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We present a method to quantify abrupt changes (or changepoints) in data series, represented as a function of
depth or time. These changes are often the result of climatic or environmental variations and can be manifested
inmultiple datasets as different responses, but all datasets can have the same changepoint locations/timings. The
method we present uses transdimensional Markov chain Monte Carlo to infer probability distributions on the
number and locations (in depth or time) of changepoints, the mean values between changepoints and, if re-
quired, the noise variance associated with each dataset being considered. This latter point is important as we
generally will have limited information on the noise, such as estimates only of measurement uncertainty, and
in most cases it is not practical to make repeat sampling/measurement to assess other contributions to the varia-
tion in the data.Wedescribe themain features of the approach (anddescribe themathematical formulation in sup-
plementary material), and demonstrate its validity using synthetic datasets, with known changepoint structure
(number and locations of changepoints) and distribution of noise variance for each dataset. We show that when
using multiple data, we expect to achieve better resolution of the changepoint structure than when we use each
dataset individually. This is conditional on the validity of the assumption of common changepoints between dif-
ferent datasets.We then apply themethod to two sets of real geochemical data, both frompeat cores, taken from
NE Australia and eastern Tibet. Under the assumption that changes occur at the same time for all datasets, we
recover solutions consistent with those previously inferred qualitatively from independent data and interpreta-
tions. However, our approach provides a quantitative estimate of the relative probability of the inferred change-
points, allowing an objective assessment of the significance of each change.
Gallagher).
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1. Introduction

Amajor issue in the interpretation of geochemical data (represented
as depth or time series) is the detection of changes in trends. Reliable
identification of short-term variations superimposed on long-term
trends is critical for answering questions about uniformity in the rates
of geological processes. The research effort towards understanding cli-
mate change often focusses on the inference of rapid or abrupt changes
in themean signal over time. Such environmental changes are recorded
by geochemical proxies (e.g. Burton et al. 2007, 2010, Carslaw et al.
2006, Cloy et al. 2008, Cole et al. 2009, Gutjahr et al. 2008, Kylander et
al. 2007, 2009, 2010 Large et al. 2009, McDermott 2004, Palmer et al.
2010, Ruggieri et al. 2009, Yasuhara et al., 2008). Ideally, recognition
of signals from data should based on sound qualitative interpretation,
but also involve quantitative inference from the observations, allowing
for possibly unknown noise levels in the data.

Here we recognise that the definition of abrupt or rapid is subjec-
tive. The definition and identification of change also depend on the
form of the trend we expect between changes. We define abrupt
changes as statistically significant variation in the trend over a scale
of one or two samples of the total dataset. Furthermore, we note
that the conversion of depth to time (or age) generally involves cali-
bration of a depth–age relationship, which itself will have uncertainty
(e.g. Kylander et al. 2009, 2010, Thompson and Goldstein 2006). For
data collected from one borehole for example, these uncertainties
will not change the positions of the underlying changes, only affecting
the inference of absolute timing, but may become important for the
inference of simultaneous changes in data from different locations.

To provide a brief overview of some approaches for inferring
abrupt changes in geochemical records, we draw on a selection of
published work, including some of our own. Large et al. (2009) de-
scribed geochemical data including C, N, H concentrations and C, H
and O isotopes from a 6 m core taken in the Hongyuan peatland,
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Fig. 1. An example of the changepoint problem. We have a set of noisy data (dots), with
a common noise variance (the noise is Gaussian, and 1σ value is shown as the error bar
in the bottom right). The underlying function from which the data were generated is
shown by the solid line. The function is discontinuous, with 4 changepoints at x=2,
5, 6, and 8. In a real problem, the model parameters are the number of changepoints
(n), the locations of the changepoints (xi, i=1, n) and the values of the function in
each region (in this case, this is just the mean value of the data between each
changepoint).
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eastern Qinghai–Tibetan Plateau. The core material was dated back to
9.6 kyr using 14C. The interpreted palaeoenvironmental history was
linked to the climate variations in northwest Pacific, the El Niño–
Southern Oscillation, movement of the Intertropical Convergence
Zone and the East Asian Monsoon. This interpretation was based on
a qualitative visual inspection and comparison to other proxy data
and interpretations.

Ruggieri et al. (2009) developed a method to infer Milankovitch-
type cycles from geochemical (δ18O) data. They allow for discrete
changes (changepoints) between which the trend (defined by super-
imposed sine functions) can change abruptly. They apply their model
to 2 sets of benthic δ18O isotope data with time ranges going back to
2500 and 5000 kyr. As these authors state, an important limitation of
their method is that they do not include the number of change points
as a parameter to be inferred directly. Instead they examine the varia-
tion of the data fit as a function of the number of changepoints, and
try to identify the upper limit such that adding more changepoints
makes little difference to the data fit. One additional limitation of this
approach is that the inference will depend on the errors inherent in
the data, although the data fit function adopted by Ruggieri et al.
(2009) does not incorporate a data error term explicitly. In general,
we expect a more complex model (i.e. more changepoints) given
more precise data. Often however, we do not have reliable estimates
of the data errors and then choosing a suitablemodel becomes an issue.

