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Knowledge of the rate of surface uplift of the central Andean Plateau provides important boundary conditions for
regional geodynamic models and paleoclimate reconstructions. Here we present a fully nonlinear inverse
method to extract the rock uplift history of the central Andean Plateau from the Cotahuasi River and its
tributaries. Our approach is based on an analytical solution to the stream power model that relates elevation to
rock uplift history under the assumptions of constant climatic conditions in space and time and spatially invariant
rock uplift. We use a Bayesian framework that allows us to quantify the full state of knowledge of model
parameters (i.e., uncertainties, trade-offs). The erosional efficiency defines the landscape response time, and
this must be determined using independent data. Therefore, using thermochronometric data from the
Cotahuasi–Ocoña Canyon, which record rapid fluvial incision at ~13–10 Ma, we calibrate our results to infer a
rock uplift history for the north-central Andean Plateau. We infer a pulse of rock uplift between 25 and 10 Ma
at rates as high as 0.25 km/My. However, the rock uplift rate inferred during this pulse is not as high as is
predicted if the central Andean Plateau grew as a result of loss of unstable lithospheric mantle. Therefore, our
results are more consistent with models requiring gradual uplift of the central Andean Plateau.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Constraining the surface uplift history of the central Andean Plateau
is important for discriminating between regional geodynamic models
(Barnes and Ehlers, 2009). Surface uplift through large pulses of rock
uplift (b1 km over a fewmillion years) has been proposed as indication
of loss of unstable lithosphericmantle (Houseman et al., 1981) or lower
crustal flow (Husson and Sempere, 2003). Conversely, lower but steady
rates of rock uplift over tens of millions of years support models that in-
voke removal of dense lower lithosphere through continuous processes
such as ablative subduction (Pope andWillett, 1998) or through contin-
uous crustal thickening (e.g., Reiners et al., 2014). Paleoaltimetry esti-
mates (summarized in Garzione et al., 2014) obtained from oxygen
isotopes of precipitation (Garzione et al., 2006), leaf physiognomy
(Gregory-Wodzicki, 2002), and Δ47 paleothermometry (Ghosh et al.,
2006; Garzione et al., 2014) suggest that a rapid pulse of 2 kmof surface
uplift occurred between 16 and 13 Ma in the southern Altiplano and
~7My later to the north,which appear inconsistentwith continuous ab-
lative subduction. However, because each of these surface uplift proxies
depends on critical assumptions that are not easily verified, indepen-
dent estimates of surface uplift provide tests of these findings.
Large rivers have cut deep canyons through the western margin
of the central Andean Plateau across southwestern Peru (Fig. 1A).
Modern negligible erosion rates (b0.001–0.05 mm/y) are observed
at high elevations and on canyon interfluves in northern Chile
(Kober et al., 2007), and thermochronometric data support little
exhumation (b2 km) on the Central Andean Plateau since ~60 Ma
(Schildgen et al., 2007). Therefore surface uplift is approximately
equal to rock uplift and the elevation of the plateau constrains
close to the total amount of rock uplift. In turn, the onset of incision
of these canyons provides minimum constraints on the onset of sur-
face uplift. Cotahuasi–Ocoña Canyon is the deepest canyon, reaching
depths of 3 km below the plateau surface (Fig. 1B). One approach to
constrain the timing of canyon incision is to obtain radiometric ages
of volcanic deposits that drape topography. Such deposits found
b400 m above the modern river indicate that the canyon had almost
reached its present depth by 2–4 Ma (Schildgen et al., 2007; Thouret
et al., 2007). An alternative approach to measure canyon incision is
to exploit thermochronometric methods that record cooling as the
present-day bedrock approached Earth's surface. This approach
suggests that the onset of incision of the central section of the canyon
was approximately 13–10 Ma (Schildgen et al., 2009, 2010). In turn,
the onset of incision provides a minimum age for the onset of
surface uplift.

Additional constraints on Andean uplift history may be provided
through the analysis of functional dependencies that map the input of
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Fig. 1. (A) Topography of the central Andean Plateau showing the location of the Cotahuasi–Ocoña Canyon. (B) Topography of the study region. The dotted black curve shows the
approximate outline of the Cotahuasi–Ocoña catchment. The star shows the location of the thermochronometric data used to calibrate the rock uplift rate history. Data source: SRTM
topographic data (Jarvis et al., 2006).
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rock uplift to the output of topography (Whipple and Tucker, 1999;
Kirby et al., 2003; Whittaker et al., 2007; Kirby and Whipple, 2012;
Roberts et al., 2012; Jeffery et al., 2013; Goren et al., 2014). Therefore,
the topography ‘records’ the forms and magnitudes of the rock uplift
rate history, provided independent data exist that can calibrate this
record (Davis, 1899; Penck et al., 1972). A number of approaches have
been developed to extract rock uplift rate information from topography
based on a stream power model in which erosion is a function of the
local channel slope, upstream drainage area, and bedrock erodibility
(Howard, 1994). A potential limitation of this approach is that changes
in climate associated with surface uplift of the Andean Plateau, leading
to temporal and spatial variations in precipitation (Insel et al., 2010;
Poulsen et al., 2010), may have played an important role in modulating
fluvial incision of the Cotahuasi–Ocoña catchment (Jeffery et al., 2013).
However, the dependence of erosion rates on precipitation across the
Andean Plateau remains debated (Hilley and Coutand, 2010; Norton
and Schlunegger, 2011; Gasparini and Whipple, 2014; Whipple and
Gasparini, 2014).

Here we present a fully nonlinear inverse method to extract a rock
uplift history from digital elevation data of river channels, combined
with geological constraints. Our approach is based on an analytical
solution to the stream power model that relates modern elevation to
past changes in rock uplift history (Royden and Perron, 2013; Goren
et al., 2014), and we use a Bayesian framework that allows us to
quantify the full state of knowledge of model parameters. The erosional
efficiency (Howard and Kerby, 1983) defines the landscape response
time, and this erosional efficiency is not ‘contained’ in the current
topography. Therefore, we use published thermochronometric data
from the Cotahuasi–Ocoña catchment, which record rapid fluvial
incision at ~13–10 Ma (Schildgen et al., 2010), to calibrate our results.
This empirical calibration ultimately quantifies changes in rock uplift
through time for the north-central Andean Plateau. In this contribution,
we first provide a brief description of previouswork that has focused on
extracting tectonic signals from fluvial topography. We then describe
the forward model and our inverse approach to quantify permissible
rock uplift rate histories. As an initial test of our inverse approach and
to highlight the suitability of our method, we apply our approach to
the Inyo Mountain range in the western Basin and Range, USA, which
has a well-constrained rock uplift history (Goren et al., 2014). We
then present the extracted drainage network for the Cotahuasi–Ocoña
catchment and a rock uplift history for this part of the Central Andean
Plateau. Finally, we assess the effects of changes in climate on our
inferred history with a synthetic example.
2. Extracting tectonics from river profiles using the stream
power model

In the stream power model, erosion rate is parameterized as a
function of: (i) the slope of a river profile dz/dx, where z is the surface
elevation and x is distance along the channel; (ii) the discharge that is
parameterized as a function of the upstream drainage area, A; and
(iii) the erosional efficiency, K, that accounts for lithology, climatic
conditions, sediment flux, and hydraulic parameters. Using this
parameterization, the evolution of a detachment-limited fluvial
channel is expressed as

∂z t; xð Þ
∂t ¼ u t; xð Þ−KAm ∂z t; xð Þ

∂x

� �n

ð1Þ

where t is time and u(t,x) is the rate of tectonic rock uplift. The
exponentsm and n are positive constants, and the appropriate values
are debated (Howard and Kerby, 1983; Seidl and Dietrich, 1992;
Tucker and Slingerland, 1994; Whipple and Tucker, 1999; Attal
et al., 2008; Whittaker and Boulton, 2012).

