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Abstract Geodynamic tomography, an imaging technique that incorporates constraints fromgeodynam-
ics andmineral physics to restrict the potential number of candidate seismicmodels down to a subset consis-
tent with geodynamic predictions, is applied to a thermal subduction model. The goal is to test its ability to
recover structures harboring complex deformation patterns. The subduction zone is parameterized in terms
of four unknown parameters that define its thermal structure: slab length L, thickness R, temperature Tc,
and dip angle θ. A temperature-dependent viscosity is prescribed with an activation coefficientE controlling
the sensitivity. Using the full forward approach to geodynamic tomography, we generate anisotropic surface
wave dispersion measurements as synthetic data. We retrieve the five unknown parameters by inverting the
synthetics corrupted with random uncorrelated noise. The final output is an ensemble of models of L, R,
θ, Tc, and E cast in a posterior probability distribution with their uncertainty limits. Results show that the
parameters are tightly constrained with the apparent existence of a single misfit minima in each of them, im-
plying the implicit retrieval of the complete patterns of upper mantle deformation, and the 21-independent
coefficients defining elastic anisotropy. Eachmodel realization, however, fails to swarm around its true value.
Such results are attributed to the inability of the surrogate model to accurately replicate the correct forward
model for computing anisotropy due to the complexity of the deformation patterns considered. Nevertheless,
this proof of concept shows a self-consistent method that incorporates mantle flowmodeling in a seismic in-
version scheme.

Non-technical summary Seismic tomography is an active area of research in seismology that pri-
marily deals with the imaging of the Earth interior. Here, seismic data are used to recover the heterogeneous
structure of the Earth at a given resolution in a process known as inversion. However, seismic inversionmeth-
ods have to be constantly improved to accurately map these heterogeneities in order to correctly interpret
them in terms of recent deformationmechanismswithin the Earth. We introduce geodynamic tomography; a
new imaging technique that infers thepresent-day temperatureandmantle flowpatterns fromthe inversionof
surfacewavemeasurements. Wedemonstrate thismethod in a subduction zone setting (an earthquakeprone
area where materials making up a tectonic plate are recycled into themantle) by recovering some properties
that define its thermal structure: length, thickness, angle of subduction, and slab core temperature.

1 Introduction
Backed by numerous seismic tomography studies at the
global (e.g. Montagner and Tanimoto, 1991; Panning
and Romanowicz, 2006) and regional scale (e.g. Mon-
tagner and Jobert, 1988; Debayle and Kennett, 2000),
the Earth’s uppermantle exhibits large scale anisotropy
which have been mainly attributed to the development
of the crystallographic preferred orientation (CPO) of
olivine aggregates as they get advected by mantle flow
(see Long and Becker, 2010, for a comprehensive re-
view).

In practice, observations of seismic anisotropy rely
on the simplification of the full elastic tensor (i.e. a
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fourth rank tensor of elasticity with 21 independent
coefficients) because seismic waves are only sensitive
to a limited number of coefficients. Tilted transverse
isotropy (TTI) is one of the most convenient ways to
simplify the elastic tensor, if not the most. In such
a symmetry, the elastic constants can be defined by
the five Love parameters A0, C0, F0, L0, and N0, and
two angles that define the dip and the azimuth, re-
spectively, of the symmetry axis (Love, 1927). Partic-
ularly for S−wave anisotropy, further simplifications
can be defined to reduce the model dimensionality. On
one end, we have horizontal transverse isotropy (HTI)
where the axis of symmetry is horizontal. Also called
azimuthal anisotropy, here S−wave speeds vary with
propagation direction. On the other, we have verti-
cal transverse isotropy (VTI) where the axis of symme-
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try is vertical as a consequence of azimuthal averag-
ing. Also called S−wave radial anisotropy, this prop-
erty causes shear wave speeds to vary with polariza-
tion orientation instead. In theory, constraining the tilt
of anisotropy is possible (Montagner and Nataf, 1988),
and in practice has already been implemented in the
regional scale (Xie et al., 2015, 2017). However due to
sparse azimuthal sampling, non-uniqueness of the solu-
tions, and finite frequency effects brought by tilted lay-
ers, this may make its implementation discouraging.

