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S U M M A R Y
Seismic imaging techniques such as elastic full waveform inversion (FWI) have their spatial
resolution limited by the maximum frequency present in the observed waveforms. Scales
smaller than a fraction of the minimum wavelength cannot be resolved, and only a smoothed,
effective version of the true underlying medium can be recovered. These finite-frequency
effects are revealed by the upscaling or homogenization theory of wave propagation. Homoge-
nization aims at computing larger scale effective properties of a medium containing small-scale
heterogeneities. We study how this theory can be used in the context of FWI. The seismic
imaging problem is broken down in a two-stage multiscale approach. In the first step, called
homogenized FWI (HFWI), observed waveforms are inverted for a smooth, fully anisotropic
effective medium, that does not contain scales smaller than the shortest wavelength present in
the wavefield. The solution being an effective medium, it is difficult to directly interpret it. It
requires a second step, called downscaling or inverse homogenization, where the smooth image
is used as data, and the goal is to recover small-scale parameters. All the information contained
in the observed waveforms is extracted in the HFWI step. The solution of the downscaling
step is highly non-unique as many small-scale models may share the same long wavelength
effective properties. We therefore rely on the introduction of external a priori information,
and cast the problem in a Bayesian formulation. The ensemble of potential fine-scale models
sharing the same long wavelength effective properties is explored with a Markov chain Monte
Carlo algorithm. We illustrate the method with a synthetic cavity detection problem: we search
for the position, size and shape of void inclusions in a homogeneous elastic medium, where the
size of cavities is smaller than the resolving length of the seismic data. We illustrate the advan-
tages of introducing the homogenization theory at both stages. In HFWI, homogenization acts
as a natural regularization helping convergence towards meaningful solution models. Working
with fully anisotropic effective media prevents the leakage of anisotropy induced by the fine
scales into isotropic macroparameters estimates. In the downscaling step, the forward theory
is the homogenization itself. It is computationally cheap, allowing us to consider geological
models with more complexity (e.g. including discontinuities) and use stochastic inversion
techniques.

Key words: Inverse theory; Tomography; Waveform inversion; Computational seismology;
Seismic anisotropy.

1 I N T RO D U C T I O N

Seismic tomography aims at quantifying elastic properties in the
Earth’s interior using seismic data measured at the surface. It can
be formulated as an inverse problem, where unknown parameters
defining the earth model are sought in order to replicate the ob-
served data. Here we consider the case of full waveform inversion
(FWI), where the seismic data is the seismogram waveform. The
primary applications range from the exploration scale to image the
subsurface, up to the global scale to study the Earth’s deep interior

(Tarantola 1984; Brossier et al. 2009; Tape et al. 2010; Fichtner
2010; Bozdağ et al. 2016; Virieux et al. 2017), while applications
at the engineering scale or in medical imaging start to develop
(e.g. Bernard et al. 2017; Nguyen & Modrak 2018). Replicating
the observations requires to compute synthetic seismograms, which
constitutes the ‘forward problem’. For example, waveform mod-
elling can be performed using approximated methods, based on
ray theory, normal mode summation or on the Born approximation
(Woodhouse & Dziewonski 1984; Devaney 1984; Li & Romanow-
icz 1996), or more recently by numerically solving the full wave
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equation, leading to FWI methods (Fichtner 2010; Virieux et al.
2017). In the standard approach, the misfit between simulated and
observed data is minimized using a local optimization strategy based
on data derivatives. Global parameter search methods are still out of
reach for most real size 3-D problems (Käufl et al. 2013). Once the
misfit reaches a minimum, hopefully a global minimum, we obtain
a quantitative image of the material elastic properties to interpret in
terms of geological structures.

However, most waveform tomography problems are ill-posed,
and their solution is potentially non-unique. Many strategies have
been developed to ensure convergence towards a meaningful solu-
tion. These include, among others, building a good starting model
with alternative imaging methods (such as traveltime tomography),
various regularization methods in the parameter space (smoothing,
prior information), multiscale imaging by gradually increasing the
frequency content of the waveforms (Bunks et al. 1995; Brossier
et al. 2009) or constructing more sophisticated misfit functionals
(e.g. Bozdağ et al. 2011; Métivier et al. 2016). As a result, tomog-
raphy, and in particular its interpretation, requires a lot of expertise.
A recurrent discussion is to distinguish the features in the solution
model that are properly resolved and required by the data, from
those introduced by the specificity of the implementation, such as
an initial model or an a priori constraint on the model parame-
ters (promoting smoothness or sparsity, imposing discontinuities
or symmetries in the elastic tensor, etc.). Also, compromises have
often to be made between the fit to the data and the realism of the
image, or between model complexity and model constraint.

Some of these aspects originate from two fundamental limita-
tions. (i) Due to instrumental limitations or to the high computa-
tional cost of waveform modelling, the seismic data are restricted
to a finite frequency range. (ii) The imaged medium are usually
multiscale, but seismic inversions attempt to recover only a finite,
limited number of model parameters. Accordingly, seismic imag-
ing has difficulties to identify the different scales present in the
medium without a priori information. A common understanding
approximates that the spatial resolution of a tomographic image is,
at best, the smallest considered wavelength.

We take interest in imaging problems involving high contrast,
small-scale heterogeneities, especially with discontinuities in elas-
tic properties. This comprises, for example, imaging the subsurface
to detect faults, fluids, karsts or tunnels, and also non-destructive
testing to detect flaws or rebars in concrete at the engineering scale.
To address these problems, some possible methods are based on
single-scattering formulations (e.g. Rose 1989), or are based on mi-
gration using time reversal and an imaging condition (Almuhaidib
& Toksöz 2015; Kocur et al. 2016). In particular, this study deals
with a cavity detection problem. This is usually performed with P- or
Rayleigh-wave diffraction imaging (Grandjean & Leparoux 2004).
These methods usually require complex processing of the data, to
separate the different waves that tend to arrive simultaneously, or to
handle multiple scattering. Hence FWI methods, in both acoustic
and elastic regimes, have been investigated (Bretaudeau et al. 2013;
Tran et al. 2013; Seidl & Rank 2016; Nguyen & Modrak 2018).
However, imaging such structures requires a fine-scale description
of the medium, which makes the computational cost of modelling
the full wavefield prohibitive.

An appropriate tool to mitigate these issues is homogenization
or upscaling of the elastic wave equation. It refers to an ensemble
of methods able to compute a long-wavelength equivalent medium
to a fine scale elastic medium. This effective medium does not
contain heterogeneities smaller than a given minimum wavelength,

but produces the same wavefield as the original medium in a lim-
ited frequency band. The historical example is the homogeniza-
tion of stratified media: an explicit formula was derived by Backus
(1962), who showed that a stack of horizontal isotropic layers will
be equivalent, for long period waves, to a homogeneous hexagonal
anisotropic medium with vertical axis of symmetry. The initial idea
behind the homogenization theory is to reduce the computational
cost of waveform modelling in a complex medium. By calculating
a smooth equivalent medium, it avoids the need of solving the wave
equation on a mesh containing all the fine scales and the possible
discontinuities. In this work, we proceed further and study how ho-
mogenization theory can facilitate the inverse problem in seismic
imaging. This tool being developed for elastic media, we restrict
ourselves to this case in the following, but an equivalent for the
acoustic case could be considered.

In the context of elastic FWI, Backus theory can be used to
constrain the solution space to effective models (Capdeville et al.
2013), or to ensure that fine-scale model updates preserve long-
wavelength properties of the model (Afanasiev et al. 2016). Here,
we will consider the more general non-periodic homogenization
(Capdeville et al. 2010; Guillot et al. 2010), a technique able to
compute the effective elastic properties of any given medium, with-
out the need for spatial periodicity, scale separation or statistical
invariance. It enables to properly pose FWI as a multiscale in-
verse problem (Fichtner et al. 2013b). This is especially important
for attenuation and anisotropy that are scale-dependent properties.
Similar ideas are present in the field of porous media and subsurface
flow, where mostly elliptic equations are considered. For example,
one multiscale inverse problem is to determine the medium proper-
ties (porosity, permeability or conductivity) when large microscale
fluctuations are present. Homogenization theory helps at various
levels (regularization, uncertainty estimation), and a natural pro-
cedure is to search for an effective model solution of the inverse
problem (Nolen et al. 2012).