Eq. (1) is an advection equation (Rosenbloom and Anderson, 1994)
and, the response time for information to propagate from the base
level, at x = 0, to a point x upstream is

τ xð Þ ¼
Z x

0

dx0

KA x0ð ÞmS x0ð Þn−1 : ð2Þ

The most commonly used technique to infer rock uplift rate from
topography is an analysis of the relationship between slope and
drainage area, leading to a steepness index (Flint, 1974), ks, that
represents the ratio of the rock uplift rate to erosional efficiency
(Whipple and Tucker, 1999; Snyder et al., 2000; Kirby et al., 2003;
Schoenbohm et al., 2004; DiBiase et al., 2010; Kirby and Whipple,
2012). Calculating slopes from a digital elevation model, however,
accentuates noise (Cohen et al., 2008; Perron and Royden, 2013;
Mudd et al., 2014); and to increase the signal-to-noise ratio,
information from multiple pixels must be averaged leading to
reduced resolution.

A more robust approach to extract uplift rate history is to exploit
analytical solutions to the stream power model (Luke, 1972, 1974,
1976; Weissel and Seidl, 1998; Harkins et al., 2007; Pritchard et al.,
2009; Royden and Perron, 2013), as slope is not required. However,
the erosional efficiency term, K, determines the rate at which a
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Fig. 2. (A) Parameterization of u⁎ as a function of t⁎. The gray circles show the locations
of the nodes that are used to define one-dimensional Voronoi cells. Note that the nodes
are not in the center of the cells. (B) Example of predicted elevations (z) owing to
the u⁎(t⁎) function shown in (A).
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landscape responds to a change in rock uplift rate — and K is often un-
known. To circumvent the requirement that K be known (although as-
suming K is constant in space and time), Royden and Perron (2013)
introduced a variable transformation for the length of a fluvial profile
into a variableχ, which has units of distance but accounts for the scaling
of elevation with drainage area. With this variable transformation, the
analytical solution relates present-day elevation to rock uplift rate
normalized by the erosional efficiency (Perron and Royden, 2013;
Royden and Perron, 2013), and the slope of the χ–z relationship is
proportional to ks.

Inversion of river profiles to infer rock uplift rates was established
by Roberts and White (2010) and by Roberts et al. (2012) for
inferring rock uplift rates as a function of space and time. In these
approaches, the stream power model is solved numerically, and
parameter values defining rock uplift rates can be determined using
a nonlinear inverse method. Linear inverse methods based on analyt-
ical solutions to the stream power model have also been developed
(Fox et al., 2014; Goren et al., 2014). These approaches enable a
greater number of elevation nodes to be analyzed simultaneously
and thus increasedmodel resolution is possible. However, these inverse
methods require that the inverse problem be solved with some form of
model regularization to account for geomorphic noise and the possibil-
ity of mixed determinacy. Therefore, inferred rock uplift histories are
artificially forced to be smooth in time and also in space (when solving
the general space–time problem). In reality, the presence of relict
landscapes at high elevations separated from steeper rejuvenated
landscapes by fluvial knickpoints (e.g. Whipple and Tucker, 1999;
Bishop et al., 2005; Berlin and Anderson, 2007) highlights that
alternative methods may be required to infer nonsmooth changes in
rock uplift rate.

Mudd et al. (2014) developed a statistical framework to identify the
location of fluvial knickpoints based on the χ–elevation relationships
(Perron and Royden, 2013; Royden and Perron, 2013). In this approach,
a linear segment is regressed through a χ–elevation relationship, and
the locations of knickpoints can be chosen at random. In order to
prevent the selection of a complex model that fits every elevation
node including geomorphic noise, a modified Akaike Information
Criteria (AIC) (Akaike, 1974) can be minimized that favors models
that fit the data well and penalizes models that are overly complex.
The solution with the lowest AIC value is the favored solution. This
approach, however, does not provide a statistical measure of the proba-
bility of identifying a knickpoint at a specific χ value or the slope of
the χ–elevation relationship at a specific χ value. Therefore, in some
cases it may be challenging to identify which parts of the solution are
well resolved.

In this work, we address these issues with a transdimensional
algorithm, which presents several advantages: (i) the problem
is cast in a Bayesian framework with no need for explicit
smoothing; (ii) the parameterization of the model is self adap-
tive, where the location and number of change points need not
be defined in advance; and (iii) uncertainties are correctly
accounted for, and one can estimate the variability in the range
of possible solutions.

3. Methods

3.1. Forward model

In this section we present our approach to infer rock uplift rates
from fluvial topography. Throughout this paper, we assume that
n = 1, and incision rate is linear in the local slope (please refer to
Goren et al., 2014, for a discussion on this assumption). Therefore,
Eq. (2) reduces to:

τ xð Þ ¼
Z x

0

dx0

KA x0ð Þm : ð3Þ
The analytical solution for the linear version of Eq. (1) can bewritten
as (Royden and Perron, 2013; Goren et al., 2014):

z 0; xð Þ ¼
Z 0

−τ xð Þ
u t0
� �

dt0 ð4Þ

where t′ is the integration parameter, τ(x) is the response time as
expressed in Eq. (3).

3.2. Scaling out time through the erosional efficiency

As τ(x) is controlled by the erosional efficiency, K, which is often
unknown, we assume that K is constant through time and factor K out
from Eq. (4) by introducing K-scaled variables after Goren et al. (2014):

χ ¼ Am
0 Kτ ð5Þ

u� ¼ u
KAm

0
ð6Þ

and

t� ¼ KAm
0 t ð7Þ

where A0 is an arbitrary scaling area to be consistent with the notation
and dimensionality of Perron andRoyden (2013). This variable transfor-
mation allows us to express topography in a K independent form:

z 0; xð Þ ¼
Z 0

−χ xð Þ
u� t0
� �

dt0 ð8Þ

where χ in Eq. (5) is defined as in Perron and Royden (2013).
It has units of length, but given the kinematic wave nature of Eq. (1),
it contains information on both time and space.