Surface waves provide unique constraints to large
scale anisotropy in the upper mantle. S−wave ra-
dial anisotropy, for instance, can be recovered through
joint inversions of Love and Rayleigh wave veloci-
ties (Babuska and Cara, 1991). Likewise, azimuthal
anisotropy can be effectively constrained by adding
the azimuthal terms of surface wave velocities in the
data vector(Smith and Dahlen, 1973). Similar to what
was previouslymentioned, surfacewaves are effectively
sensitive to 9 depth functions of the elastic constants
when poor azimuthal coverage is taken into account: 5
for radial anisotropy given by the previouslymentioned
Love parameters; and 4 for azimuthal anisotropy given
by Gc, Gs, and Bc, Bs, whose kernels are identical to
that of S− and P−waves, respectively (Montagner and
Nataf, 1986).By itself however, 9 unknown parameters
are still an excessive amount to be inverted for, and still
can be difficult to resolve. Because of this, velocity and
anisotropy ratios are imposed ad-hoc for regularization
(Obrebski et al., 2010, 2011) which may potentially bias
the results. Moreover due to its limited sensitivity to
the elastic tensor, we are left with a rudimentary under-
standing ofmantle deformation processeswhen relying
on tomographic images alone. Thus, complete knowl-
edge of the full elastic tensor is imperative to capture
the complete patterns of upper mantle deformation.

2 Background: Geodynamic tomogra-
phy

Geodynamic tomography, as reported in Magali et al.
(2021b), is a novel approach to the tomographic prob-
lem whose two key features are the reduction of the
number of unknowns and the removal of symmetry re-
lations to the elastic tensor through the incorporation
of geodynamic and petrological constraints. Due to its
high non-linearity , the solutions to the tomographic
problem are appraised based on a Bayesian probability
framework (i.e. the posterior).

Under Bayesian inference, geodynamic tomography
may not be a conventional inverse problem per se be-
cause it proposes a set of unknown parameters, com-
putes the forward model, and compares the estimated
to the observed data thousands of times. The efficient
search for plausible solutions is carried out through a
Markov chain Monte Carlo (McMC) algorithm. Here,
McMC ultimately tends to sample a restricted area of
high probability density and operates according to a
random-walk behavior. At this point, the chain is said
to be converged; meaning that the target posterior has
been successfully approximated.

As of its current implementation, the method only
inverts local surface wave phase velocity dispersion
curves and their azimuthal variations for the retrieval
of the thermal structure. In practice, dispersion curves
can be obtained by stacking 2-D surface wave velocity
maps with period, and then recovering a plot of phase
velocities versus period at a given geographical loca-
tion (e.g. Nakanishi and Anderson, 1983; Romanowicz,
2002). As such, it is under the assumption of geody-
namic tomography that dispersion curves (which are
also a product of inversion) are readily available. Al-
though there have been a growing number of stud-
ies that implement probabilistic approaches to invert
for the thermal (and chemical) structure from multi-
ple data types, which include surface wave dispersion
measurements such as in Afonso et al. (2013b,a), and
Bissig et al. (2021), geodynamic tomography incorpo-
rates mantle flow modeling followed by texture evolu-
tion computations to constrain strain-induced seismic
anisotropy, and potentially the medium rheology.

Given a temperature field and assuming a strictly
temperature-dependent viscosity, mantle flow models
are obtained using an instantaneous approach. In this
approach, it is not necessary to include the conserva-
tion of energy in solving the equations of viscous fluid
flow. As a result, a steady-state assumption in the flow
is implied when tracing flow streamlines backwards in
time. Instantaneousmodelswith a steady-state assump-
tion may be valid if we interpret the temperature field
as its present-day structure, and assume that the time-
scale for the development of strain-induced anisotropy
inmantleminerals is much faster than the variations of
mantle flowvelocitieswith time. Because of this, geody-
namic tomography is not suitable to invert for the evo-
lution history of the temperature field.

For each flow line traced, undeformed aggregates
composed of a discrete number of crystals are placed at
a position in the streamline corresponding to the first
time step. Texture evolution modeling is then imple-
mented to track the strain evolution of the aggregates
along the streamline. The texture evolution model cur-
rently implemented in our forward problemuses an ‘av-
erage field’ formalism (Kaminski et al., 2004). Here, un-
like finite-element approaches where the aggregate is
explicitly deemed as a spatially extended body, it is not
necessary to keep track of the interaction among crys-
tals. Instead, the crystals within the aggregate are finite
and are treated as a collective entity in ahomogeneously
isotropic medium whose properties are the weighted
meanof theproperties of each crystal. The output of the
texture evolution model is the full elastic tensor. This
tensor can be decomposed intomuch simpler forms for
easier interpretation. For instance, it can be decom-
posed into a VTI medium using the method of Montag-
ner and Nataf (1986) to obtain radial anisotropies in P−
and S−waves.