Tomé and Miranda (2004), looking for changes in linear trends, fit
gradients to time series, subject to constraints on the minimum dis-
tance between changepoints, and the magnitude of the changes in
trends. The approach requires a user to specify a range for number
of changepoints, and finds best fitting functions for each value of
the number of change points in turn. Although the authors state
that they can examine a series of the sums of squares of residuals
for each model (with different numbers of changepoints) to choose
an appropriate value, they do not explicitly do this. Rather they
seem to favour visual inspection to select a preferred model, which
is required to have a constant distance between the changepoints.

Finally, Kylander et al. (2007) analysed rare earth elements and
lead isotopes from samples in an Australian peatland as inorganic
proxies for climatic variations, reflected in atmospheric dust. The
changepoint modelling approach described in Denison et al. (2002)
was adapted to allow common changepoints for multiple datasets.
Kylander et al. (2007) used Eu abundance and Pb isotopes to infer
the changepoints, under the assumption that trends in the data be-
tween the changepoints could be expressed as a simple linear regres-
sion function (a constant value or constant slope). In contrast to
previous approaches, the number of changepoints was a parameter
to be inferred directly. Moreover, the problem is formulated in a
Bayesian framework, and provides probability distributions on the
number of changepoints and on the changepoint locations.

In this paper, we present a general approach to infer an unknown
number of changepoints when the errors, or the noise variances, are
unknown for one or more datasets. The data can be irregularly spaced
in depth (or time) and there is no requirement for different datasets to
be sampled at the same depths (time). We specify nothing about the
spacing between changepoints, and the approach we present general-
ises to any linear function between changepoints. A key difference in
the approach we present here to that of Denison et al. (2002) is that
we decouple the estimates of the data noise variance and themodel pa-
rameters. A related approach to dealwith poorly constrained errorswas
described by Malinverno and Briggs (2004) applied to seismic travel-
time inversion for 1D velocity structure (and see also Malinverno and
Parker, 2006).

We begin with a general discussion of changepoint modelling and
the role of different sources of variability in the data. Then we de-
scribe the approach we adopt, although most of the mathematical de-
tails are given in the supplementary material. The method we present
includes not only estimation of the number and location of
changepoints, the regression functions between changepoints, but
also the distribution of the data noise variance (if it is unknown or
considered unrepresentative). We conclude with some examples of
the application of the method to synthetic and real data and a brief
discussion/summary.

2. Changepoint modelling and noise

The general problem can be stated as follows (and see Fig. 1);
given one or more sets of (geochemical) data, f(xi), i=1,N, at posi-
tions xi, representing a depth or time series, with either known or un-
known levels of noise, can we identify the underlying trends or signal
(e.g. the mean or a more general regression function) and the loca-
tions of discrete changes in the trends? Often, we may want to infer
the same changepoint locations, but with different signals in each
dataset.

In general we do not know how many changes are appropriate
and ideally we should estimate this from the data. The problem be-
comes a transdimensional inverse problem (that is we do not specify
in advance the number of unknown parameters, e.g. Sambridge et al.
2006). Furthermore, there is a trade-off between the level of noise in
the data, and how well we expect to fit the data. Here we broadly fol-
low the philosophy of Scales and Snieder (1998) in considering noise
as that part of the data that we do not wish/expect the model to ex-
plain. The spread in a geochemical dataset can then be divided into
the variation (σGP

2 ) due to time/depth varying geological processes
(which we are interested in understanding) and the variation due
to geological (σGN

2 ) and analytical (σAN
2 ) noise. Here geological noise

might arise from spatial or temporal variations in small scale or
short term processes, local geological/biological/atmospheric variability
and analytical noise (or more commonly, errors) typically can arise
from factors such as instrumental drift or calibration from imperfect
standards. In general we can express the total variance, σT

2 as

σ2
T ¼ σ2

GP þ σ2
GN þ σ2

AN : ð1Þ

When we are interested in identifying trends and changes in
trends, we would like to choose a model that adequately explains
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the variation due to geological process, and then the residuals be-
tween the model predictions and the observed data reflect the 2
sources of noise as defined above. We want good control on the
noise (or noise variance) as this will directly influence how well we
should fit our data. Intuitively, we can see that if we consider a series
of scattered data with lower noise variance than is appropriate then
we will tend to fit many changepoints. An extreme case would be if
we assume no noise, then we will fit the data perfectly (with a change-
point between each data point). On the other hand if we regard the data
as more noisy than they really are, then we will tend to fit a model that
has too few changepoints.

