphic models such as SEMum2 and hence may be mapped into radial anisot-
ropy. Here, we will explore whether lithospheric layering as seen by scattered 
body waves (receiver functions) is compatible with the radial anisotropy imaged 
from global tomography.

4.6.1  Long-Period Information: A Smooth Tomographic 
Profile

We used the global model recently constructed by the Berkeley group: SEMum2 
(Lekić and Romanowicz 2011; French et al. 2013). This model is the first global 
model where the synthetic waveforms are accurately computed in a 3D Earth with 
the spectral element method. Sensitivity kernels are calculated approximately 
using nonlinear asymptotic coupling theory (NACT: Li and Romanowicz (1995)). 
The database employed consists of long-period (60 < T < 400 s) three-component 
waveforms of 203 well-distributed global earthquakes (6.0 < Mw < 6.9), as well 
as global group-velocity dispersion maps at 25 < T < 150 s.

Compared to other global shear-velocity models, the amplitudes of velocity 
anomalies are stronger in SEMum2, with stronger velocity minima in the low-
velocity zone (asthenosphere) and a more continuous signature of fast velocities in 
subduction zones.

Here, we extract a 1D profile (Fig. 4.10) under station YKW3, located in the 
southern Slave craton, northwest Canada. As seen in Fig. 4.10, the crustal structure 
in SEMum2 is replaced with a single, smooth equivalent anisotropic layer, valid 
for modeling long-period waves. Note also that the high amplitude of radial ani-
sotropy below the crust may be due to unmapped layering at these depths.

4.6.2  Short-Period Information: Teleseismic  
Converted Phases

In order to bring short-wavelength information to the tomographic profile, we 
analyzed waveforms for first P arrivals on teleseismic earthquake records at the 
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broadband station YKW3 of the Yellowknife seismic array. The station was 
installed in late 1989 and has collected a large amount of data. Receiver function 
analysis consists of deconvolving the vertical from the horizontal component of 
seismograms (Vinnik 1977; Burdick and Langston 1977; Langston 1979). In this 
way, the influence of source and distant path effects are eliminated, and hence, 
one can enhance conversions from P to S generated at boundaries beneath the 
recording site. This is a widely used technique in seismology, with tens of papers 
published each year (e.g., Ford et al. 2010; Hopper et al. 2014). For a recent and 
comprehensive review, see Bostock (2014).

Algorithms for inversion of receiver functions are usually based on optimi-
zation procedures, where a misfit function is minimized. Traditionally, this mis-
fit function is constructed by comparing the observed receiver function with a 
receiver function predicted for some Earth model m:

where V(t) is the vertical and H(t) the horizontal (radial) component of the 
observed seismogram, and where v(t,m) and h(t,m) are predicted structure 
response functions for the unknown Earth model m. The fraction refers to a decon-
volution (or spectral division).

A well-known problem is that the deconvolution is an unstable numerical proce-
dure that needs to be damped, which results in a difficulty to correctly account for 
uncertainties. Therefore, for Bayesian analysis, we choose an alternative misfit func-
tion based on a simple cross-product that avoids deconvolution (Bodin et al. 2014):

This misfit function is equivalent to the distance between the observed and 
predicted receiver functions in (4.16). Since discrete convolution in time is 

(4.16)!(m) =

∥

∥

∥

∥

H(t)

V(t)
−

h(t,m)

v(t,m)

∥

∥

∥

∥

2

(4.17)!(m) = ∥H(t) ∗ v(t,m) − V(t) ∗ h(t,m)∥2

Fig. 4.10  Tomographic 
profile under station YKW3 
for model SEMum2
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a simple summation and since seismograms can be seen as corrupted by ran-
dom errors, each sample of the signal obtained after discrete convolution is 
then a sum of random variables, whose statistics are straightforward to calcu-
late with algebra of random variables. This is not the case with deconvolution 
schemes.

Assuming that V(t) and H(t) contain independent and normally distributed 
random errors with standard deviation σ, a likelihood probability function can be 
constructed:

The observed vertical V(t) and horizontal H(t) waveforms needed for inversion 
were obtained by simply stacking a number of events measured for a narrow range 
of backazimuths and epicentral distances (see Figs. 4.11 and 4.12). Influence of 
the receiver structure is common to all records and is enhanced by summation 
(Shearer 1991; Kind et al. 2012). We refer to Bodin et al. (2014) for details of the 
procedure.