We propose to solve a seismic imaging problem with the follow-
ing method (Fig. 1): we first perform a waveform inversion where
we aim to recover a macroscale effective (or homogenized) elastic
medium, based on the homogenized FWI (HFWI) method devel-
oped by Capdeville & Métivier (2018). Hence, HFWI differs from
conventional FWI in the definition of the inverted model: it is fully
anisotropic with a wavefield-adapted discretization, and it is homog-
enized after the last iteration (or, if required for helping convergence,
after each iteration). Next, we define a second inverse problem where
the obtained macroscale solution plays the role of the data and the
homogenization operator the role of the forward model. That is, we
search for microscale models having an effective medium close to
the macroscale solution. HFWI and subsequent inverse homoge-
nization can therefore be seen as a two-stage resolution method of
a multiscale inverse problem (Frederick & Engquist 2017).

Let us first synthesize some elements and results of the HFWI
method. For all natural media considered in seismic imaging, it is
possible to define a minimum wavelength λmin, associated with the
maximum frequency of the waveform data. The spatial wavelength
under which structures cannot be resolved by FWI is directly related
to λmin. We define a constant wavelength λ0, setting the separation
between the fine and the large scales. The objective of HFWI is
to recover, from the waveform data, an effective model at scales
greater than λ0. Knowing the diffraction resolution limit of a FWI
is about λmin/2 (e.g. Huang & Schuster 2014), a good choice is λ0

≥ λmin/2, because smaller scales are poorly resolved by the data.
Capdeville & Métivier (2018) consider numerical examples of a
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678 N. Hedjazian, Y. Capdeville and T. Bodin

Figure 1. Notations used for the two-stage method proposed here. We invert
the waveform data d for a macroscale effective medium m∗. m∗h is an
intermediate product of HFWI required by the discretization of the problem.
Next, we seek for microscale models m having an effective medium close
to m∗. H designates the homogenization operator.

FWI using either isotropic or anisotropic parameters, adapting the
space discretization to maintain identical number of free parameters.
They show that the FWI solution may vary depending on the chosen
parametrization. However, these different solutions have the same
homogenized elastic properties for a scale separation position λ0

= λmin and are in good agreement for a scale separation at λ0 =
λmin/2. Hence, introducing homogenization in the FWI problem
leads to the following observation: while FWI is parametrization
and mesh dependent, HFWI is not. If we assume that the real,
multiscale Earth is solution of a given FWI problem (this may
not be true due to the imperfection of the inversion algorithm), its
effective elastic properties are also a solution. As the real Earth
is inaccessible, Capdeville & Métivier (2018) suggest to seek for
an effective medium and thereby reduce the non-uniqueness of the
FWI solution.

By definition, the HFWI solution model is smooth and presents
apparent anisotropy. Because of this spatial simplicity, it is appropri-
ate for fast data prediction. It can already prove useful in this form,
for example regarding source localization, but it is poorly suited
to geological interpretation. For this purpose, we are required to
solve a second problem, the downscaling or inverse homogenization,
which is the main subject of this study. Some previous examples of
inverse homogenization examine the general case of elliptic equa-
tions (Hoang & Quek 2019), or, in the FWI context, porosity using
seismic attenuation (Dupuy et al. 2016). In the 1-D case, Bodin
et al. (2015) proposed a Bayesian inverse homogenization strategy,
where the ensemble of 1-D fine-scale elastic models equivalent to a
tomographic profile is explored.

In this study, we show how the effective anisotropy recovered
by the HFWI solution model can be used to resolve small-scale

isotropic heterogeneities. The forward operator in the inverse ho-
mogenization problem is the non-periodic elastic homogenization
(Capdeville et al. 2010; Guillot et al. 2010). Thus, no hypothe-
sis such as periodicity or stochastic invariance is required on the
fine-scale medium. The misfit is defined by a distance between
two effective elastic media: the HFWI solution (taking the role of
the observations) and the effective medium of the fine-scale model
(the predictions). The space of fine-scale models is defined with an
object-based approach to reduce the number of inference parame-
ters. Because the solution could be non-unique, we use a Bayesian
formalism, where an ensemble solution is sampled with a Markov
chain Monte Carlo (MCMC) algorithm, thus allowing us to estimate
uncertainties.

We test the method in the case of a 2-D homogeneous medium
containing cavities. The objective is to recover the position, size and
shape of the cavities. The setup is representative of near-surface
or engineering problems, with high wave frequencies and short
acquisition times. The rationale of this choice is also the prospect
to validate the methodology using reduced-scale experiments in the
laboratory (Pratt 1999; Pageot et al. 2017).

We observe the following advantages to split the multiscale in-
version into two steps: in the first step, recovering an homogenized
elastic medium is in general a better-posed problem that conven-
tional FWI, because the space of acceptable elastic models is con-
tained. We only need to search for smooth solution models, the
effective anisotropy contains the information on the small-scale
structure seen in the waveform data. This lowers the computational
cost of wave propagation if the true medium contains fine-scale
heterogeneities or discontinuities. It also mitigates artifacts induced
by incorrect parameter restrictions. The level of smoothing is natu-
rally given by the wavelength of homogenization. We introduce as
little prior information as possible at this stage, as it would require
more advanced mathematical treatments of wave propagation and
usually greater computational cost. The second step, the inverse
homogenization, can be less well-posed. But it presents the great
advantage to having a much cheaper forward model, which makes
possible the use of statistical or global search approaches. For ex-
ample, using a Bayesian framework facilitates the incorporation of
a priori information. Furthermore, the data is now ‘localized’: the
effective properties at one location depend only on the fine-scale
properties in the neighbourhood. This potentially allows to solve
the problem using a large ensemble of tools that are prohibited in
waveform inversion (e.g. Nawaz & Curtis 2016).

2 H O M O G E N I Z AT I O N T H E O RY

This section summarizes the elastic homogenization theory used in
this study. More detailed descriptions can be found in Capdeville
et al. (2010) and Guillot et al. (2010). We define the ensemble of
elastic mediaM. Each m ∈ M is a vector of microscale parameters
characterized by its density ρ and its elastic tensor c for every po-
sition in the medium. In the following, M∗ is the space of effective
media, and effective quantities are noted with a∗.

2.1 Homogenized wave equation

Homogenization theory refers to an ensemble of methods that aims
at ‘averaging’ the fine scale properties of a heterogeneous medium,
that is computing its effective properties at larger scale in a mathe-
matically rigorous and consistent way for a given set of equations.
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Multiscale seismic imaging 679

Such methods have been widely developed for static elastic prob-
lems for media with an explicit separation of scales, in particular
for periodic media (e.g Bensoussan et al. 2011). In the context of
wave propagation, elastic heterogeneities smaller that the minimum
wavelength are expected to only have an effective impact on the
resulting wavefield. Hence, for solving the wave equation, the fine-
scale medium is beneficially replaced by a long wavelength effective
medium.

In the case of periodic media, of period λ for example, the effec-
tive medium and equations can be obtained with the two-scale ho-
mogenization method (e.g. Sánchez-Palencia 1980). It is an asymp-
totic method based on the following small parameter:

ε = λ

λmin
, (1)

where λmin is the minimum wavelength of the wavefield. It is pos-
sible to find the effective medium and more by solving a series of
partial differential equations (called the cell problem), most of the
time numerically. It can be mathematically shown that the true so-
lution of the wave equation weakly converge towards the effective
solution as ε tends towards zero.

For most geophysical media, the periodic assumption is not valid
and the extension of the two-scale homogenization to the non-
periodic case is not trivial. Indeed, there exist no natural scale
separation λ0 in the elastic medium. To solve this difficulty, a so-
lution based on the assumption that a minimum wavelength λmin

= VS, min/fmax exists, associated with the maximum frequency con-
tained in the waveform fmax and the slowest velocity in the medium
VS, min, has been developed (Capdeville & Marigo 2007; Capdeville
et al. 2010). In this method, the separation of scale is not performed
with respect to the medium but to λmin. We therefore introduce λ0

as a user-defined parameter that sets the separation between scales
considered as ‘fine’ (or microscopic) and ‘large’ (macroscopic).
The value of λ0 simply determines the minimum length-scale that
will be preserved in the homogenized medium, and it does not vary
spatially. A smaller λ0 corresponds to a more detailed structure thus
a more accurate solution for the effective displacement u∗, whereas
a larger λ0 involves a smoother medium and imprecise solution. We
can introduce:

ε0 = λ0

λmin
, (2)

which measures the scale separation position in the seismic model.
We usually consider that the wavefield ‘sees’ the medium at the

scale λmin/2, that is ε0 = 0.5. Medium heterogeneities of scale
λ0 � λmin are seen by the wavefield only through their homoge-
nized/effective properties. Nevertheless, for some strongly scatter-
ing media, it can happen that an ε0 smaller, or even much smaller,
than 0.5 might be required to model accurately a long coda wave.
We refer to Capdeville et al. (2010) for numerical examples.