2.1. Bayesian formulation of the change-point modelling problem

Underpinning the Bayesian approach is that unknowns are
expressed in terms of probability density functions (e.g. Tarantola
and Valette 1982). A common form of Bayes' rule is

p m dj Þ α p d mj Þp mð Þðð ð2Þ

where p(m|d) is the probability density function (PDF) of the un-
known model parameter vector, m, containing the unknowns, given
the data vector, d; p(d|m) is the likelihood function which is effective-
ly the probability of the data, d, being observed given the model, m.
The likelihood increases as the model fits the data better relative to
the data noise and the form of the likelihood depends on the statisti-
cal character of the noise on the data. Finally, p(m) is the prior PDF on
the model (that is what we think we know about m before we have
the data). The aim of Bayesian inference is to try and estimate the
posterior PDF, p(m|d) as this characterises all we need to know
about the distribution of model parameter values, given the prior
and the information contained in the data (incorporated through the
likelihood). Useful references for Bayesian inference are by Bernardo
and Smith (1994), Box and Tiao (1973), Gelman et al. (2004) and Lee
(1989).

2.1.1. Model parameters
In a changepoint problem, the unknownmodel parameters are the

number of changepoints (n), their locations (c), the parameters of a
regression function between the changepoints (A) and the noise
level (σ) for each dataset being considered. Thuswe canwrite a general
model vector,m, as

m ¼ n; c;A;σð Þ

in which c, A, and σ can all be vectors.
We write the unknown locations of changepoints as ci, i=1,n

(note that n itself is also an unknown). We refer to the region be-
tween each changepoint as a partition, and a predictive regression
function, ƒi(x), is defined whose parameters (A) depend on the data
in that partition. Thus fi(x) refers to the regression function within
the partition at the left of change point ci (if these are considered on
a horizontal axis). As there are n+1 partitions for n change points,
we define c0 as the location of the first data point so the regression
function f1 in the first partition is defined between c0 and c1.

Given vectors of independent and dependent (observed) vari-
ables, x and dobs, such as depth (or time) and observed data respec-
tively, the linear regression function between changepoints can be
written as

f xð Þ ¼ ∑
M

i¼1
αiGi xð Þ ð3Þ

where Gi represents a specified basis function and αi represents an
unknown coefficient, which can be thought of as weights on each
basis function. For example, the common straight line relationship
given by dpred=α1+α2x, is written as a vector–matrix equation,

dpred ¼ GtA

where the superscript t represents the matrix transpose, and

G ¼

1 x1
: :
1 xi
: :
1 xk

0
BBBB@

1
CCCCA; A ¼ α1

α2

� �
: ð4Þ

A model with a constant value (normally the mean) is written as

G ¼

1
:
1
:
1

0
BBBB@

1
CCCCA; A ¼ α1: ð5Þ

As we can separate the basis functions from the coefficients, this is
a linear problem (linear in terms of the unknown coefficients). Here,
we use only constant value regression functions between change-
points. However the approach we present generalises to any linear
function, allowing for more gradual transitions between states (e.g.
linear drift).

2.1.2. Data likelihood
As commonly assumed in many geochemical problems, we make

an implicit assumption that the noise associated with the data is nor-
mally distributed with a mean of ε and a variance, σ2, i.e. if we have
individual errors represented by εi, then we can write the distribution
of the errors as

p εið Þ ¼ N Pε;σ2
� �

ð6Þ

and the variance of this noise distribution may be poorly (or not)
known. This is equivalent to the residuals between the observations
and the predictions being normally distributed with mean of zero
and a variance of σ2. If we have reliable and representative estimates
of the noise variances, we can use the values in the likelihood instead
of σ. In practice, the noise term determines the uncertainty in fitting
the data which, due to geological complexity, is usually greater than
the reported analytical precision. Given this assumption, a Gaussian
likelihood function for observed data (using d=dobs) in the i-th par-
tition, given the predictions with a particular set of model parameters
(m) is

pðdi mj Þ ¼ ∏
ki

j¼1

1

2πσ2� �1
2

e−
1
2

di;j−fi xð Þ
σ

� �2

ð7Þ

where the subscript j refers to the ki data in the i-th partition (i.e. the re-
gion bounded by changepoints ci and ci−1, with c0 defined the lowest
value of the data locations) and di,j is the j-th observation in partition i.