This likelihood function thus defined for receiver functions p(dRF|m) can 
be combined with the likelihood function defined above for the Inverse homog-
enization problem p(dtomo|m) for joint inversion of short- and long-wavelength 
information. Since the observations given by the tomographic model dtomo are 
independent of the receiver function observations dRF, the complete posterior 
probability function is then defined as follows:

and can be sampled with the reversible jump algorithm described above. 

(4.18)p(dRF|m) =
1

√

(2πσ 2)n
× exp

(

−#(m)

2σ 2

)

(4.19)p(m|dtomo, dRF) ∝ p(dtomo|m) × p(dRF|m) × p(m)

YKW3

Fig. 4.11  Station YKW3 with the set of events used for receiver function analysis
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4.6.3  Results

Transdimensional inversion was carried out allowing between 2 and 60 layers. As 
noted above, each layer is either described by one or two parameters. An a priori 
constrain for minimum and maximum velocity value and anisotropy in each layer 
was applied. The algorithm was implemented for parallel computers, providing a 
thorough search of the model space, with an ensemble solution made of about 106 
different Earth models. The posterior distribution is approximated from the distri-
bution (i.e., the histogram) of the ensemble of models in the solution (Fig. 4.13). 
The solution is thus given by an ensemble of 1D models with variable number of 
layers, thicknesses, and elastic parameters. In order to visualize the final ensemble, 
the collected models can be projected into a number of physical spaces that are 
used for interpretation.

For example, Fig. 4.13a shows the marginal distribution for S wave velocities 
as a function of depth, simply constructed from the density plot of the ensemble 
of models in the solution. Here, a number of expected lithospheric discontinui-
ties have been imaged, such as the mid-lithospheric discontinuity at 90 km and a 
sharp lithosphere–asthenosphere boundary at 200 km. But interestingly, we also 
note a sharp positive velocity change at 150 km, which establishes the base of an 

Fig. 4.12  Stack of P 
arrivals for receiver function 
analysis for event is shown in 
Fig. 4.11. A total of 44 events 
were used with backazimuths 
between 290° and 320° and 
with ray parameters between 
0.04 and 0.045 s km−1. 
Seismograms were cut for 
the same time window, 
normalized to equal energy, 
and rotated to radial and 
tangential components
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intra-lithospheric low-velocity zone between 90 and 150 km. This low-velocity 
zone is clearly visible in Chen et al. (2007) who inverted Rayleigh wave phase-
velocity observations (20 s < T < 142 s) measured by the Yellowknife array. This 
feature is also observed in the regional full waveform tomographic model by Yuan 
and Romanowicz (2010). This low-velocity zone can be interpreted as a piece of 
archean subducted slab, stacked vertically over another archean block. For a dis-
cussion about upper mantel seismic discontibuities, see Schmerr (2015).

Since here we are interested in the relative contribution of layering to the 
observed anisotropy in SEMum2, we can look at the probability at each depth to 
have intrinsic anisotropy (i.e., ξ ̸= 1). For each model, each layer is either isotropic 
or anisotropic. Therefore, at each depth, one can count the ratio of isotropic to ani-
sotropic layers in the ensemble of models. This is shown in Fig. 4.13b. When no 
information is brought by the data (prior distribution), the probability to have ani-
sotropy is 50 %. However here, the probability is lower and around 20 % across 
much of the depth profile. This implies that intrinsic anisotropy is not required to 
fit the smooth tomographic profile. In other words, the discontinuities required to 
fit the converted body waves may be enough to explain the anisotropy in the tomo-
graphic model. We view this as an important result, indicating that radial anisotropy 
(at least under cratons) should not be directly interpreted in tomographic models.