In the inversion context, that is recovering the elastic medium
properties knowing an observed displacement u at the surface,
the image reconstruction becomes challenging when approaching
this λmin/2 FWI resolution limit. Thus a value ε0 ≥ 0.5 might be
preferable in most cases (for a more comprehensive discussion, see
Capdeville & Métivier 2018). The value of ε0 ∼ 0.5 is chosen in
this study.

Homogenization theory introduces two space variables, macro-
scopic variations with the variable x, and microscopic variations
with x

ε0
, and assumes they can be treated as independent variables.

A physical quantity depending on macroscopic and microscopic
variations and on time, such as displacement, is written u(x, x

ε0
, t).

The homogenized solution of the wave equation with a scale separa-
tion position ε0 is the leading order of the displacement asymptotic
expansion and is written u∗. It can be demonstrated to be indepen-
dent of the small scale variable x

ε0
. The asymptotic expansion to the

first order of the true displacement is:

u(x,
x

ε0
, t) = u∗(x, t) + ε0χ(x,

x

ε0
) : ε(u∗)(x, t) + O(ε0) . (3)

χ is a third order tensor called the first-order corrector, it does not
depend on time thus needs only to be known at receiver positions.
The double dot product notation corresponds to [χ : ε]i = χi jkε jk

with Einstein summation convention. [ε(u∗)] jk = 1
2 (∂ j u∗

k + ∂ku∗
j )

is the strain tensor of the effective displacement. In practice, eq. (3)
is most of the time in O(ε2

0).
One can show that the effective displacement u∗ is the solution

of the effective wave equation:

ρ∗ü∗ − ∇ · σ ∗ = f∗

σ ∗ = c∗ : ε(u∗), (4)

ρ∗, c∗, σ ∗ and f∗ are the effective density, elastic tensor, stress tensor
and source term respectively. This equation is subject to effective
boundary conditions, which are not explicited here (see Capdeville
& Marigo (2012) for the treatment of boundary conditions). This
equation is analogous to the classical wave equation except that true
quantities have been replaced by effective quantities. In this study,
we consider a region containing neither sources nor receivers, thus
we also omit the treatment of the effective source f∗ and the first
order corrector χ . Hence, the effective elastic medium is uniquely
determined by its effective density and elastic tensor. Once ρ∗ and
c∗ have been determined (see the next section), one can solve the
eq. (4) using a standard wave equation solver. The accuracy of
approximating u by u∗ is given by eq. (3): solving the wave equation
in the media m or m∗ produces identical displacements up to the
first order in ε0.

2.2 The Homogenization operator

To compute the effective medium properties, we introduce a low-
pass filter operator noted Fλ0 (see Guillot et al. (2010) for its exact
analytic definition). Any spatial field filtered byFλ0 does not contain
spatial variations smaller than λ0. A ‘naive’ averaging or homog-
enization would be to simply filter the density ρ and the elastic
parameters c. However, this ‘naive’ solution as well as any other
simple option such as filtering the compliance tensor (the inverse
of the elastic tensor) or directly the seismic velocities are leading
to poorly accurate solutions (Capdeville et al. 2010). In the case of
a layered medium, Backus (1962) showed that the correct effective
medium is obtained by filtering non-linear combinations of the fine-
scale elastic parameters. In the general case, there exist no analytic
solution to the effective properties. Using homogenization theory,
they are obtained following the procedure described hereinafter.

We define effective properties of an elastic medium m ∈ M with
a scale separation at ε0 as m∗ = (ρ∗, c∗) ∈ M∗. m∗ is spatially
smooth, it does not contain wavelengths smaller than λ0. Thus the
space of effective media M∗ is a finite dimensional space. Its di-
mension is proportional to (fmax/ε0)d with d the dimension (2-D or
3-D) of the problem. In the following, the relation between the fine
and large scales is summarized by the homogenization operator H:

(ρ∗, c∗) = H(ρ, c). (5)
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680 N. Hedjazian, Y. Capdeville and T. Bodin

The operator H is non-linear and implicitly depends on ε0 and
λmin. In practice, the procedure to compute H comprises following
steps:

(i)Find the initial guess corrector χ lm
s . We solve an elasto-static

equation called the cell-problem in the homogenization vocabulary:

∇ · c : ε(χ lm
s ) = −∇ · (c : (el ⊗ em)) (6)

with periodic boundary conditions, and ei , i ∈ {1, ..., d} the Carte-
sian unit vector along dimension i.
(ii)Compute the effective density and elastic tensor:

ρ∗(x) = Fλ0 (ρ)(x), (7)

c∗(x) = Fλ0 (Hs) : Fλ0 (Gs)−1(x), (8)

with (Gs)i jkl = 1
2 (δilδ jm + δ jlδim) + (

ε(χ lm
s )

)
i j

and Hs = c : Gs .

First step involves the resolution of an elasto-static problem,
which we solve numerically with a the finite element method
(Capdeville et al. 2010). Second step involves low-pass filtering
with operator Fλ0 . This implies that the inverse problem (downscal-
ing, i.e. recovering small-scale properties knowing the large-scale
ones) is ill-posed.

3 H O M O G E N I Z E D F U L L WAV E F O R M
I N V E R S I O N

We now present the elements of the HFWI used in this study
(Capdeville & Métivier 2018). We invert seismic waveforms d for a
macroscale effective medium m∗. The interest of the HFWI method
is that a relation can be established between its solution and the true
Earth model mt:

m∗ ≈ H(mt), (9)

whereH is the homogenization operator defined above. We will then
use this equation to define the inverse homogenization problem.

3.1 Parametrization in the FWI

We consider the inverse problem of FWI. In general practice, the
solution space is defined with a restricted number of mechanical
parameters (for example, only P-wave velocity or only isotropic
parameters) and with a spatial discretization that might be different
from the wave equation solver mesh. Here, we chose this solution
space as the ensemble of effective elastic models M∗, the image
of M through the operator H, for which the parametrization is
fully anisotropic (six independent elastic parameters in 2-D, and 21
parameters in 3-D).

In the layered media case, the homogenization problem has
an analytic solution, thus the effective medium can be explicitly
parametrized with the Backus parameter vector (Capdeville et al.
2013). In the general case however, no explicit parametrization of
the effective medium space M∗ is known yet. This means, if we
suppose having a model m∗

i ∈ M∗ at iteration i, the updated model
mi+1 obtained with an iterative optimization algorithm is not nec-
essarily in M∗. Hence, in practice, we rely on an approximate finite
dimension model space M∗h , wide enough to capture the informa-
tion in the waveform data, but such that H(M∗h) ⊂ M∗ (Fig. 1).

We define a model in M∗h with the notation m∗h . We chose
to parametrize such model with a density ρ∗h and the full elastic
tensor c∗h on a regular mesh, each cell containing a polynomial
approximation of degree Nh in each direction. No continuity in

elastic properties is imposed between the elements. In contrary to
m∗, m∗h may not be smooth and we may have m∗h /∈ M∗.

To ensure that the final model m∗
f is in M∗, two strategies are

possible. A first one is to project m∗h
i+1 ∈ M∗h into m∗

i+1 ∈ M∗ after
each iteration, using H, and compute the next model i + 2 from
m∗

i+1. This method acts as a natural regularization of the problem.
A second possibility is to compute each model iteration in the space
M∗h and project only the final model m∗h

f into m∗
f ∈ M∗. We rely

on the second method in all the inversions performed in this study,
because the regularization at each step was not required to make the
algorithm converge for our examples.

3.2 Waveform inversion strategy

Waveform observations ds(xr , t) originating from sources s are
measured at receivers positions xr . We replicate the waveform data
by solving the elastic wave equation and extracting the displacement
us(xr , t) at the receiver locations. Waveform modelling is performed
with a 2-D spectral element solver (Komatitsch & Vilotte 1998).