More generally, for n partitions and Nd different datasets, we have
the joint likelihood function,

pðd1; d2…dNd
mj Þ ¼ ∏

Nd

l¼1
∏
n

i¼1
∏
ki

j¼1

1

2πσ2
l

� �1
2

e
−1

2

di;j;l−fi:l xð Þ
σl

� �2

: ð9Þ

Given we subsequently assume a constant value in a partition, an
appropriate form to chose values for the predictive function (ƒ) is a
normal distribution centred on the mean value (and a variance
equal to the variance) of the data in that partition. In this case, values
for the regression model parameters (A) can be drawn from this
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distribution while the mean is the most probable value from the pos-
terior distribution in a Bayesian formulation, equivalent to the maxi-
mum likelihood estimate. We could use a similar approach for any
linear function with unknown coefficients, using standard least
squares inverse methods (e.g. Menke 1989) to find the maximum
likelihood values and the covariance matrix for the coefficients for a
given partition, and draw samples for the parameters.

2.1.3. Prior distributions
In a Bayesian formulation, we need to specify prior distributions

on all unknown parameters. The priors reflect what we consider rea-
sonable to assume about the possible values for each parameter.
Bayes's rule lets us use the information about the model parameters
contained in the data to update our prior information (i.e. to produce
the posterior distribution). If the posterior distribution is the same as
the prior, then the data have told us nothing we did not already know.

We use the law of hierarchical probability to write the priors as

p mð Þ ¼ p nð Þp c;A;σð jn Þ
¼ p nð Þp cð jnÞ∏

Nd

l
p Alð jc;nÞp σlð jc;nÞ

ð10Þ

where Nd is the number of datasets. The choice of priors in our formula-
tion is straightforward (usually uniform between a specified minimum
and maximum value) and are given in Supplementary material, SM2.

3. Markov chain Monte Carlo method for solving the changepoint
problem

In using the Bayesian formulation described above, our goal is to
generate a collection, or ensemble, of values approximating the pos-
terior distribution, whose form we do not know in advance. As we
also do not know the number of changepoints, the problem becomes
what is known as transdimensional, where the number of model pa-
rameters itself becomes an unknown. To solve this problem we use a
generalised version of Markov chain Monte Carlo (MCMC) sampling,
known as Reversible Jump MCMC (Green 1995, 2003). A general in-
troduction to MCMC methods is given by Gilks et al. (1996), a review
of transdimensional Markov chains is given by Gallagher et al. (2009)
and Sisson (2005) present an overview of the general methodology
and its application to Earth Science problems. Specific applications
to Earth Science problems have been presented by Bodin and Sambridge
(2009), Charvin et al. (2009), Hopcroft et al. (2009), Jasra et al. (2006),
Malinverno (2002), Malinverno and Leaney (2005), Piana Agostinetti
and Malinverno (2010), Sambridge et al. (2006) and Stephenson et al.
(2006). We give a brief overview of MCMC in the Supplementary mate-
rial, SM1, while here we describe the aspects that are important for the
transdimensional changepoint problem. The mathematical details for
the MCMC implementation we adopt for the changepoint problem are
given in Supplementary material, SM2 and SM3.

MCMC is an iterative method, and at each iteration, we consider 2
sets of model parameters, the current and proposed models (mc and
mp). The procedure for a given iteration can be described as follows

(i) Randomly perturb the current model to produce the proposed
model
(ii) Randomly accept or reject the proposed model (in terms of
replacing the current model), according to the acceptance criterion
ratio (see Eq. A1.2 in Supplementary material, SM1).

In principle, after many iterations, the MCMC sampler should con-
verge to a stable configuration (that is sampling according to the pos-
terior distribution) and the final stage of MCMC is to use the sampling
to infer characteristics and uncertainties for the model.

(i) Model perturbations/moves
As stated above, the sampling should converge to the target poste-
rior distribution. However, the efficiency of the method does depend
on choosing a reasonable proposal function to avoid moving too
slowly around the model space as a result of the perturbations
being either too small or too big (see Fig. 2 of Gallagher et al.,
2009). The scale of model parameter perturbations can be tuned to
achieve a reasonable balance between accepting and rejecting pro-
posed models.

For the changepoint problem, we define 5 types of model pertur-
bation or move:

1. Change the location of a changepoint
2. Change the regression function (mean estimate) in a partition
between 2 changepoints
3. Change the value of noise for a dataset (if appropriate for that
dataset)
4. Add a new changepoint (birth)
5. Remove an existing changepoint (death)

Each type of move has specified probability of being selected
(which forms the jump proposal, R, referred to in Supplementary Ma-
terial), and these probabilities need to sum to unity. In our problem,
these are set to 0.2, 0.15, 0.15, 0.25 and 0.25 in the order listed
above. The birth and death probabilities need to be modified to
avoid having more/less changepoints than the maximum/minimum
values (nmax/nmin). We do this by setting the birth (death) probability
to 0.5 (0.0) for a model with nmin changepoints, and the death (birth)
probability to 0.5 (0.0) for a model with nmax changepoints. Having
selected a perturbation type for a particular iteration, all other parame-
ters are kept constant.