The third panel in Fig. 4.13c shows the probability distribution for ξ at each 
depth. Note that, for a given depth, around 80 % of models are isotropic with 
ξ = 1, and this distribution only represents the level of anisotropy in the 20 % 
remaining models.
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Note that these are only preliminary results. This study is only a proof of con-
cept, or study of feasibility, which opens a range of potential applications. Let us 
acknowledge a number limitations:

1. Here, we assume that smooth tomographic profiles are the true Earth that has 
been homogenized. Although this has been numerically demonstrated on 1D 
synthetic tests for VTI models (Capdeville et al. 2013), it may not always be 
true. For example, the effect of poor data sampling and hence model regulari-
zation may act as a smoothing operator not accounted for here.

2. Little is known about uncertainties in tomographic models, which are crucial in 
the context of a Bayesian formulation.

3. Here, we only place ourselves in the case of VTI profile. No azimuthal ani-
sotropy is considered. Furthermore, it is well known that lateral heterogenei-
ties (e.g., Moho topography) may also produce apparent radial anisotropy. This 
case has not been considered here.

4.7  Conclusion

Global tomographic imaging is an inverse problem where different types of 
observables (e.g., surface waves, body waves) are used to constrain different 
types of parameters (e.g., P and S wave velocity, anisotropy, density). Different 
measurements have different sensitivities, and all parameters are not equally well 
resolved. Some parameters present strong trade-offs. Furthermore, the elastic 
properties to be constrained are scale dependent. These issues have led seismolo-
gists to simplify the inverse problem and to invert separately different observables, 
different frequency bands, and with different spatial and physical parameteriza-
tions. Thus, different classes of models with different resolving power have been 
published, which are sometimes difficult to reconcile.

Recent theoretical developments as well as increased availability of computa-
tional power have allowed the emergence of full waveform inversion, where the 
full wave-field (and its derivatives with respect to the model) is exactly computed 
with purely numerical methods. Inverting the full wave-field in the time domain 
enables us to combine body and surface waves in the same inversion scheme. The 
recent local, regional, and global applications of full waveform tomography reveal 
indeed an improved resolution. For example, the amplitudes of the imaged anoma-
lies increase, and more small-scale features are constrained. However, a remaining 
challenge is computational cost. One way to keep reasonable the time of com-
putations is to limit the frequency content of waveforms and only invert the long 
periods. As a result, the resolving power of full waveform tomography is mainly 
determined by the minimum period or minimum wavelength.

Elastic properties are scale dependent, and hence, the small-scale heteroge-
neities that are not resolved in tomographic models are mapped into large-scale 
structure. This mapping is nonlinear, which makes large-scale structure difficult 
to interpret. In this study, we have focused on vertical transversely isotropic (VTI) 
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models, where small-scale heterogeneities in S wave velocity are mapped into 
large-scale radial anisotropy.

A method has been proposed to “downscale” smooth tomographic models. 
Given the laws of homogenization which link a medium to its effective long-wave 
equivalent, we are able to explore the space of possible small-scale models that 
are equivalent to a given tomographic profile. We cast this inverse problem in a 
Bayesian formulation, which enables us to probabilistically quantify the trade-off 
between heterogeneity (in our case layering) and anisotropy.

We have applied this method to a tomographic profile of the North American 
craton, and added short-period information from receiver functions, to help locate 
the depth of discontinuities. This allows us to investigate the nature and history 
of the craton. But more importantly, we have shown that a large part of anisot-
ropy present in the tomographic model may be due to unmapped discontinuities. 
Therefore, we conclude that one should not interpret radial anisotropy in tomo-
graphic models only in terms of geodynamics, e.g., mantle flow. The inferred 
radial anisotropy contains valuable information about the earth, but one has to 
keep in mind that this is only apparent anisotropy. It may only be interpreted when 
associated with higher frequency information, or with additional information from 
other disciplines (geology, mineral physics, or geodynamics).

Here, we have assumed that the observed radial anisotropy is either due to lay-
ering or intrinsic radial anisotropy. We recognize that this a strong approxima-
tion. Indeed, both lateral heterogeneities and intrinsic azimuthal anisotropy may 
also contribute to the observed radial anisotropy. Although these effects are not 
considered here, they are the subject of current work. For example, we expect 
observations of azimuthal anisotropy to provide important additional constraints: 
(1) These observations cannot be explained by horizontal layering; (2) they may 
sometimes be due to LPO with a tilted axis of symmetry, in which case part of the 
observed radial anisotropy may still be intrinsic.
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