3.3. Inverse model

In order to tackle the inverse problem, we need an approach to
parameterize the rock uplift history. We parameterize u⁎ as a function
of t⁎ using a series of nodes. Each node defines the center of a Voronoi
cell, and t⁎ positions of changes in u⁎ are defined at the boundaries of
the Voronoi cells (where the boundary of two neighboring Voronoi
cells is equidistant between the centers of the two cells), and u⁎ is con-
stantwithin each cell. The number of nodes is variable and describes the
complexity of the model. This concept is shown in Fig. 2A. Here there
are five nodes describing u⁎ as a function of t⁎, which define four
knickpoints identified as changes in slope of the χ–elevation relation-
ship (Fig. 2B). The slope of each segment of theχ–elevation relationship
is equal to the u⁎ value in the corresponding Voronoi cell. The inverse
problem is to infer the probability distribution of u⁎ as a function
of t⁎ or u⁎(t⁎).
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Here we adopt a Bayesian probabilistic framework to propagate
uncertainty associated with the elevation data and produce estimates
of u⁎ along with uncertainties. We define two vectors to simplify
the analysis. The first vector, β, contains the positions of the Voronoi
cells that describe u*(t*): β = [u*, t*] where u* = [u1⁎, u2⁎, …., uk⁎] and
t* = [t1⁎, t2⁎, …., tk⁎], where k is the number of nodes, which is variable.
The second vector, α, contains the observations. In the Bayesian
framework, the probability distribution of u*(t*) we wish to approx-
imate is termed the posterior probability distribution. Following
Bayes' Theorem (Tarantola, 2005; Sivia and Skilling, 2006), the
posterior probability distribution of the model parameters β given
the data set α is a product of the model likelihood function (which
quantifies data fit) with the prior distribution of the model parameters
(which quantifies what is known about the parameters ‘prior’ to the
analysis): the posterior density is expressed as p(β|α); the likelihood
function is p(α|β); and the prior probability is p(β). Therefore, p(β|α)
is expressed as

p βjαð Þ ¼ Cp αjβð Þp βð Þ ð9Þ

where C is a constant that ensures that the posterior probability
integrates to unity; p(β|α) is approximated numerically using aMarkov
Chain Monte Carlo (MCMC) algorithm to efficiently sample a multidi-
mensional parameter space. TheMCMC algorithm is based on a random
walk that samples the space of possible models (Hastings, 1970) and
will be discussed below.

In order to use a Bayesian approach, we also need to define a prior
probability distribution and a likelihood function. Because we assume
that all parameters are independent a priori, we can write

p βð Þ ¼ ∏
k

i¼1
p u�

i

� � � ∏
k

i¼1
p t�i
� � ð10Þ

and for each p(ui⁎) we use a noninformative uniform prior between 0
and umax

⁎ , and for each p(ti⁎) we use a noninformative uniform prior
between tmin

⁎ and tmax
⁎ .

The likelihood function measures the probability that the predicted
and observed data are consistent given a mathematical model for the
random noise distribution. The form of this probability density function
is given by what we think we know about uncertainties on α. We as-
sume that the noise associated with an observed elevation node, zo, is
normally distributed with a mean of zo and a variance σ2. We could
use the vertical error of a DEM to define σ, which can be a few meters
across elevations from 0 to 6000 m. In practice, the noise term repre-
sents geomorphic noise associatedwith landslides, small-scale drainage
dividemigration, changes in lithology, a failure to accurately identify the
active fluvial channel, and simplifications associated with the stream
power model, which is unable to capture small-scale geomorphic
features. In turn, this term describing geomorphic noise is likely to
be much greater than the reported DEM precision. Given this
assumption for the noise distribution, the data likelihood given the
model parameters is

p βjAð Þ ¼ ∏
N

i¼1

1
σ

ffiffiffiffiffiffi
2π

p exp −1
2

zo−zp
σ

� �2� �
: ð11Þ

Note that the level of data noise σ represents the required level
of data fit and, hence, directly determines the complexity of the
solution (the number of changes in rock uplift rate). Since σ accounts
for the combined effects of different sources of noise that are difficult
to quantify, it is also treated as an unknown parameter in the
inversion to be constrained by the data. This type of approach is
called hierarchical Bayes (Malinverno, 2002; Malinverno and Briggs,
2004; Bodin et al., 2012a) because it has two levels of inferences: at
the higher level are ‘hyper-parameters’ such as the level of noise;
at the lower level are the physical parameters of interest (i.e. β)
that represent uplift history. For details, see Bodin et al. (2012a,
2012b).

We use a reversible jump Markov Chain Monte Carlo (rj-MCMC)
algorithm (Green, 1995; Sisson, 2005) to calculate p(β|α), which treats
the numbers of nodes and therefore model complexity as a free param-
eter. In the last decade, the reversible jump algorithm has become
popular in earth sciences and has been applied to a wide range of
areas, such as inversion of DC resistivity sounding data (Malinverno,
2002), geostatistics (Stephenson et al., 2004), geochronology (Jasra
et al., 2006), thermochronology (Gallagher, 2012; Fox et al., 2015),
climate variability (Hopcroft et al., 2009), modeling of stratigraphy
(Charvin et al., 2009), geoacoustic inversion (Dettmer et al., 2010),
inversion of seismic data (Piana Agostinetti and Malinverno, 2010;
Bodin et al., 2013; Young et al., 2013), inversion of electromagnetic
data (Ray and Key, 2012), and plate kinematic reconstruction
(Iaffaldano et al., 2013). This approach is only described briefly
here (see (Gallagher et al., 2009; Gallagher et al., 2011; Sambridge
et al., 2013), for reviews).

The rj-MCMC algorithm is initialized with a series of random
parameter values that describe u*(t*). At each step of the walk,
a new value of a model parameter is proposed based on a perturba-
tion from the current model. The value of the proposed parameter is
drawn from a Gaussian distribution centered on the current model
with a standard deviation to be defined by the user. The proposed
model is accepted or rejected based on an acceptance criterion.
This acceptance criterion is the ratio of the probabilities of the
current and proposed model. The standard deviation of the propos-
al distribution controls the rate at which the algorithm explores
parameter space: if the standard deviation is small, perturbations
are likely to be small and so parameter space is explored slowly,
however many models are likely to be accepted; conversely, if the
standard deviation is large, proposals are generated that are far
from the current model, and possibly in a region of low probability,
therefore they have a high probability of being rejected and so
relatively few proposals are accepted. Once a model is accepted,
this model replaces the current model and a new model is
once again generated as a perturbation of the current model. This



Fig. 4. Location of the Inyo Mountains, with respect to the Sierra Nevada (A) and the
California–Nevada border (B). The Eastern Inyo Fault bounds the Inyo Mountains to the
east and is the main structure uplifting the Inyo Mountains. The Saline Valley is an
endorheic basin and defines the baselevel for rivers that drain the eastern flank of the
Inyo Mountains. Rivers used in the analysis are shown as black lines. Data source: SRTM
topographic data (Jarvis et al., 2006).
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process typically is repeated 10,000 s of times. Accepted models are
asymptotically distributed according to the target distribution in
Eq. (9). They are saved and combined, and this ensemble is used
to approximate the posterior probability density function.