For a fine-scale model m = (ρ(x), c(x)), the misfit function is
defined as a least-squares distance between d and u:

E(m) =
∑
r,s

∫ T

0
(ds(xr , t) − us(xr , t ; m))2 dt. (10)

Similar equations E∗h and E∗ can be written by replacing m with
m∗h or m∗ if the model is in M∗h or is projected into M∗ at each
iteration. m∗h will be used in all the tests presented hereinafter.

The misfit function is minimized using a standard damped Gauss–
Newton iterative scheme. The updated model is defined as:

mi+1 = mi + (
(Fi )T Fi + λi I

)−1
(Fi )T (d − u(mi )), (11)

where I is the identity matrix. The Fréchet derivatives Fi of the
displacement u with respect to model parameters mi are calcu-
lated with the adjoint state method (Tarantola 1984; Plessix 2006;
Tromp et al. 2008). The approximate Hessian (Fi )T Fi is damped by
a parameter λi which value decreases with iterations. Once the
algorithm has converged, the final model m∗h is projected into
m∗ = (ρ∗, c∗) ∈ M∗ using the homogenization operator.

4 I N V E R S E H O M O G E N I Z AT I O N

The term ‘downscaling’ is mostly used in the field of meteorology
and defines the procedure of inferring microscale (or high resolu-
tion) information from macroscale (or low-resolution) variables. In
this study, the upscaling operator is H, and hence the downscaling is
called inverse homogenization. The problem consists in recovering
fine-scale information on an Earth model, knowing an estimation of
its effective elastic properties m∗. Typically, m∗ is the result of the
HFWI method presented in the previous section. It allegedly con-
tains all the information that could be retrieved from the waveforms.
To further learn something about the true Earth mt, incorporation
of a priori information is required. This can include additional data
from a non-seismic origin, some known geological features, spa-
tial statistical properties of the rocks, etc. We aim at solving the
inverse homogenization using a Bayesian formulation, where the
a priori information is provided as a probability distribution (e.g.
Kaipio & Somersalo 2006). Thus the HFWI and inverse homog-
enization process is particularly suited to incorporate constraints
from geostatistical models.
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4.1 Problem setting

Depending on the level of a priori constraints, the solution of the
downscaling problem might be highly non-unique, as many small-
scale models can have the same effective medium. Therefore, we
cast the problem in a Bayesian framework, where we look for an
ensemble of plausible solutions. It is described by an additive noise
model, with the following equation:

c∗ = H(c) + ε, (12)

understood in a statistical sense. c∗, defining the observed data,
is the effective elastic tensor of m∗ obtained by HFWI. c is the
elastic tensor of a microscopic scale model m. In this equation,
the models are described only with their elastic tensor because we
did not consider the density in the inverse homogenization. ε is a
random variable characterizing the mismatch between the solution
of the HFWI m∗ and the effective properties of the true earth m∗

t ,
i.e. the meaning of ≈ in eq. (9). The first source of mismatch is the
data uncertainty, the error attributable to the approximate estimation
of c∗ in the HFWI. The second source is the theoretical errors of
the operator H. We neglect this source of errors in the following,
expecting that in practice, it should be orders of magnitude smaller
than the first one if computed correctly.

Properly defining the inverse homogenization with a Bayesian
formulation amounts to obtain an accurate idea of the distribution
for ε. An assumption on its structure is required. We follow the gen-
eral practice and suppose ε to be multivariate-Gaussian distributed
with zero mean and covariance matrix 
. These assumptions are
discussed hereinafter and in the synthetic tests presented later on.

The distribution for ε represents our knowledge on the all the
errors introduced when estimating c∗ by HFWI. Errors in the HFWI
solution may have multiple sources, such as: noise on the waveform
data, lack of data coverage, damping, convergence towards a local
minima, etc. Solving the FWI using a global search is not achiev-
able in real scale problems. They are solved with a local optimiza-
tion strategy (here the Gauss–Newton method) returning a unique
‘best-fitting’ solution model. Therefore, HFWI shares the same dif-
ficulties as any other FWI methods to find a solution close to the
global minimum. Still, because HFWI reduces the space of solution
models to the effective ones, it at least mitigates the ill-posedness
induced by a poor parametrization (Capdeville & Métivier 2018).

If the global minimum is achieved, we can estimate ‘how far’ m∗

is from m∗
t by computing local uncertainties associated to this solu-

tion. This is a widespread subject of research in seismic tomography.
Broadly speaking, local uncertainties are usually characterized by a
covariance matrix 
. Methods developed in the FWI context to es-
timate 
 rely on low-rank matrix approximations (Bui-Thanh et al.
2013; Thurin et al. 2019). 
 is strongly linked with the Hessian ma-
trix (Fichtner & Trampert 2011). As pointed out by Bui-Thanh et al.
(2013), the Gauss-Newton part of the Hessian FT F is a good ap-
proximation of the full Hessian, especially if the medium is smooth.
It could thus be an appropriate choice to estimate 
. However, in
the HFWI formulation used here, we obtain FT F for the M∗h space,
while we look for uncertainties in the M∗ space. A proper estima-
tion of 
, for example by upscaling of the Hessian matrix into M∗,
will be the subject of future work.

4.2 Bayesian inference

The solution of the Bayesian inverse problem is described by the
posterior probability density of the model parameters knowing the

observations π (c|c∗). Using the Bayes formula, we write the poste-
rior as (Kaipio & Somersalo 2006):

π (c|c∗) ∝ πpr(c) exp (−φ(c)) , (13)

where πpr(c) is the prior distribution on c, and φ(c) the negative
log-likelihood (the Bayesian equivalent of the misfit function).

4.3 Likelihood function

Using the Gaussian additive noise model of eq. (12), the negative
log-likelihood is:

φ(c) = 1

2
(c∗ − H(c))T 
−1(c∗ − H(c)), (14)

where c is expressed as a data vector. In the fol-
lowing 2-D examples, this corresponds to the parameters
(c1111, c1122,

√
2c1112, c2222,

√
2c2212, 2c1212) to take into account the

symmetries in the elastic tensor.
The choice of 
−1 is crucial in estimating the posterior uncer-

tainties on the model parameters. To ensure that our estimate 
̂−1 is
reasonable, we only estimate relative uncertainties 
̂r, and introduce
a scaling parameter h setting 
 = h2
̂r, where h will be treated as
an unknown variable in the problem, following the so-called hier-
archical Bayes approach (Gelman et al. 2013). The role of h is to
account for a mis-estimation in the amplitude of errors. An inferred
value of h close to 1 shows that the estimation 
̂r given by the user
is good. A value h > 1 indicate that some additional parts of the data
are not explained by our modelling, due for example to theoretical
errors. In this case, the negative log-likelihood becomes:

φ(c, h) = N log(h) + 1

2
(c∗ − H(c))T (h2
̂r)

−1(c∗ − H(c)), (15)

where both c and h are unknown to be solved for.
In order to compute φ, the next step is to estimate the inverse

covariance matrix 
̂−1
r of the probability distribution associated to

ε.
For a solution space of dimension N, we need to estimate the N ×

N parameters. For now, we rely on a sampling-based estimation of

̂−1 similar to the approach in Hansen et al. (2014). It consists of
first generating a large ensemble of error realizations, from which a
Gaussian model is inferred. We generate M noise realizations on the
waveform data d and, for each, estimate a HFWI solution. As such,
we only consider errors associated to the noise in waveforms and
mapped to the HFWI solution through the tomographic inversion.
First, we calculate the empirical covariance matrix S of the M HFWI
solution models. In order to get a stable inverse of S, a regularized
version 
̂r is computed using the shrinkage formula (Ledoit & Wolf
2004):


̂r = (1 − α)S + α
Tr S

N
I, (16)

where I is the identity matrix. It represents an optimal linear com-
bination of S and I to minimize the mean squared error between 
̂

and the true covariance. The formula reduces the ratio between the
maximum and minimum eigenvalues while preserving the mean of
all eigenvalues, thus a sufficiently large α ensures that 
̂r is well-
conditioned. The parameter α can also be interpreted as a trade-off
between bias and variance for the estimator 
̂r. We chose the value
of α adapted to Gaussian distributed data (Chen et al. 2010).
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4.4 Prior information

The prior distribution π pr in eq. (13) encodes the information known
about the model m before the inversion. It is therefore widely de-
pendent on the tackled problem. Basically, any geostatistical model
could be used for π pr. The Bayesian formulation permits a large
range of applications for the inverse homogenization.