(ii) Acceptance criterion

For the purposes of describing how we accept or reject the pro-
posed model, we use a simplified form of acceptance criterion ratio
appropriate for 2 models with the same number of model parameters
(and the full expressions for the transdimensional case are given in
the Supplementary material). This can be written as a ratio of proba-
bilities, given as

α mp;mc

� �
¼ Min 1;

p mp

� �
p
�
d mp

��� �
q
�
mc mp

��� �
p mcð Þpðd mcj Þqðmp mcj Þ

2
4

3
5 ð11Þ

whereMin[1,Z]meanswe take theminimumof 1 and Z. The terms p(m)
and p(m|d) are the prior and likelihood probabilities for a particular
model (and so define the posterior probability, at least up to the con-
stant of proportionality). We have already introduced the concepts of
the prior and likelihood functions (andwhere appropriate, the problem
specific details are given in Supplementary material, 2).

The proposal probability, q(mp|mc) determines how we move from
the current model to proposed model (step (i) above). The theory un-
derlying MCMC requires us to be able to reverse such a move (so we
need to also include the reverse proposal probability in the ratio). If
we consider prior distributions to be uniform (i.e. all models have the
same probability), and if we have proposal distributions that are sym-
metric, then we can write Eq. (14) above as

α mp;mc

� �
¼ Min 1;

p djmp

� �
p djmcð Þ

2
4

3
5: ð12Þ

This is just a ratio of the likelihoods (i.e. the probability of the pro-
posed and current models producing the observed data). Thus if the
proposed model fits the observed data better than the current
model (so it has a higher likelihood), then the likelihood ratio is N1,
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Fig. 2. (a,b,c). The 3 synthetic datasets (grey dots), with 4 common changepoints. The noise scale (σ from Eq. (7)) is given in the top left, with an error bar ±1σ shown just below. The true regression function for each dataset is shown by the
solid line. (d,e,f) Changepoint structure inferred for the 3 synthetic dataset. The solid line is the inferred function (relative to the lefthand axis), and the lighter dashed lines represent the 95% credible intervals on this function. The continuous
lines represent the probability of a changepoint (relative to the right hand axis). The error bars are drawn using the mean value of the noise variances for each data set (see Fig. 4).
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and then α(.) is set to 1. Conversely, if the current model fits the data
better than the proposed model, the ratio is b1, and then α(.) is set to
p(d|mp)/p(d|mc), which itself is always N0. The final step in an itera-
tion requires us to generate a uniform random number, u, between
0 and 1, and compare this to α(.). If ub=α(.) we accept the proposed
model (and this becomes the current model for the next iteration),
otherwise we reject it (and we retain the current model for the next
iteration). From this, we can see that (given the assumptions about
flat priors and symmetrical proposal functions) we will always accept
a proposed model that fits the data better as u is always b=1. If we
consider a proposed model that fits the data almost as well as the cur-
rent model (say α(.)=0.95), then, on average, we will accept the pro-
posed model 95% of the time. For a proposed model considerably
worse than the current model in terms of data fit (say α(.)=0.05),
then, on average, we will only accept the proposed model 5% of the
time. If the posterior distribution resembles a normal distribution,
we can see that this process will tend to concentrate the sampling
under and around the peak (the higher probability region), but also al-
lows us to sample less goodmodels (out in the tails of the distribution).
In fact, the number of accepted samples for each model is in proportion
to the posterior probability of that model and the ensemble of accepted
models then is a good approximation of the posterior distribution.

For the first 3 moves described in (i) above, the number of model
parameters is constant and the acceptance ratio is given by Eq. (11).
For the birth and death moves, the dimensions of the current and pro-
posed model are different and it is necessary to use the acceptance
ratio given in Supplementary material 1 (Eq. A1.2). Intuitively, we
might expect that models with more parameters will tend to provide
a better fit to the observed data, and then that the sampler would
tend always to increase the number of model parameters towards
the maximum. However, to demonstrate how MCMC operates during
transdimensional moves, we can consider again a simplified form of
the acceptance criterion as

α mp;mc

� �
¼ Min 1;

p mp

� �
p
�
djmp

�

p
�
mc

�
p
�
djmc

�
2
4

3
5: ð13Þ

If all the parameters are independent and we consider a proposed
model with 1 more parameter than the current model (all other pa-
rameters being the same), then, with the prior on the extra parameter
given as p(mp,n+1) we can write this as

α mp;mc

� �
¼ Min 1;

p mp;nþ1

� �
p
�
mc

�
p djmp

� �

p
�
mc

�
p
�
djmc

�
2
4

3
5

¼ Min 1;
p mp;nþ1

� �
p djmp

� �

p
�
djmc

�
2
4

3
5:

ð14Þ

If both models fit the observations equally well (the likelihoods
have the same value), then as p(mp,n+1)b1, we have

α mp;mc

� �
¼ p mp;nþ1

� �
: ð15Þ

Thus, in this special case, the acceptance probability is equal to
prior probability on the extra model parameter. In other words,
even when the fit to the observations is as good as the current
model, the proposed model (with more parameters) is less likely to
be accepted, by a factor equal to the prior probability of the extra
parameter.