For our problem, we have five distinct proposals that are possible:
(1) the t* value of a node can move (Move); (2) the u* value at a node
can change (Change); (3) the number of nodes describing u*(t*) can
be increased (Birth); (4) the number of nodes describing u*(t*) can be
decreased (Death); and (5) the value of σ defining data noise can also
change (Noise). Proposals (1–4) are highlighted in Fig. 3. The proposed
perturbations are drawn from Gaussian distributions centered on the
current model with specified standard deviations of θ1 through to θ5
for proposals (1) to (5).

Proposals are accepted based on an acceptance probability. For
Move, Change, and Noise proposals [i.e., (1), (2), and (5)] the accep-
tance probability is proportional to the likelihood ratio of the proposed
and the current models. This approach ensures that proposals that
improve data fit are always accepted, while those that decrease it are
accepted with probability equal to the ratios of the likelihoods. For
Birth and Death proposals [i.e., (3) and (4)], the acceptance criteria
favormodels that reduce datamisfit, yet penalizemodels that are overly
complex. This penalty is inflicted because although increasing the
number of model parameters generally leads to a better fit to the data,
it also changes the ratio of the prior probabilities for the current and
proposed models. In particular, the introduction of an additional
parameter leads to a much larger volume over which the prior is
distributed. For a detailed description of the algorithm, we refer the
reader to Bodin et al. (2012a).

MacKay (2003) showed that the magnitude of perturbations does
not affect the solution but rather the sampling efficiency of the
algorithm. Thus the standard deviations (θ1 through θ5) of the Gaussian
proposal functions need to be tuned by trial-and-error in order to have
an acceptance rate as close to 44% for each type of perturbation
(Rosenthal, 2000).

The transdimensional posterior distribution is defined in a 2 ∗ k
parameter space, where k is the number of nodes, and thus, is challeng-
ing to interpret. Therefore, we project the posterior distribution into a
different space and simply show a density plot of sampled rock uplift
histories u*(t*). To obtain a ‘solution’ for interpretation, we can simply
average all the sampled models u*(t*), by taking the mean of the
distribution of u* at each t* or take a model which passes through the
maximum of the posterior distribution.
4. Validation study: Inyo Mountains, CA, USA

In this section, we start with a validation of our method using a
previously studied example from a tilted block in the Basin and Range
province. We choose the Inyo Mountains because the river profiles
have been extensively analyzed using the sameunderlying assumptions
that we adopt, except that the inverse problem was tackled using a
linear approach (Goren et al., 2014). Therefore, we can use the Inyo
Mountains to compare our inversion approach against results obtained
using a linear approach.

The Inyo Mountains are a NNW–SSE trending mountain range,
with relief of almost 3 km, along the western boundary of the Basin
and Range province in California (Fig. 4). The Inyo range is the first
uplifted block east of the Sierra Nevada and south of the White
Mountains. The normal Eastern Inyo Fault (EIF) bounds the Inyo
Mountains to the east and has facilitated 1.5 km of exhumation
over the past 2.8 Ma (Lee et al., 2009). Furthermore, the lithology is
relatively uniform across the range (Streitz and Stinson, 1974;
Ross, 1976). Therefore, rivers draining the eastern flank of the Inyo
Mountains, to the flat Saline Valley, provide information on the
relative rock uplift rate with respect to the sedimentary fill in the
Saline Valley (Goren et al., 2014).
4.1. Inyo data set

Our dataset is composed of six drainage basins that originate at the
main water divide of the Inyo Mountains and drain the eastern flank
toward the EIF and the Saline Valley (Fig. 4). Elevation data were
extracted from a 30 m National Elevation Dataset (NED) digital eleva-
tion model (DEM) (Gesch et al., 2002; Gesch, 2007). We extracted
flow direction and upstream drainage area using the ArcGIS flow
routing algorithm, and the fluvial drainage network by applying a
1-km2 threshold for contributing area.

Fig. 5A shows theχ− z relationship for the Inyo data set, calculated
withm=0.3 and A0 = 10 km2, after Goren et al. (2014). The relatively
well-defined trend, with only a few outlier segments, supports the
assumption that these rivers shared a common rock uplift history. The
χ − z relationship also shows variations in slope; and as lithology is
relatively uniform in space, K is also likely to be relatively uniform
in space, and thus changes in this slope are indicative of temporal
variations of rock uplift rate (Perron and Royden, 2013; Royden and
Perron, 2013). In the following section we present estimates of changes
in the slope of this relationship obtained using a linear inverse method
and the rj-MCMC algorithm presented above.

4.2. Comparison of nonlinear and linear inversion results

Goren et al. (2014) presented a linear method to infer rock uplift
rates from river profiles. In their approach, the integral expression in
Eq. (8) can be discretized into lengths of Δt*, and a vector of u* can be
defined with an entry for each Δt*. Therefore, the elevation of an
elevation node can be described as

zi ¼
XM−1

j¼1

Δt�u�
j þ Riu

�
M ð12Þ
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where Ri is the remainder of the division χi/(M − 1). A discrete
expression for each node in the fluvial network can be defined and,
as each node provides information on different portions of the
same u* vector, each expression can be combined as Au* = z. Here,
the matrix A contains blocks of scaled time, such that rowi sums
to χi. The resulting linear system of equations can be solved using a
damped least squares method

u� ¼ u�
pr þ ATA þ ΓI

	 
−1
AT Au�

pr−z
	 


ð13Þ

where Γ is a damping parameter and upr⁎ is the prior u* vector used
to de-trend the data, see Goren et al. (2014) for details. The damping
term is used to stabilize the inverse problem, which is often
ill-conditioned. Without damping, small errors in the data would
propagate into very large errors in the recovered model, and the
solution may be unstable and not realistic. Conversely, if the solution
is overdamped, resolvable features in the χ–elevation relationship
will be missed. The damping penalizes models that are far from upr⁎.
In this way, the solution model in Eq. (13) can be seen as a solution
that minimizes two terms: (i) the least square misfit to the data;
and (ii) the distance to the reference upr⁎ . Indeed, note that u* =
upr⁎ if Γ goes to infinity. Therefore Γ governs the relative contribution
of these two terms.