Prior information is enforced in two different ways: (1) by choos-
ing a specific parametrization of the model using geometrical ob-
jects and (2) by choosing a relevant prior probability distribution on
these parameters. Translated into notations, the elastic model c is
constructed from a vector Z of n latent variables. This process can
be described as a function c(Z). Subsequently, a prior distribution
is imposed directly on Z. Hence, we will write the prior distribu-
tion πpr(Z) and keep a similar notation for the other probability
distributions described hereinafter.

Because this study deals only with synthetic tests, construction
of realistic priors is out of scope. We will consider a somewhat
idealized prior distribution, using an object-based parametrization
made of ellipses. The vector Z contains parameters describing the
position and shape of each object, as well as the hyperparameter
h, the unknown scaling factor of the covariance matrix. For the
problem at hand, the ellipses are representing cavities. They are
described by their position (xi, yi), the long and short axes (r i

1, r i
2)

and the angle from horizontal αi for each ellipse 1 ≤ i ≤ ne. All
parameters are independent. We use a uniform prior distribution for
the object parameters, and a Jeffrey prior for h (i.e. proportional to
1/h).

4.5 Sampling algorithm

The posterior distribution is sampled using the reversible-jump
MCMC (rj-MCMC) sampler (Green 1995). Rj-MCMC is a trans-
dimensional sampler, where the number of parameters (here the
number of elliptical cavities) is treated as an unknown in the prob-
lem. In our case, it amounts to consider a varying number ne of
objects. Transdimensional inversions are popular in seismic imag-
ing, as the spatial discretization of the solution space is adapted
to data quality and coverage (Sambridge et al. 2013). The present
parametrization allows to make some simplifications in the algo-
rithm, a more complete description of the rj-MCMC algorithm for
seismic imaging is outlined in Bodin & Sambridge (2009).

MCMC algorithms aim at generating samples from a target prob-
ability distribution. In a Bayesian inverse problem, we want to sam-
ple from the posterior distribution π of eq. (13). At each step of
the Markov chain, a new sample Z′ is generated as a small ran-
dom deviate from the previous parameter vector Z, according to a
proposal distribution noted q(Z′|Z). From this proposed model Z′,
we construct the elastic tensor c′, and write its corresponding prior
and negative log-likelihood πpr(Z′) and φ(Z′). The Markov chain
converges to the posterior distribution if the acceptance probability
of Z′ is:

αaccept(Z
′|Z) = min

{
1,

πpr(Z′)q(Z|Z′)π (Z′|c∗)

πpr(Z)q(Z′|Z)π (Z|c∗)
× |J|

}
(17)

J is the Jacobian matrix of the transformation from Z to Z′. Its
determinant |J| is equal to 1 for the transformations considered in
this study (see Bodin & Sambridge (2009) for details). We use a
‘burn-in’ period to ensure the convergence of the Markov chain.
That means, the first samples are discarded until the Markov chain
is expected to have reached its equilibrium. The following samples
Z (and hence c) constitute samples from the posterior distribution

π , from which any statistical quantity such as mean or variance can
be computed.

The proposal distribution comprises the following types of
moves:

(i)perturb a parameter describing an ellipse (position, axis length,
angle) using a Gaussian probability density centred in 0;
(ii)perturb the hyperparameter h using a similar probability density;
(iii)birth: add a new ellipse to the vector of parameters Z, each of
the new parameters being drawn from the prior distribution;
(iv)death: remove an ellipse, hence its parameters, from Z.

For moves of type (i) and (ii), the proposal distribution is symmet-
ric, q(Z′|Z) = q(Z|Z′), which can be used to simplify expression
(17). For moves of type (iii) and (iv), the proposal equals the prior
distribution, they cancel out and the second term of the right-hand
side in eq. (17) becomes the ratio of the likelihoods: we do not
need to explicit the prior distribution but only to sample from it
(Mosegaard & Tarantola 1995).

This method is appropriate when strong prior information is avail-
able, which is the case in this study. For a fast convergence of the
Markov chain, numerical experiments suggest that the proportion
of accepted moves should be between 10 and 50 per cent. In birth
moves, the proposal and the prior are identical. Hence the prior
should be close to the likelihood function to achieve a sufficiently
high acceptance of proposed samples.

5 S Y N T H E T I C T E S T S F O R T H E
I N V E R S E H O M O G E N I Z AT I O N

This section presents synthetic examples of the inverse homogeniza-
tion step only. We try to recover small-scale isotropic anomalies,
inducing effective anisotropy, from their effective large-scale prop-
erties. The goal is to validate the proposed rj-MCMC algorithm
and to study the effect of the prior information introduced in the
problem.

5.1 Setup

We consider a 2-D square homogeneous plate with 120 m sides (all
boundaries are reflective). The first synthetic model contains four
ellipsoidal cavities having minor and major diameters of sizes 2 and
6 m, respectively, as seen in Fig. 2. We compute the effective medium
of this model using the homogenization technique described in
paragraph 2.2, using a scale separation parameter λ0 = 16.6 m.
This value of λ0 will be kept for the remainder of the study. We
present in Fig. 2 the resulting shear-wave velocity VS and a measure
of anisotropy defined by the ratio ||c − ciso||2/||ciso||2, where ciso

is the usual isotropic projection of c (Fedorov 2013; Browaeys &
Chevrot 2004) and ||.||2 the Euclidean (or Frobenius) matrix norm.
While the original model is discontinuous and isotropic, its effective
medium is smooth and anisotropic.

We add spatially correlated Gaussian noise to the elastic param-
eters of the homogenized seismic model. We chose an exponential
covariance function with characteristic length-scale λ0, in order to
reproduce the correlations that would be observed in an elastic
model obtained from HFWI. There are however no correlations in-
between elastic parameters. This noisy elastic field noted m∗

n is used
as data for the inverse homogenization problem.
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Multiscale seismic imaging 683

Figure 2. Synthetic model consisting in a homogeneous rectangular domain containing ellipsoidal cavities: (left-hand panel) the true model and associated
synthetic waveform data, (right-hand panel) shear wave velocity and anisotropy of its effective medium. Red stars show the sources locations, blue triangles
the receivers and a white bar shows λ0. The inverted region is inside the dashed-line rectangles.

5.2 Results

We invert m∗
n for a small-scale model m using the rj-MCMC algo-

rithm presented in Section 4. Prior information is incorporated in
the construction of the model m and consists of the following: m
is isotropic, its elastic properties are chosen from only two possible
materials, either the plate or the void of the cavities, and the cavities
are parametrized as (an unknown number of) ellipses.

For each realization in the Markov chain, we need to build a dis-
cretized version of m before calculating H(m) with a finite element
method. The elements are triangular and the interpolation is based
on the Fekete points using high order polynomials. The mesh is
generated using the Gmsh tool (Geuzaine & Remacle 2009). Tri-
angular elements are more versatile than spectral elements meshes,
hence allow to generate a new mesh at each iteration of the Markov
chain. But this way of proceeding will meet its limits in 3-D where
automatic generation of conforming meshes is difficult. Alternative
computing methods will be reviewed in the discussion.

The result of the inversion is the posterior distribution of the pa-
rameter vector Z. A visual representation is obtained by computing
the probability of being inside a cavity (Fig. 3): it corresponds, at
each spatial position of the image, to the number of times this posi-
tion is inside an ellipse divided by the number of sampled models.
The algorithm is able to recover the presence of four cavities, as well
as their general shape and orientation, which was not obvious by
looking only at the effective model of Fig. 2. We test the inversion
on an additional setup with six cavities of various sizes and ori-
entations. Similarly, the true model is well recovered. The number
of ellipses, ne, is also an inferred parameter in the rj-MCMC al-
gorithm. In both proposed tests, its posterior marginal distribution,
shown Fig. 3, indicates a maximum at the correct value of the true
model.

5.3 The role of prior information

In the absence of prior information, the inverse homogenization
problem is necessarily non-unique, and does not significantly im-
prove the understanding of the medium. For example, the observa-
tion m∗

n would be itself a solution (up to the loss of information in
the filtering operation of eq. 8). Therefore, we shall emphasize that

we are only able to recover the small-scale structure because the
chosen parametrization and prior distribution incorporate sufficient
constraints. To highlight the importance of prior information, we
present an additional test with different choices for the construction
of small-scale models.

We consider the synthetic model of Fig. 4, where the ellipses
are closer to one another, while other parameters are identical to
the previous case. Its effective medium displays one large radial
anomaly and visually distinguishing the underlying structure is not
possible. To construct the noisy data m∗

n, we increase the level of
noise added to the elastic parameters so that the rj-MCMC is not
able to recover the small-scale model correctly.