More specifically, when we propose an increase in the number of
changepoints (birth), an increase in likelihood function will tend to
encourage acceptance of the proposed model. However the decrease
in the prior ratio will tend to discourage acceptance due to the
increased dimensionality of the space. Overall, the algorithm always
prefers a large partition rather than two small partitions with similar
mean values (which would have similar likelihood values). This is an
example of a property of Bayesian inference referred to as ‘natural
parsimony’, which means that given a choice between simple and
complex models that provide similar fits to data, the simpler one will
be favoured (e.g. Bretthorst 1993, Jaynes 2003, Jefferys and Berger,
1992, Mackay 1992, O'Ruanaidh and Fitzgerald 1996, Sivia 1996).

(iii) Calculation of model and uncertainties

Typically the MCMC sampling is run for many (104–106) itera-
tions, and includes an initial period during which the samples are
not yet from the target posterior distribution. This is known as
burn-in and these samples are discarded before making inference
from the posterior distribution. Gilks et al. (1996) show examples of
these characteristic behaviours as a guide for their recognition and
we discuss this later with the examples. The post-burn-in samples
should then provide a good approximation to the posterior distribu-
tion for the model parameters, i.e. p(m|d). This can be visualised for
one model parameter by plotting a histogram. We can also calculate
the expected model as a average, i.e.
Pm ¼ 1
N
∑
N

i¼1
mi ð16Þ

which is effectively a weighted mean, in which the weighting is the
posterior probability for each model. Similarly the variance and co-
variance of model parameters are given by standard formulae. Finally,
we can readily calculate the 95% credible intervals by ordering the
samples for a particular variable, and simply identifying the upper
and lower 2.5% of the distribution as the 95% credible interval.

Rather than choosing the best data fitting model, which tends to
be overly complex, our preferred final solution is given by the
expected model (Eq. (16)) with 95% credible intervals around the re-
gression function parameters, and the distributions on the number
and locations of changepoints. When a large number of models are
added together, their partitions overlap so the average model is con-
tinuous and smooth. An advantage of this is that we can produce a
model that contains the features common to the majority of sampled
models, but also can be more complex (yet smoother) than any indi-
vidually sampled model.

4. Examples of changepoint modelling

We first use synthetic data to demonstrate that we can recover the
known signal and noise terms. In this example, we discuss how to as-
sess whether the MCMC sampler has performed adequately. Subse-
quently, we apply the method to 2 sets of real geochemical data,
frompeat cores in northeast Australia (Kylander et al. 2007) and eastern
Tibet (Large et al. 2009).

4.1. Synthetic data

The synthetic data are shown in Fig. 2a,b,c. We randomly selected
4 changepoints and different mean value functions in each partition
to produce 150 irregularly distributed samples for each dataset and
added noise with different levels to each. We used these data, assum-
ing unknown noise variance, to infer the distributions on the number
and locations of changepoints and the noise variance.

As stated earlier, we tune the proposal functions to achieve ade-
quate sampling of the model parameters. Among the more common
ways to assess if these input parameters are appropriate are to exam-
ine the rate of acceptance (typically around 30%, although 10–60%
may be adequate, e.g. Brooks et al., 2003), and also the behaviour of
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the likelihood or model parameters as a function of iteration (they
should show no long term trend, and ideally resemble white noise).
However, for birth and death we cannot readily control the accep-
tance rates, which can be much lower (b5%) in this problem.

We choose a proposal function scale (θ in Eq. A2.6) that is propor-
tional to the range (maximum and minimum values) of particular pa-
rameter. We use 0.2, 0.05 and 0.025 of the prior ranges for the
regression function (here the mean), the changepoint locations and
the noise, respectively. We make exploratory runs in which we mon-
itor the acceptance rates over 104–105 iterations, and adjust the scal-
ing parameters accordingly. In this problem, if the acceptance rate is
too high, the scaling parameters are too small, and vice-versa. Having
tuned the proposal functions, we run the chain for 5×105 iterations,
with a burn-in of 2.5×105 iterations.