Fig. 5B shows the results of the linear inversion with 50 time steps.
Each curve represents a different result with a different value for the
dampening parameter, Γ. These results show similar characteristics,
although the magnitudes and timings of changes of u* inferred for
different values of Γ are quite different. Note that data noise cannot
be propagated into model uncertainties in such a regularized
(damped) inversion procedure, and there are no uncertainty esti-
mates associated with the solutions. Goren et al. (2014) determined
a value for the erosional efficiency of K=2.03 × 10−5 m0.4 y−1, using
thermochronometric data that record 1.5 km over the last 2.8 My.
We also use this value of K to calibrate our results.

Next, we applied the rj-MCMC algorithm to the same data set. The
algorithm was implemented on 64 parallel cpus to generate indepen-
dent rj-MCMC chains, starting at different random points, and sampling
themodel space simultaneously and independently.We ran 106models
on each cpu, and tuned the values defining the proposal probabilities so
that acceptance rates for proposals (1)–(5) are between 25 and 45%. The
first 10,000 models form the ‘burn in’ phase, after which the Markov
chain is thought to have converged. These first models are discarded
from the posterior distribution as they are very sensitive to the initial
model, which is chosen at random. The posterior ensemble is the com-
bination of accepted models from each cpu. Fig. 6A shows the results of
the rj-MCMC algorithm for the same data set. Here the colors relate to
the posterior probability of u*(t*) and the range of u* shows the prior
values. The black and gray lines show themaximumof the posterior dis-
tribution and the expected model (respectively), which is a weighted
average of the full posterior distribution. These models are useful
ways to characterize the full posterior distribution.

In addition, we can calculate the probability of a change in u* at any
point in t* (Fig. 6B). As in the linear example, we set the erosional
efficiency K=2.03 × 10−5 m0.4 y−1 after (Goren et al., 2014) to rescale
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the rock uplift rate history. Finally, we can extract estimates of the num-
ber of phases of rock uplift rate (Fig. 7) and the σ value, representing
geomorphic noise (Fig. 7).

Results obtained using the fully nonlinear inversion scheme (Fig. 6B)
show similar results to results obtained using the linear inversion
scheme (Fig. 5B) with carefully chosen damping parameters and time
step lengths. The similarity between these two solutions validates our
inversion approach. In both cases, from 4 to 3 Ma, the relative uplift
rate is roughly constant at about 0.4 mm/y, then from 3 Ma to ~1 Ma
it increases gradually to a value of 0.55mm/y. This is followed by a faster
increase to a value of ~0.68 mm/y at about 1 Ma, which then stays
roughly constant until the present. The advantages of our nonlinear
approach are described below. First, user-defined damping parameters
are not required and thus the nonlinear inversion scheme is more
robust. Second, we are able to quantify the full state of knowledge of
the model parameters. For example, between ~1.5 Ma and 2 Ma the
posterior distribution displays 3 peaks with almost equal probability.
Third, we predict the probability of identifying a fluvial knickpoint at
specific χ values within the landscape. In the case of a damped linear
inversion, knickpoints may be obscured by imposed smoothness or
noise in the data set. This is observed in Fig. 5B where robust trends
are more easily recognizable in the highly damped solutions; however,
discrete jumps in rock uplift rate are less well recovered. In contrast,
with little damping, we predict chaotic jumps in rock uplift rate that
are not representative of reality. Furthermore, the exact χ value of a
knickpoint may be incorrectly identified, as it would be required to be
a multiple of the timestep length. The disadvantage of our approach is
that many models are required to approximate the posterior distribu-
tion, thereby increasing computational time. In this example, the linear
inverse solution takes approximately a second, while the nonlinear
scheme takes several hours. This comparison demonstrates that our
inversion approach is able to recover the correct rock uplift rate history
(under the assumptions of block rock uplift, constant K in space and
time, and that erosion can be parameterized using a detachment-
limited linear stream power model) along with an estimate of when
changes in rock uplift rate are required by the topography.
5. Southwest Peru χ data set

Having demonstrated the applicability of ourmethod,we now apply
it to the Cotahuasi–Ocoña catchment in Peru using the 4He/3He
thermochronometric data from Schildgen et al. (2010). We extracted
the drainage network for the Cotahuasi–Ocoña catchment from the
global hydrological database (Lehner et al., 2008), which has a resolu-
tion of ~90 m. We calculated χ values for all pixels with an upstream
drainage area N1 km2, using A0 = 1 m2. A value of m was estimated
following a trial and error approach, in which we systematically
varied m and inspected elevation scatter after Willett et al. (2014). We
found that a value of m = 0.35 resulted in little elevation scatter with
clear tends in the χ–elevation relationship that are indicative of
river capture. In addition, we expect that values of m and K will covary
(e.g. Berlin and Anderson, 2007; Croissant and Braun, 2014) such that
if we select a different value of m, a different value of K will be deter-
mined during the calibration phase, although the inferred rock uplift
history would be similar. Therefore we do not expect the exact value
of m to be a primary source of uncertainty in the analysis. However,
as the elevation scatter is sensitive to m, using a different value of m
will likely lead to a different inferred value of geomorphic noise.

The resulting map of χ values shows that numerous small-scale
drainage divides at relatively low elevations appear to be migrating
(Fig. 8A), where different values of χ are identified on different sides
of drainage divides (Shelef and Hilley, 2014; Willett et al., 2014). We
assume that these small-scale effects will have a negligible effect on
our conclusions. However, larger-scale drainage basin reorganization
is also observed in the upper reaches of the Cotahuasi–Ocoña catchment
and can be identified from the map of χ by the differences in χ values
across divides (Fig. 8B).

We expect that the process of drainage basin reorganization will
have an appreciable effect on the inferred rock uplift history (Willett
et al., 2014). To assess this effect, we show χ values as a function of
elevation (Fig. 8C). Here we have reduced the number of pixels in the
drainage network from 31,778 by a factor of 10, to increase the clarity
of the figure, but note that we use the full data set for the analysis



Fig. 8. (A) χ values for the Cotahuasi–Ocoña Canyon and tributaries. We use a value ofm= 0.35 and A0 = 1 m2 to calculate χ. (B) χ values highlighted for the black box in (A). Here the
drainage basin at the center of the panel appears to be losing drainage area as theχ values at the drainage divides are larger than the neighboring basins. (C)χ–elevation relationship for
the drainage network shown in (A). Considerable scatter in the data masks obvious trends.
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presented below.We observe an increase inχ as a function of elevation
with a close to linear increase with elevation up to ~4000 m and a χ
value of ~100 m. We observe considerable scatter in this χ–elevation
relationship, which makes identifying robust trends challenging. In the
subsequent section we extract the posterior probability u*(t*) along
with a term describing this scatter reflecting geomorphic noise.

6. Results and discussion

We applied the rjMCMC algorithm to the χ–elevation data set for
the Cotahuasi–Ocoña catchment. As in the Inyo Mountains example,
we tuned the values defining the proposal probabilities so that
acceptance rates are between 25 and 45% and discarded models from
the ‘burn in’ phase.
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Results highlight a complex u* function with variable uncertainty
through t* (Fig. 9A). The solid black line shows the expected model,
which is the weighted average of the posterior probability and is
effectively the mean solution. Fig. 9B shows the relative probability
that changes in u* occurred at specific values of t*. We identify at least
four distinct changes of u*. Several other changes in u* may also be
identified, but these are associated with lower probabilities and
are less reliable. In general, we observe that where the scatter in the
χ–elevation relationship is larger, we predict larger uncertainty in the
u* function.