Fig. 5 shows the inverse homogenization results for three differ-
ent parametrizations, from left to right: (a) we consider a stronger
prior information, using a fixed-dimensional MCMC algorithm and
choosing the number of ellipses ne constant and equal to four (the
positions and geometries of the four ellipses are still unknown vari-
ables to be inverted for); (b) we use the rj-MCMC algorithm as
previously and (c) we parametrize the small-scale model with a
regular grid. Each cell has a 1×1 m size and can contain either
the elastic properties of the homogeneous plate or the cavities. We
invert for a 30×30 m area, hence comprising 900 parameters, using
also a fixed-dimensional MCMC algorithm.

As expected, the quality of the inversion is correlated to the in-
corporated prior information. Algorithm (a), which includes the
most information and imposes the correct number of parameters, is
able to recover the original small-scale model. The rj-MCMC algo-
rithm, however, is inherently parsimonious. We observe a trade-off
between models with three or four cavities, as models with less
parameters are favoured if they explain the data sufficiently well.
Algorithm (c), which considers the least prior information, recovers
only one elongated anomaly. Still, all methods are able to recover
structures with a preferred orientation, although they are not di-
rectly notable on the effective medium. An analysis of the misfit
function indicates that the orientation information comes from the
anisotropic part of the data, especially from the off-diagonal ele-
ments of the elastic tensor. Furthermore, decreasing the level of
prior information leads up to an increase of the number of in-
ferred parameters and the convergence of the MCMC algorithm
grows more difficult. The inverse homogenization is beneficial for
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684 N. Hedjazian, Y. Capdeville and T. Bodin

Figure 3. Results of the inverse homogenization. The top left-hand panel shows the probability of recovering void at each spatial point in the model, the top
right-hand panel the marginal distribution of the number of ellipses ne used to parametrize the small-scale model. The true position and shape of the cavities is
shown as white ellipses. The bottom panels display similar results for a true small-scale model with six cavities of various shape and orientation.

Figure 4. Effective seismic properties of a synthetic model having closer ellipsoidal cavities. The true position and shape of the cavities are represented on the
left-hand panel as white ellipses.

problems where significant prior information is available, but, on the
contrary, may not be useful if considering non-informative priors.

6 S Y N T H E T I C T E S T F O R C O M P L E T E
T W O - S T E P S I M A G I N G M E T H O D

We now present synthetic examples of the full proposed proce-
dure (HFWI followed by inverse homogenization). The setup is

identical to the one presented in Fig. 2, with elliptic cavities pro-
ducing a large effective anisotropy amplitude. This configuration
is relevant for subsurface cavity detection, for damaged structure
inspection, or for reproducing reduced-scale experiments. Because
they combine the information from all types of waves, full wave-
form methods are attractive for such problems (Bretaudeau et al.
2013; Tran et al. 2013). We argue here that non-negligible informa-
tion is already present in the anisotropy at long wavelength (longer
than the anomaly size) and can be leveraged with HFWI.
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Multiscale seismic imaging 685

Figure 5. Results of the inverse homogenization for the synthetic model of Fig. 4, using three different parametrization: (a) a fixed number of ellipses ne = 4,
(b) a variable number ne and (c) a regular grid parametrization.

Such problem may also be tackled with a ‘one-step’ FWI method
based on shape optimization, where the geometries of the cavities
are directly inverted for (e.g. Guo & de Hoop 2013). However, a
conventional FWI would involve more expensive wave propaga-
tion given the fine scale discretization needed to mesh complex
shapes with discontinuities. Derivatives with respect to the param-
eters defining ellipses position and shape would be difficult to com-
pute, and we would expect convergence issues due to the strong
non-linearity of the problem. With the method proposed here, we
choose instead a parametrization adapted to waveform modelling
and linearized inversion. We leverage information from effective
seismic anisotropy, and the inverse homogenization step is solved
with a derivative-free algorithm as described above.

6.1 Waveform data

Synthetic data is generated from sources and receivers placed at
the top, using the 2-D spectral element solver. Correlated Gaus-
sian noise with an amplitude representing 5 per cent of the signal
standard deviation is added to the waveform data. M = 1000 noise
realizations are generated. HFWI is performed independently for
each realization in order to produce an ensemble of M tomographic
solutions, and evaluate uncertainties on the model parameters. An
example of synthetic waveform data distribution is displayed Fig. 2.

The first step in HFWI is to chose the scale separation between
the fine and large scales. The maximum frequency present in the
data is fmax ∼ 90 Hz. The background shear wave velocity is Vs, min

= 3167.0 m s–1, the slowest velocity in the imaged medium is some-
what lower due to the cavities. With λ0 = 16.6 m, the scale separation
position is ε0 ∼ 0.5.

6.2 FWI solutions

The waveform inversion is performed using the approximate model
space parametrization M∗h . It is constructed on a 8×8 regular grid,
each cell comprising a polynomial of degree 4 in each direction.
No continuity is imposed between the elements. This ensures an
adequate degree of freedom relative to the minimum wavelength
λmin. The model m∗h obtained after waveform inversion is then
homogenized into m∗ with a minimum length-scale λ0.

We compare two possible parametrizations for M∗h : (1) a fully
anisotropic parametrization (ρ, c) where the full elastic tensor is in-
verted for as prescribed in HFWI and (2) an isotropic parametriza-
tion (ρ, VP, VS) corresponding to a ‘conventional’ FWI (although a
different, spatially denser discretization would have probably been
used for a real FWI). One example of resulting inverted models m∗h

and m∗ for both parametrizations are compared in Fig. 6.

Again, we present the results in terms of shear-wave velocity VS

and anisotropy index. Several features of HFWI emerge. The M∗h

space is chosen for efficient wave propagation but does not aim at
producing realistic images. As such, for both parametrizations, the
four low velocity anomalies are recovered with a poor resolution
and display the imprint of the inversion mesh. With the isotropic
parametrization, we recover a sharper model. The strong low veloc-
ity anomalies help to explain the long coda in the waveform data.
Such strong anomalies are not required once anisotropy is allowed.

Once projected into M∗, results obtained in the case where m∗h

is fully anisotropic show only circular anomalies, while the strong
anisotropy indicates that information about the shape is preserved.
On the contrary, m∗ obtained from an isotropic m∗h depicts weak
anisotropy while the isotropic parameters VP and VS already dis-
play some structure. The spatial discretization is too loose to re-
solve all the small scales and especially the shape of the anomalies.
This example suggests that a fully anisotropic parametrization pre-
serves more information and is beneficial in the HFWI method.
Data misfit reduction is about 76 per cent versus 61 per cent for
the anisotropic and isotropic parametrizations of m∗h, respectively.
This is not surprising since the anisotropic parametrization has a
higher complexity.

6.3 Uncertainties in HFWI

Estimating the uncertainty on the HFWI solution model m∗ is cru-
cial for the following Bayesian inversion at the downscaling stage,
where m∗ will take the role of the data (Fig. 1). The uncertainty
on m∗ is estimated as described in Section 4.1. As in any Bayesian
inversion, the result of the downscaling stage directly depends on
this estimation.

We consider M = 1000 HFWI resulting models (m∗
1, ..., m∗

M )
obtained for each noise realization on the data and examine their
statistical properties. In the inverse homogenization problem, we
suppose that the result of HFWI is equal to the homogenized true
model m∗

t . We verify this, at least in expectation, by comparing
the mean m̄∗ of the elastic tensors of (m∗

1, ..., m∗
M ) to the one of

m∗
t (Fig. 7a). We also perform for comparison a reference HFWI

using waveform data without noise, and denote its results m∗
0. All

models are similar but not exactly identical and there is in particular
a difference between m∗

t and m∗
0, which can be imputed to the im-

perfect illumination with this source–receiver configuration. Also,
computing the mean on the elastic parameters is somewhat arbitrary
(one could instead, for example, compute the mean on the seismic
velocities). This choice may in part explain the difference between
m̄∗ and m∗

0. Ideally, we should construct an ‘homogenized’ mean in
the space of effective models.
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686 N. Hedjazian, Y. Capdeville and T. Bodin

Figure 6. Full waveform inversion results presented in terms of (a) VS and (b) anisotropy. The top row shows the images obtained with an anisotropic
parametrization of M∗h , and the bottom with the isotropic one. The left-hand column of each panel displays the results in the space M∗h , where the inversion
mesh is apparent, and the right-hand column their effective medium in space M∗.