In Fig. 3, we show the log likelihood (data fit), the number of
partitions and the sampling for the 3 noise parameters. During the
early part of sampling (Fig. 3a,b), there is clearly a structure in the
chain. The initial log-likelihood is about −1.2×104, but even over
the initial 5000 iterations we see that the sampler quickly arrives
in better regions of the model space, and the log-likelihood in-
creases rapidly, even though the number of changepoints is de-
creasing. Over the same sampling period, the noise values have not
equilibrated either, the blocky structure, indicative of relatively
poor movement around the model space (or mixing). In contrast,
the post-burn parts of the chain show that the sampling appears to
have reached equilibrium. There are no significant trends in the sam-
pling (they look like white noise), and the number of partitions is sam-
pled between 4 and 7.
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As described in Section 3, we use the post-burn-in samples to cal-
culate the expected (or average) changepoint structure, the 95% cred-
ible intervals around it, the probability of having changepoints over
the range of the samples and also the mean and distribution on the
noise values for each dataset. In Fig. 2d,e,f we show the 3 datasets,
with the mean estimated noise value as error bars, together with
the expected changepoint structure, and in Fig. 4 we show the distri-
butions on the noise parameters. It is clear, by comparison with Fig. 2,
the changepoint structure has been recovered well, with no spurious
features, and also the mean noise is in good agreement with the original
values. In Fig. 5we show the distribution on the inferred number of chan-
gepoints, demonstrating that the inference leads to about 80% probability
there are 4. This is conditional on all the model assumptions (a finite
number of discrete changeswith constantmean values in each partition),
although these are appropriate in this example.

To demonstrate the influence of different datasets, we ran each
dataset independently, using the same parameters as the joint run
and the results are shown in Fig. 6. Again the main changepoint
structure is recovered, although we see that some small scale arte-
facts have been introduced for individual datasets. This leads to a
slightly different distribution on the number of changepoints, al-
though all 3 datasets still have 4 as the most probable, with the fre-
quency of 5 changepoints, relative to 4, being higher than in the joint
model (25% compared with 98% dataset 1, 65% dataset 2, and 30%
dataset 3). In practice, it is unlikely that we would be primarily in-
terested in the absolute number of changepoints, but rather where
changes are inferred to occur. If we have multiple datasets, and ex-
pect them to have the same changepoint structure, then we
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recommend modelling them together for consistency in the change-
point structure.

4.2. Real data examples

In the real data examples described below, we follow a similar ap-
proach as described above. We monitored the acceptance rate on all
variable parameters, and where relevant we adjusted the proposal
function scales to achieve an acceptance rate of 20–40%.

4.2.1. Lynch's Crater, Australia
The first real data example we consider is from Kylander et al.

(2007), who undertook geochemical analyses on a 13 m section
equivalent to ~50 kyr from a peatbog at Lynch's Crater, north-east
Australia. They reported Pb isotope and Rare Earth Element data,
used as proxies for climate change, and in particular for variations
in air-transported mineral dust sources. Here we follow that paper,
and consider the 206Pb/207Pb isotope ratios and the Europium anomaly,
(Eu/Eu*)PAAS, which is a measure of Eu2+ fractionation from Eu3+ rela-
tive to the adjacent ions, Sm3+ and Gd3+ (Eu* being the geometric
mean of these two).

We first use this example to demonstrate the inference of change-
points either representing the noise with the analytical errors or esti-
mating the noise variance directly from data. In terms of analytical
errors, those for the Pb isotope ratio were determined from a long-
term series (nearly 2 yr) measurements of the NBS 981 standard. In
the absence of an equivalent estimate from repeat measurements,
we assumed 10% of the observed value for the Eu anomaly. The
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Fig. 5. Inferred distribution on the number of changepoints for the data in Fig. 3.
mean noise variances on Pb and the Eu anomaly are 3.86×10−4

and 0.123, respectively.
In Fig. 7 we show the inferred changepoint structure using these

specified errors in the data likelihood, and also the case in which we
also infer the noise variances, for each dataset in terms of a probability
distribution (Fig. 8). Clearly, the structure in the first case is dominated
by the Pb isotope ratios (which have relatively small analytical errors).
The mean number of changepoints is 106 (±4, 1σ) and it is difficult to
make meaningful sense of these results. In the second case, where we
estimate the noise variance, the mean number of changepoints is 6
(±1, 1σ), and correspondingly, the mean of the noise variances on
the Pb isotope data and the Eu anomaly are 0.00913 and 0.0341, respec-
tively. In this case, the inferred noise variance on the Eu anomaly is
about 3–4 times smaller than the assumed 10%, while for the Pb iso-
topes, it is about 24 times larger than the analytical level. In terms of
the inferred changepoint locations, the major peaks around 150 and
620 m correspond to the two most significant changes inferred by
Kylander et al. (2007). The shallowest changepoint is related to a
change to warm, wet conditions while the second is change from
humid to arid. The 3rd peak around 820 m in our results also corre-
sponds to a lesser change inferred by the earlier work. We refer the
reader to Kylander et al. (2007) and Muller et al. (2008), for a more de-
tailed discussion of the environmental significance of these changes.

We also ran the 2 datasets individually, assuming the errors were
unknown, and the results were very similar in terms of the error dis-
tributions. The Pb isotope data however only required one significant
changepoint (around 820 m), while the Eu anomaly data produced
essentially the same result as the joint modelling.