The misfit between the measured and predicted elevations for the
inferred u*(t*) function can be compared using two approaches. We
predict elevations using a model of u*(t*) that passes through the
maximum of the posterior distribution and Eq. (8). First, we plot
model residuals as a function of space. These residuals indicate whether
the errors are randomly distributed or whether there are systematic
residuals indicating that our model fails to capture certain complexities.
Although many of the residuals are small and randomly distributed,
we also observe areaswith large, systematic residuals (Fig. 10A). In par-
ticular, the basin in the upper reaches of the Cotahuasi–Ocoña catch-
ment — that we identified as actively loosing drainage area — shows
systematic positive residuals. This indicates that this catchment is not
incising at the same rate as the surrounding basins and thus plots higher
on the χ–elevation relationship. Another region of large residuals is
shown in the eastern region of the analysis. Here multiple volcanoes
rise out of the relatively flat plateau. These volcanoes are short
wavelength features that do not reflect rockuplift, andourmodel poorly
reproduces their elevations. We also observe large residuals at ~−16°S
that may be related to a combination of drainage divide migration, and
short wavelength uplift associated with active structures that are
observed farther to the south (Schlunegger et al., 2006).

To further investigate themisfit between themeasured and predict-
ed elevations for the inferred u*(t*) function, we show the predicted el-
evation data as a function of measured elevation (Fig. 10B). Departures
from the 1:1 line highlightwhere the observed data are poorlymatched
by the predicted data. In general, the correlation between the observed
data and the predicted data is good for all elevations, and the r2 value is
equal to 0.89. This highlights that the simple block uplift model we
assume can explain ~90% of the observed data.

In order to calibrate our results to an absolute time scale, we use
apatite 4He/3He thermochronometric data from the Cotahuasi–Ocoña
catchment (Schildgen et al., 2010). In Fig. 12, we show a randomly
generated set of time–temperature paths that fit the 4He/3He data,
after Schildgen et al. (2010). Since the 4He/3He data constrain the path
and rate of cooling through ~80–30 °C (Shuster and Farley, 2004),
they constrain the timing of 2–3 km of canyon incision. These data



Fig. 10. (A) Map of residuals for the maximum of the posterior distribution. (B) Model-predicted elevation as a function of observed elevation. The predicted elevations agree reasonably
well with the observed data, indicated by the high R2 value.
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indicate that bedrock now exposed at the base of the middle portion of
the canyon cooled rapidly from 10 to 3Ma. Therefore, we use these data
to calibrate our model by calculating an incision history for the canyon
using our uplift function that passes through the maximum of the pos-
terior distribution and Eq. (8). In order to use this integral expression
to calculate topography at a different t* value, we shift the integral
bounds by the relevant amount (Goren et al., 2014). We then calculate
K-scaled erosion rate using the stream power model through the t*
history (Fig. 11). In turn, we extract K-scaled erosion rate history for
the same portion of the canyon as where 4He/3He thermochronometric
data have been obtained. Based on the low measured surface heat flux
of 30 to 60 mW/m2 for the inland regions of the forearc (Springer,
1999), we assume a geothermal gradient of 20°/km to compare the
exhumation history we infer with the cooling paths. By using a range
of K values, we can adjust the erosion rate history to match the cooling
history constrained by the data. We find that a K value of 4 m0.3 My−1

provides a reasonable fit to the cooling history (see Fig. 12).
Using this calibrated K value, we are able to rescale u* and t* to u and

t (Fig. 9A). Our results suggest that the onset of rock uplift of the central
Fig. 11. K-scaled erosion rate for predicted topography using the maximum posterior model
correspond to 0 and 10Ma and the erosion rate color scale varies from 0 to 0.32 km/My. At t⁎=
separates the region of low K-scaled erosion rate from the lower reaches of the canyon. By the pr
K-scaled erosion rate is predicted at intermediate elevations. In addition, low K-scaled erosion
Andean Plateau occurred at ~25Ma, almost 10Ma y earlier than the ob-
served increase in the rate of canyon incision (Schildgen et al., 2010).
Several later episodes of rock uplift are inferred with a rapid increase
in rock uplift rate at ~25 Ma. Rates of rock uplift range between close
to 0 mm/y, during the earliest part of the rock uplift history constrained
by the river profiles, to ~0.25 mm/y over the time interval 20 to 10 Ma.
A decrease in rock uplift rate is also resolved at ~10 Ma. This recent de-
crease also leads to a decrease in erosion rate over the last 2 Ma within
the canyon,which is consistentwith 40Ar/39Ar ages of 2.261±0.046Ma
for a basaltic andesite flow sampled 125 m above the present valley
floor (Schildgen et al., 2007). Farther upvalley, an ignimbrite (05TS25)
perched ~400 m above the present valley shows that ~75% of the
canyon depth (1.6 km total local incision) was cut before 3.825 ±
0.016 Ma. However, we overpredict the amount of incision over the
last 2 Ma, and this is discussed below.

Jeffery et al. (2013) analyzed the form of the trunk channel of the
Cotahuasi–Ocoña catchment, along with incision constraints, to derive
a rock uplift rate history and infer key parameters controlling fluvial
incision. In their analysis, they adopted an alternative forward model
at t⁎ = 40 m (B) and the present day, t⁎ = 0 m, (A). If K = 4 m0.3 My−1 these t⁎ values
40m (B), K-scaled erosion rate is low across much of the catchment. A fluvial knickpoint

esent day (A), low K-scaled erosion rate is predicted for the highest reaches. A band of high
rate is predicted at lower elevations.
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to simulate fluvial incision that incorporated the effects of channel
width and threshold incision rate. Furthermore, precipitation was
assumed to increase through time owing to the orographic effect of
plateau uplift based on simulated changes in regional climate (Insel
et al., 2010; Poulsen et al., 2010). Using a Monte Carlo approach in
which the complexity (i.e., number of phases of rock uplift) of the
model was specified a priori, different rock uplift rate histories and flu-
vial incision parameters were investigated. Importantly, the magnitude
of the rates of rock uplift, and the decrease in rates at 10 Ma, presented
here are consistent with the results of Jeffery et al. (2013), despite the
linear stream power model we adopt. The rock uplift rate we present
in Fig. 9A, however, appears to be more punctuated. One explanation
for this is that the results of our inversion of the χ–elevation data
have been rescaled to a rock uplift history using a single value of K.
In fact, different values of K will lead to different rock uplift rate
histories, and some of these will be less punctuated. Therefore, we
convey the additional surface uplift histories for different values
of K that fit the cooling histories inferred from the 4He/3He in the
subsequent section.