Figure 7. Uncertainty estimation in HFWI: (a) Comparison of the effective medium of the true model presented Fig. 2 (dashed black line) to the distribution of
the M images obtained by HFWI, for parameter c1111 in a vertical cut at the middle of the model. The blue dot show the mean of the M estimations, and the error
bars show the standard deviation. The red star represent a reference HFWI resulting model where no noise was added to the waveforms. (b) Quantile–quantile
plot comparing the M samples for a parameter c1111 in the middle of the model to a normal distribution. (c) Regularized covariance matrix 
̂r of the models
(m∗

1, ..., m∗
M ), obtained with eq. (16) for a parameter α = 0.06. Its singular value decomposition (d) exposes the effect of the regularization.

We now want to verify the Gaussian hypothesis on ε in eq. (12).
We suppose that ε is distributed as the ensemble of the HFWI
resulting models. The noise on the waveform data is additive and
Gaussian. But because the inverse mapping might not be linear,

we need to verify whether the distribution of solution models pa-
rameters is also Gaussian. We examine the marginal distribution of
individual model parameters from these M realizations. For exam-
ple, we compare the marginal distribution of c1111 for a location
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in the middle of the image to a normal distribution on a quantile–
quantile plot Fig. 5. c1111 is indeed close to normally distributed.
Similar conclusions can be obtained for other parameters inM∗ (not
shown). All parameters being individually Gaussian distributed is a
necessary (but not sufficient) condition for the parameter space to
be multivariate Gaussian. Still, these observations suggest that the
HFWI result is similar to the homogenized true model, and that the
uncertainties are close to normally distributed.

We calculate the covariance matrix of the sample (m∗
1, ..., m∗

M )
using the method presented Section 4.1. In practice, because these
models are smooth, their properties can be described on a regu-
lar grid with 2 points per wavelength λ0. This allows to preserve
their spatial frequency content, while having a minimal size for the
estimated covariance matrix. These chosen grid points determine
the solution space dimension N and will be used to compute the
likelihood function in the inverse homogenization. The estimated
covariance matrix, and the effect of the regularization on its eigen-
values is shown Figs 7(c) and (d), respectively. The analysis of
its structure indicates that variables are spatially correlated on a
length scale λ0. Interparameter correlations also exist, for example
between parameters c2222 and c1122.

The covariance matrix can also provide information about the
effective elastic parameters that are best constrained by the wave-
form data through relative uncertainties. The relative uncertainty
of a parameter is defined as its absolute uncertainty divided by
its value. It is usually considered in seismic imaging that only a
restricted part of the elastic tensor is resolved (for example, only
isotropic or transverse isotropic properties, depending on the data
type). As expected, the parameters involved in isotropic properties
are best resolved (∼1 per cent of relative uncertainty). c1112 and
c2212 are non-zero only in the presence of anisotropy and have at
least 5 per cent of relative uncertainty.

6.4 Downscaling results

To solve the inverse homogenization problem, we describe the en-
semble of fine-scale models using the same object-based approach
as previously, described by the vector of parameters Z. This choice
may represent an excessively optimistic prior information for a
seismology application, but it is appropriate for cavity detection.
A good starting model for the rj-MCMC algorithm is required to
reduce the ‘burn-in’ period until which the chain reaches its target
distribution. For this purpose, we start with an optimization proce-
dure based on simulated annealing (Kirkpatrick et al. 1983). Once
a starting model is found, we proceed with the rj-MCMC algorithm
following standard practice.

We first present the inverse homogenization results for the refer-
ence case: a macroscale solution model m∗ with the fully anisotropic
parametrization is used as observed data with uncertainties charac-
terized by the covariance matrix of Fig. 7. This model m∗ is shown
in Fig. 6 (top row) and corresponds to one element of the M inverted
models. Fig. 8 shows the probability of being inside a cavity at each
spatial position. The algorithm is able to recover the main structure,
identifying four probable cavities with the correct shape. However,
the position of the cavities are close but not always centred on the
true values. Such deviations did not appear in the synthetic tests
of Section 5, and we conclude that the bias originates from a sys-
tematic error in HFWI. Possible explanations for this error are thus
the effect of the damping in Gauss–Newton iterative scheme, an
incorrect estimation of HFWI uncertainties from the M resulting
models and an imperfect illumination.

To look at the results in more detail, the posterior marginal 1-D
distributions for the number of ellipses ne, the ellipse axes and their
orientation are shown in Fig. 9, top row. The mode for the distribu-
tion of ne is much higher than the true value of four. The algorithm
uses additional ellipses to match some weak anomalies in m∗. They
are in general small and circular, hence with an arbitrary orientation.
The modes for the distribution of axes and orientation are close to
the true values. The hyperparameter h is only slightly higher than
1, suggesting that the covariance estimation is reasonable (Fig. 10).

6.5 Isotropic downscaling

We repeat the inverse homogenization this time using HFWI so-
lution model obtained from an isotropic parametrization in M∗h

(Fig. 6, bottom row). In this test, the spatial discretization of the
model in the HFWI is the same as in the anisotropic case (we use
the same mesh), but only two elastic parameters are inverted for (VP

and VS), leading to a reduced number of unknowns. Note that, once
homogenized, the resulting effective medium in M∗ is not strictly
isotropic. The waveform inversion uses the discontinuous nature of
the discretization mesh in M∗h to preserve a (small) part of the
fine-scale information. The effective medium is weakly anisotropic
(Fig. 6).

With a finer spatial discretization, increasing the number of un-
knowns to the same amount as in the anisotropic parametrization
case, one can recover more details in the model. Once homogenized,
such a finer scale isotropic model can retrieve the correct effective
anisotropy. Some examples are presented in Capdeville & Métivier
(2018). The drawbacks are an increased computational cost for wave
propagation, and a more challenging convergence of the waveform
inversion scheme.

From the M obtained effective elastic models, we compute a new
covariance matrix 
̂iso

r , and use it to calculate the likelihood func-
tion. One of the M effective models is selected for the inverse ho-
mogenization (the one displayed Fig. 6, bottom row). The resulting
posterior probability of being inside an ellipse is presented Fig. 8,
and 1-D marginals of parameters in Z Fig. 9 (bottom). Without sur-
prise, models with void inclusions close to circular are preferred, as
they produce only weak anisotropy. This test confirms that some of
the small-scale information has been lost in the isotropic waveform
inversion. We conclude that parametrizing M∗h with the full elastic
tensor can be beneficial for the inverse homogenization problem.

7 D I S C U S S I O N

The HFWI of Capdeville & Métivier (2018) restricts the imaging
solution space to effective media, which are not suited for geo-
logical interpretation. For this purpose, an additional downscaling
step is required. A general summary of the complete procedure is
presented in Fig. 11. Downscaling can be formulated as an inverse
problem where the forward operator is the non-periodic homog-
enization. This study achieves the inverse homogenization of an
elastic medium and clarifies the possible applications of the method.
Because it was restricted to synthetic tests, several additional points
need to be discussed.

The first important point is the choice of the minimum wavelength
λmin. The maximum frequency in the waveform data is deduced from
the chosen filter, but the minimum seismic velocity Vs, min is a priori
unknown before imaging. A strategy to chose λmin has to be adopted
for real data application. For instant, Capdeville & Métivier (2018)
suggest to tune λmin iteratively during the HFWI.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/1/676/6195525 by IN

FU
 BIBLIO

 PLAN
ETS user on 22 July 2021



688 N. Hedjazian, Y. Capdeville and T. Bodin

Figure 8. Probability of recovering void at each spatial point in the model. The left-hand panel presents the results when M∗h is parametrized with the full
elastic tensor, and the right one for the isotropic parametrization. The true position and shape of the inclusions is shown as white ellipses.

Figure 9. Posterior distribution of the latent variables in Z. The top/bottom panels correspond to anisotropic and isotropic parametrizations M∗h , respectively.
For each variable type, all the ellipses are combined on the same histogram. The y-axis shows the probability density associated to each histogram and the
vertical dashed lines specifies the true value. On the middle panels, both short and long axis of the ellipses are combined on the same plot. The right-hand
panels display the angle with respect to the horizontal.

Figure 10. Posterior distribution of the hyperparameter h.