4.2.2. Hongyuan, eastern Tibet
Large et al. (2009) presented a series of geochemical and physical

property measurements from a 6 m deep section, equivalent to
~10 kyr, of the Hongyuan peatbog in eastern Tibet. The aim of this
study was to assess the relative influences of the Indian and east Asian
monsoons, and to relate this to other inferences of climate variations
in China. Here, we use the C, N, H and δ13C analyses, together with the
bulk density and carbon density tomake quantitative inference of chan-
gepoints. In this case, we have no specific information concerning the
errors for each dataset, so we also need to infer the noise variance.

The changepoint and noise variance distributions are shown in
Figs. 9 and 10. The noise levels are lower than the standard deviation
of each dataset (~2–3 times lower), except for the δ13C dataset, for
which the inferred noise variance is similar in magnitude to the varia-
tion in data. The summary diagram of Large et al. (2009) (their Fig. 7)
compares their data to previous studies, and in particular of inferred pe-
riods of cold, dry (permafrost) periods relative to warmer, wetter pe-
riods. Thus our inferred changepoints should correspond to times
when these conditions switch. Apart from the relatively low amplitude
probability changepoint inferred around 200 cm and the recent
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variations (b50 cm, attributed to disturbance as a consequence of Yak
grazing by Large et al., 2009), the changepoints agreewell with those in-
ferred by a qualitative comparison of regional datasets from China by
Large et al. (2009) (see Fig. 9).

Although we do not show the results here, we also ran these 6
datasets individually. As we might now expect, the details of the
changepoint location structure differs between each dataset. Also,
the mean values of the estimated noise levels were lower (by be-
tween 10 and 60%) than for the joint model. This latter result is also
not unexpected as the joint modelling tends to compromise (in-
crease) the noise variance to accommodate common changepoints
for multiple datasets. While there is clearly common information, it
is not easy to identify reliably the changepoints by considering
these datasets individually. Again we recommend joint modelling of
multiple datasets if we anticipate a common changepoint structure
for a particular problem.

5. Summary

Changepoints can be defined as abrupt changes in trends (such as
the mean, gradient or any function) over depth or time. In this paper,
we have presented a new approach to changepoint modelling, appli-
cable to multiple datasets with common changepoint locations,
allowing for unknown noise variance in each dataset. The approach
is based on Bayesian transdimensional Markov chain Monte Carlo
and we estimate the changepoint structure in terms of distributions
for the number and location of changepoints, the regression function
parameters and the noise variance on multiple datasets. Here, we
have considered the regression function in terms of a constant value
between 2 changepoints, but the approach generalises to any linear
function of the data. In any transdimensional problem, the solution
(i.e. the number and location of changepoints) is strongly influenced
by the assumed noise variance. Our approach, in allowing us to esti-
mate the noise variance directly from the data, is particularly useful
when we do not have reliable estimates of the data error/noise, or
perhaps only consider analytical errors (i.e. we neglect natural varia-
tion due to geological complexity) and so implicitly assume that the
data are more precise than is perhaps advisable. Furthermore, the
Bayesian approach we adopt is naturally parsimonious and avoids in-
ferring unwarranted complexity when finding the changepoint struc-
ture. Thus we expect to favour models with fewer changepoints,
while still achieving an adequate fit to the observed data.

Using synthetic data, we have demonstrated that we can recover
the changepoint structure and the noise variances reliably. When
dealing with multiple datasets, we assume that all datasets contain
the same changepoint locations, but the response, or regression func-
tions, and noise variances are different. The approach we present can
be generalised readily to allow for different noise variances between
partitions, if required. Additionally, the different datasets can be ir-
regularly spaced in depth (or time) and there is no need for the
data to be sampled at the same depths (time). The details of the solu-
tions will depend on which datasets are used (i.e. singly or jointly)
and we recommend using joint modelling if the assumption of com-
mon changepoints is considered valid. This assumption is perhaps
best assessed from the understanding of geochemical behaviour in
different environmental systems. Certainly, the results are more co-
herent and generally easier to interpret than by combining results
from individual dataset modelling. Applications of the method to
real datasets from NE Australia and eastern Tibet provide results in
agreement with previous qualitative interpretations based on visual
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inspection. However, our approach is preferable as it is more objec-
tive, explicitly incorporates the noise variance (either known or un-
known), allows us to assess quantitatively the relative importance
of the inferred changepoint structure, and we obtain probability dis-
tributions on all parameters. Finally, directions for future work
would be to consider transdimensional regression functions (for ex-
ample we estimate the order of a polynomial which could be different
between partitions) and to allow for uncertainty in depth to age con-
versions (which will be important when comparing records from dif-
ferent locations).
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