6.1. Independent constraints and additional complexities

Independent estimates of surface uplift provide a means to validate
our results and test the underlying assumptions. Paleoelevation
estimates have been made across much of the Altiplano, and these are
summarized in Fig. 13. These constraints, from a wide range of tech-
niques, suggest a rapid pulse of 2 km of surface uplift occurred between
16 and 13 Ma in the southern Altiplano and ~7 My later to the north
(Gregory-Wodzicki, 2002; Garzione et al., 2006, 2014; Ghosh et al.,
2006). In addition, Picard et al. (2008) used molecular phylogenetics
of highland biotaxa to estimate that the plateau had reached heights
of 2.0–2.5 km by the middle to late Miocene. However, estimates of
paleoatmospheric temperatures from hydrogen isotope analysis (δD)
in volcanic glass from Miocene deposits found b200 km east of the
Cotahuasi–Ocoña catchment, suggest that this part of the plateau had
reached its current elevation by 16 Ma (Saylor and Horton, 2014).
These differences indicate that the surface uplift history may be more
complex than previously thought (Saylor and Horton, 2014). To com-
pare our inferred rock uplift rate history with independent estimates
of surface uplift, we calculate topography through time and track the
highest calculated elevation point. The inferred surface uplift rate
histories for K = 3, 4, 5, and 6 m0.3 My−1 are shown in Fig. 13 and are
predictably different for each K value.

The history of surface uplift thatwe constrain agrees reasonablywell
with the overall trend of surface uplift determined from independent
constraints (Fig. 13). Interestingly, our results for the preferred K value
of 4 m0.3 My−1 are more consistent with the surface uplift record of
the southern Altiplano than the central Altiplano. The internal consis-
tency of these independent data sets builds confidence in the underly-
ing assumptions of our analysis. However, the rate of surface uplift
during the uplift pulse (i.e. from 20 to 10 Ma) quantified from our
river profile analysis appears to be less than the rate inferred from the
stable isotope and leaf physiognomy paleoelevation studies (Fig. 13).
In the following two sections, we discuss two complexities in our
analysis, which may lead to an underestimation of the rock uplift rate
during this pulse.

6.2. Influence of climate change

It has been proposed that the regional climate became increasingly
arid through the Miocene (Hartley, 2003; Schlunegger et al., 2010;
Pingel et al., 2014) because of the rain shadow produced by uplift of
the Andean Plateau. Alternatively, it has been proposed that uplift of
the Andean Plateau has led to increased precipitation across the Andean
Plateau (Insel et al., 2010; Poulsen et al., 2010), which leads to higher
precipitation in the headwaters of the Cotahuasi–Ocoña catchment
(Jeffery et al., 2013). Thus our assumption of uniform K through time
may be invalid. If the climate did change, the inferred rock uplift
rate would be overestimated for some parts of the history and
underestimated for other parts, and this distortion will depend on
(i) the function of the climate change leading to a change in K, and
(ii) the time interval over which we use independent measures of
rock uplift rate or incision to calibrate the results. We highlight
these effects with a simplified synthetic example designed to resem-
ble the inferred rock uplift rate and possible climatic scenarios in the
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Fig. 14. Influence of climate change on inferred rock uplift history. (A) Rock uplift history
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Cotahuasi–Ocoña catchment. A 300-km-long river profile was
modeled using the rock uplift rate history shown in Fig. 14A. We
used Hack's law,

L ¼ 1:6A0:6 ð14Þ

where L is channel length and A upstream drainage area (Hack,
1973) to assign values of upstream drainage area along the length
of the river. The exponents in the stream power model were m =
0.4 and n= 1. The stream power model was solved using an implicit
finite differencemethod (Braun andWillett, 2013) with time steps of
0.01 My and grid nodes every 300m along the length of the river. We
modeled three different climatic scenarios by changing the value of
the erosional efficiency, K, through time (Fig. 14A): (i) K is set to
2 m0.2 My−1 for the entire history; (ii) K decreases at 25 My into
the simulated rock uplift history to 1 m0.2 My−1 to reflect a decrease
in erodibility or an increase in aridity; (iii) K increases at 25 My into
the simulated rock uplift history to 4m0.2 My−1 to reflect an increase
in erodibility.

Fig. 14B shows the simulated longitudinal profiles of the rivers
for the three geomorphic scenarios. All profiles show four distinct
segments that represent (from the top of the profile downstream)
the relict landscape prior to any uplift, the initial low uplift rate,
the pulse of high uplift rate, and the return to low rock uplift rate.
In the second climatic scenario in which K decreases at 25My, dotted
profile, the knickpoints separating these segments are all shifted
downstream compared to the reference model. Conversely, in the
third climatic scenario, dashed line, knickpoints are located farther
upstream as the increase in K leads to an increased rate of knickpoint
retreat. In turn, these profiles have dramatically, yet predictably,
different χ–elevation relationships, and therefore the u* history we
infer would be very different. However, the inferred values of K
would also be very different.

To calibrate the results, we assume that thermochronometric data
exist that record the correct amount of incision associated with the
pulse of rock uplift rate at the correct time. These data could come
from close to the base level of the river and would record exhumation
over the last 30 Ma. Using these synthetic data we convert χ to τ
(Fig. 14C) and the slope of this relationship provides an estimate
of the rock uplift rate. For the first climatic scenario, the slope of the
τ–elevation relationship provides the reference rock uplift rate history,
which was used to produce this relationship. For the second climatic
scenario, the τ–elevation relationship overestimates the rock uplift
rate during the recent history and part of the pulse until ~25 Ma,
which is the time of change in K, when the slope decreases with respect
to the reference model. In contrast, the third climatic scenario leads to
an opposite effect. All rock uplift histories are forced to pass through
the constraint provided by the thermochronometric data of ~3500 m
of rock uplift over the last 30 Ma. In reality, the potential to under- or
overestimate portions of the rock uplift rate history would be a function
of complicated variations of K through time and a function of the time
over which rock uplift rate has been constrained.

We observe features in our results that support a decrease in K
through time, indicative of a change in climate, during or after surface
uplift of the Andean Plateau. In particular, our results do not capture
the very low, recent erosion rates that are constrained by the basaltic
andesite flow found 125 m above the present valley floor (Schildgen
et al., 2007). Indeed, if this constraint alonewas used to calibrate our re-
sults, a K value of ~1m0.4 My−1 would be inferred (dashed line Fig. 12).
However, as we have used the thermochronometric data that constrain
erosion rate over a longer period of time, the general features of our
inferred uplift history are robust as shown by the synthetic example.
In future studies, erosion rate constraints through time may provide
the leverage to infer a continuous record of how K varies through
time, by identifying changes in erosion rate without the corresponding
changes in the τ–elevation relationship.