The assumption justifying the downscaling step is that the HFWI
solution model is the effective medium of the true Earth model for
scale separation position ε0 (eq. 9). One necessary condition to meet
this assumption is to find the global minimum of the HFWI. Note
that this issue is not inherent to HFWI but present in all seismic
tomography problems. Constraining the solution to homogenized
models is a natural regularization because it reduces the size of
the solution space and yet guarantees the same data fit. It avoids
the use of biased smoothing constraints on the parameter space.
More sophisticated strategies used in FWI to guide the algorithm
convergence, such as frequency-continuation, are also possible to
implement in HFWI (Capdeville & Métivier 2018).

We formulated the inverse homogenization problem in a Bayesian
sense, where the solution is an ensemble of plausible fine-scale mod-
els. In this framework, uncertainties on the HFWI solution models
are required. We computed them using a substitute method, per-
forming multiple HFWI inversions for multiple noise realizations
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Figure 11. Summary of the seismic imaging method used in the study. The different steps corresponding to Fig. 1 are illustrated for the reference inversion,
here shown in terms of P-wave velocity.

on the synthetic data. Uncertainty estimation in FWI is a current
topical issue (Zhu et al. 2016; Sen & Biswas 2017; Thurin et al.
2019). One can expect viable solutions in the following years, at
least for local uncertainties around the global minimum. In addi-
tion, we observed that the spatial correlation between parameters
in effective models is specific and linked to the homogenization
filter, thus uncertainty estimation in HFWI might be simpler than
in conventional FWI. We are therefore optimistic on the possibility
to address this issue. The subsequent stage will be to clarify the
theoretical link between uncertainties in the FWI problem and the
statistical model assumed in the inverse homogenization (eq. 12).

We used a Bayesian inversion because the inverse homogeniza-
tion is supposed to be highly non-unique. But posterior probability
distributions in high dimension might be difficult to interpret. Using
optimization methods to find a single ‘best-fitting’ model, accord-
ing to some a priori expert knowledge, is sometimes favoured. If
so, the HFWI uncertainty estimation issue is no longer relevant.

All the presented synthetic tests consider a limited number of
inferred parameters, extension to larger problems is now discussed.
In the HFWI part, inverting for the full elastic tensor increases
the number of model parameters compared to conventional FWI.
In return, the spatial discretization is directly defined by λ0 which
could, depending on the application, reduce the solution space size.
Additionally, the homogenization concept is beneficial for the for-
ward problem, notably in cases where wave propagation is difficult.
For example, if the starting model holds discontinuities or small-
scale heterogeneities, the mesh size can shrink drastically. Expen-
sive wave propagation can be spared by considering an effective
medium of the starting model. Ultimately, it still must be based on
a solver able to manage fully anisotropic media.

The computational cost of the downscaling step is less of a prob-
lem. To answer a specific scientific question, one possibility is to
select only a sub-area of the image, or a 2-D section of a 3-D image,
for subsequent interpretation. Such a ‘target-oriented’ downscal-
ing will have little computational cost compared to the waveform
inversion step. The models considered in this study contain discon-
tinuities. Computing H with a finite elements method, as described
in Capdeville et al. (2010), is appropriate. Hence, the mesh was

generated again at each new proposed model and the full space of
the model was homogenized. For continuous models, an alternative
method is to compute H with an FFT-based solver on a regular grid
(Capdeville et al. 2015). In this case, designing a proposal distribu-
tion with local perturbations, as well as computing H only on the
perturbed sub-area, is more straightforward and can further spare
computation time.

For the setup of Fig. 2, the total cost of the forward problem
(comprising the mesher and the solver) is less than a second on
a computing node with 28 cores. We estimate that MCMC-based
methods quantifying the full posterior distribution, where forward
modelling is performed thousands to millions of times, will be
applicable for 2-D downscaling problems. In 3-D, the downscaling
step will be likely restricted to optimization methods.

We now discuss the range of potential applications of the pre-
sented 2-steps method. In our tests, we chose a problem comprising
small-scale anomalies with maximal contrast and a preferred orien-
tation, which constitutes an ideal case for using the information con-
tained in the effective anisotropy. If we had considered a model with
circular cavities smaller than the minimum wavelength, or a model
with weaker velocity anomalies, their effective properties would not
contain significant anisotropy. When the effective medium seen by
the wavefield is close to isotropic, a FWI with isotropic parametriza-
tion would be able to reveal the same level of information. This is
related to the fact that, in the case of weak velocity contrasts, the
homogenization operator is close to a simple low-pass filter. Still,
we believe this does not erase all the advantages of HFWI. First, us-
ing a fully anisotropic parametrization facilitates the convergence of
the waveform inversion. Additionally, many imaged natural media
present indeed effective anisotropy and it is generally not possible
to know beforehand if a medium is isotropic at a given scale.

Structures containing cavities, fluid inclusions or cracks will
likely produce significant effective anisotropy, hence constitute ap-
propriate use cases. They will exist at the engineering and subsur-
face scales, where, additionally, strong prior information is usually
available. Although not explored in this study, applications at the
continental or global scale are envisioned. In seismology, a long
standing issue is the ability to distinguish effective anisotropy (e.g.
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induced by small-scale heterogeneities or preferentially oriented
faults) from intrinsic anisotropy (induced by anisotropic crystals,
e.g. Fichtner et al. 2013a; Alder et al. 2017). For example, down-
scaling of global surface wave tomography models could help to
discriminate between effective and intrinsic anisotropy.

Moreover, our two-step approach is particularly suited to handle
discontinuities in elastic properties. FWI methods struggle to build
discontinuous models, as most waveform solvers rely on spectral-
element methods with rectangular meshes that need to honor the ge-
ometry of discontinuities. Inverse homogenization alleviates these
limitations, because its forward part solves an elasto-static prob-
lem with a standard finite-element method and a triangular mesh.
We showed a near-surface / engineering-scale application to image
cavities, other possible applications at larger scale are characteri-
zation of discontinuous geological structures such as faults in the
subsurface or study the depth and shape of major discontinuities in
the Earth. A typical example is the issue of crustal corrections in
global tomography, required as details within the crust cannot be
resolved by long-period seismic waves. Inaccurate corrections lead
to artifacts in the less constrained part of the model (e.g. Marone
& Romanowicz 2007). Instead of using corrections, one could first
invert long period waves for a smooth homogeneous Earth without
crust, and in a second time, together with extra information, apply
a downscaling approach to reconstruct crustal structures.

8 C O N C LU S I O N

We have presented a proof of concept of the inverse homogeniza-
tion of an elastic medium, applied to a void detection problem. The
seismic imaging problem is solved in two steps. The first one is a
waveform inversion, where the solution space is restricted to effec-
tive or homogenized media. Secondly, in the inverse homogenization
step, the resulting effective medium is used as data and we look for
small-scale models having the corresponding effective properties.
The main benefits are an easier convergence for the waveform in-
version in problems with strong heterogeneities and a better control
on the prior information in the inverse homogenization. The the-
ory was presented in general terms and is applicable at different
scales. Thus, the benefits of an extension to other seismic imaging
problems will be studied in future work. Different implementations
might be more appropriate depending on the problem size and on
the properties of the heterogeneities (continuity, solid or fluid, etc.).
Besides the items for discussion mentioned above, future work on
inverse homogenization need to focus on building realistic prior
models of geological media and adapting the inversion strategy to
these models.
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Almuhaidib, A.M. & Toksöz, M.N., 2015. Imaging of near-surface hetero-
geneities by scattered elastic waves, Geophysics, 80(4), A83–A88.

Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal
layering, J. geophys. Res., 67(11), 4427–4440.

Bensoussan, A., Lions, J.-L. & Papanicolaou, G., 2011. Asymptotic Analysis
for Periodic Structures, Vol. 374, American Mathematical Soc.

Bernard, S., Monteiller, V., Komatitsch, D. & Lasaygues, P., 2017. Ultra-
sonic computed tomography based on full-waveform inversion for bone
quantitative imaging, Phys. Med. Biol., 62(17), 7011.

Bodin, T. & Sambridge, M., 2009. Seismic tomography with the reversible
jump algorithm, Geophys. J. Int., 178(3), 1411–1436.

Bodin, T., Capdeville, Y., Romanowicz, B. & Montagner, J.-P., 2015. Inter-
preting radial anisotropy in global and regional tomographic models, in
The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and
Geochemical Perspective, pp. 105–144, eds Khan, A. & Deschamps, F.,
Springer.
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