6.3. Linearity of the stream power model

An alternative explanation of the slow recent erosion rates may be
related to a failure of the linear stream power model to adequately
describe the evolution of the catchment. Two possible complexities to
the stream power model may lead us to underestimate the rock uplift
rate during the pulse. First, a sediment flux dependence on the river
incision has been proposed in several settings (Sklar and Dietrich,
1998; Whipple and Tucker, 2002; Wobus et al., 2006; Lamb et al.,
2008; Lague, 2010; Yanites et al., 2011). This would lead to a degrada-
tion of steep channel segments through time, therefore an abrupt
pulse of rock uplift rate would appear as a smoother feature in our
results, and themagnitude of the pulsewould be underestimated. In ad-
dition, a transition to a transport-limited system may be expected
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following a decrease in rock uplift rate; and this could potentially
explain the low erosion rates averaged over the last 2 Ma, as proposed
by Jeffery et al. (2013). Second, if the exponent on the slope of the
stream power model, n, is greater than one, as has been suggested
(Kirby and Whipple, 2001; Attal et al., 2008), the magnitude of the
pulse of rock uplift rate would also be underestimated, as shown by
Goren et al. (2014). As above, incorporating geological constraints
may provide the leverage to infer erosional parameters, as has been
investigated by Jeffery et al. (2013). Therefore, incorporating geological
data into our analysis in the future may provide redundant information
that can be exploited to further our understanding of fluvial erosion.
6.4. Spatial variations in rock uplift rate and precipitation

We have assumed that the rock uplift rate and precipitation are
both spatially uniform; in this section we investigate implications of
that assumption. Evidence exists for active growth of a large-scale
(N20 km) anticline within the forearc to the south of our study site
(Schlunegger et al., 2006). If a band of high rock uplift caused by
anticline growth influenced the Cotahuasi–Ocoña catchment, a corre-
sponding band of steepened rivers would be expected, forming a
stationary knickzone. Our analysis would mistake such a band of steep-
ened rivers for a transient signal resulting from a pulse of rock uplift.
However, we do not interpret our inferred pulse in rock uplift as
owing to such anticline development because we see no evidence for
this large-scale structure in the vicinity of the Cotahuasi–Ocoña catch-
ment. There is evidence for small-scale faulting within the forearc in
this region; however, there is only ~100m of vertical movement across
the largest fault since ~16 Ma (Roperch et al., 2006; Schildgen et al.,
2009). Finally, the presence of a regional paleosurface attests to signifi-
cant regional tilting since 16Ma, and tilted forearc deposits in northern
Chile provide evidence of 1 to 2 km of differential uplift of the plateau
margin relative to the coast after 11 to 10 Ma (Schildgen et al., 2007;
Jordan et al., 2010). If lower rock uplift rates are found at the southern
margin of the catchment and the channel is incising in response to
this tilting, the channel steepnesswould be expected to increase toward
the north. Under the assumption of spatially invariant rock uplift rate,
we would thus infer a decrease in rock uplift rate through time as the
dominant trend inχ values is increasing toward the north. Importantly,
this tilting would not lead us to infer a pulse of rock uplift.

Measured modern precipitation is not spatially uniform; along the
western flank of the central Andes at 15 to 17°S precipitation ranges
from 8 mm/y at the coast to 1000 mm/y at 4500 m elevation
(Houston and Hartley, 2003; Steffen et al., 2010). The main effect of
this differential precipitation is that the relationship between drainage
area and discharge will break down and thus Am will poorly approxi-
mate discharge. However, as themain channel runs roughly perpendic-
ular to the gradient of precipitation, changing the value of m, we can
account for the first-order effects of spatial variations in precipitation.
This is a potential explanation for why we inferred a value of m =
0.35, as opposed to the canonical value of m = 0.5: using m = 0.35
decreases the rate at which Am approaches 0, effectively providing
higher discharge in the headwaters relative to the trunk channel.
However, in the southern part of the catchment, the main trunk will
have a higher discharge than the tributaries, compared to what would
be expected based on the upstreamdrainage area. Therefore, tributaries
in the south will become steeper than expected. We note that these
southern tributaries are associated with systematic residuals. It is
unclear whether these residuals are the result of spatial variations in
precipitation or drainage divide migration. We do not explore this
differential precipitation further because of uncertainty associated
with projecting this spatial pattern of precipitation back through time.
Further work is required to account for spatial variations in rock uplift
or precipitation within our inverse framework, and this may explain
more of the scatter in the χ–elevation relationship.
7. Conclusion

We have developed a new approach to investigate rock uplift
histories from fluvial drainage networks. We use a fully nonlinear
Bayesian approach to describe posterior probability of u*(t*) along
with the probability of changes in u* at a specific value of (t*). In addi-
tion, our approach enables us to quantify geomorphic noise, which
may be associated with a large range of processes. In this respect, our
approach enables us to distinguish between changes in rock uplift
and small-scale features of the topography, with respect to the total el-
evation change. Interrogating the residuals would enable the processes
responsible for landscape evolution to be revealed with increased
clarity. However, it is important to note that a large percentage of the
topography of the Cotahuasi–Ocoña catchment can be explained with
a relatively simple uplift history.

The inversion approach utilized here enables us to overcome a
number of well-known issues associated with standard inversion
schemes. First, the Bayesian inference approach provides a stable solu-
tion with no need for explicit regularization; that is, no user-supplied
damping term nor tuning of trade-off parameters are required. Second,
the procedure involves a dynamic parametrization for themodel that is
able to consider the variability of the information provided by data. The
output is an ensemble of models for uplift history that are distributed
according to a posterior probability distribution. Meaningful statistical
information can be extracted from this ensemble ofmodels. Uncertainty
estimates can also be inferred,whichbetter capture the variability in the
range of possible solutions than a single (e.g. best) model. However,
a limitation of this approach over the linear inversion approach is that
many forward models need to be run.

We have inferred a rock uplift history for the north-central
Andean Plateau from the Cotahuasi–Ocoña catchment and available
thermochronometric data. By using thermochronometric data, which
record exhumation over the last 10 My, to calibrate the results enables
us to ‘average-out’ the effects of short-term changes in K. Our calibrated
rock uplift history reveals a pulse of rock uplift between 25 and 10Ma at
rates as high as 0.25 km/My. However, the rock uplift rate inferred dur-
ing this pulse is not as high as is predicted if the central Andean Plateau
grew as a result of loss of unstable lithosphericmantle (Houseman et al.,
1981) or lower crustal flow (Husson and Sempere, 2003). Instead, our
results are more consistent with models that require gradual uplift of
the north-central Andean Plateau. Alternatively, the analysis of river
profiles here may lead to an underestimation of the rate of rock uplift
during the pulse because of unaccounted complexities, for example
nonlinearity in the stream power model owing to a sediment flux
control on fluvial incision or changes in regional climate. By combining
independent estimates of rock uplift rate or surface uplift, these com-
plexities can be incorporated into the model for further investigation.
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