Magali et al. (2021b) highlights the success of geo-
dynamic tomography in the recovery of the complete
patterns of uppermantle deformation from anisotropic
surface wave measurements in the most simple cases
(i.e. instantaneous flow induced by spherical tempera-
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ture anomalies). This paper explores the ability of the
method to capture more complex deformation patterns
in the guise of a 3-D instantaneous flowacross the upper
mantle induced by subduction, and so directly serves as
an extension toMagali et al. (2021b). To do so, wemodel
thermal subduction by applying a continuous parame-
terization of the subducting slab in terms of hyperbolic
tangent basis functions on top of a background tem-
perature field. The basis function depends on four pa-
rameters which would be treated as unknowns: (1) slab
length L, (2) slab thickness R, (3) dip angle θ, and (4)
slab temperature Tc. For the medium rheology, we em-
ploy a temperature-dependent viscosity controlled by
a scalar parameter called the activation coefficient, E;
although it is acknowledged that a realistic parameter-
ization involves the implementation of non-linear rhe-
ologies relevant to uppermantle conditions (Karato and
Wu, 1993). We implement geodynamic tomography to
retrieve these five unknown parameters that define the
thermal and rheological structure of a synthetic subduc-
tion zone. The method is tested to synthetic data pre-
scribedwith very lownoise levels tomimic periodically-
correlated surface wave dispersion measurements. We
demonstrate how the incorporation of geodynamic and
petrological constraints tightly recover these five un-
knowns, which will then imply the implicit retrieval
of the complete patterns of upper mantle deformation,
and correspondingly, the full elastic tensor.

3 Methodology
Since this work serves as a continuation to Magali et al.
(2021b), this section only describes the appropriate
changes made to the method to adapt geodynamic to-
mography to a subduction setting with known geome-
try.

3.1 Model parameterization
3.1.1 Thermal structure of a subducting slab

We begin by defining a 2.5-D temperature field T(r) that
is constructed in a regular grid of size Nx × Ny × Nz

that extends symmetrically along the y-axis. The tem-
perature field is expressed as the sum of a background
temperature Tbackground derived from a half-space cool-
ing model, and a thermal anomaly δT which translates
to:

(1)T (r) = Tbackground(r) + δT (r),

where Tbackground is given by:

Tbackground(r) = (1900K − 500K) erf
(

z

2
√
κt

)
+ 500K,

(2)

where r is any arbitrary position in 3-D space defined by
the coordinates r = [x,y,z], κ is the thermal diffusivity, z
is depth, and t is the plate age in million years.
The anomaly δT is a subducting slab defined by three

geometrical parameters: (1) dip angle θ, (2) length of
the slab L, (3) thickness R, and one scalar parameter
Tc that determines the magnitude of the temperature
along the axis of symmetry of the slab. We model it

in terms of a hyperbolic tangent function, tanh where
it forces the temperature to be the coldest at the slab’s
symmetry axis, and that the spread of tanh relates to the
thickness of the slab itself (i.e. the parameter R). The
temperature anomaly is mathematically defined as:

(3)δT (r) = −Tc

2

[
1 − tanh

(
β

Lscale

(
d− R

2

))]
where d is the distance from the slab’s center axis to any
point perpendicular to it, β controls the sharpness of
the temperature gradient which is held at a fixed value,
and Lscale is the length of the vertical domain which we
set to 400 km. Fig. 1 shows the thermal structure of the
subduction model viewed in 2-D (left panel) and in 3-
D (right panel) using the aforementioned parameteriza-
tion. The model parameters possess the following val-
ues: L = 150 km, θ = 35◦, R = 120 km, Tc = 800 K.

Figure 1 Thermal structure of a subduction zone parame-
terized in terms of geometrical points. The structure is ren-
dered using the following input parameters: L = 150 km, θ
= 35◦,R = 120 km, Tc = 800 K. The left panel represents the
vertical cross-section of the model whereas the right panel
corresponds to the isovolumetric contour plot of the tem-
perature field.

3.1.2 Medium rheology

The medium rheology is modeled following the Frank-
Kamenetskii approximation to Arrhenius-type viscos-
ity. This means that the influence of temperature onto
viscosity is supervised by the activation coefficient E.
The viscosity field η is given by:

(4)η(r) = η0 exp
[
−ET (r) − T0

T0

]
,

where η0 and T0 are reference values for viscosity and
temperature, respectively. In the inversions, the total
number of parameters to be inverted for are five: four of
whichL, θ, Tc, andR characterize the temperature field
of the subduction model, and the latter E controls the
sensitivity of the viscosity to temperature. We choose
E as an unknown in order to demonstrate the ability
of geodynamic tomography to constrain some proper-
ties of the medium rheology. This is essential because
we expect that larger values of E make the cold slab
more rigid, and thereby lessen the amount of strain-
induced anisotropy across it. Since seismic data contain
the surface manifestation of strain-induced anisotropy,
they then provide potential clues about the rheological
structure of the Earth’s interior. The variablesβ, T0, and
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η0 are held at fixed values throughout the inversion pro-
cess. The model vector m is thus:

(5)m = [L, θ, Tc, R,E].

3.2 The forward problem
The complete forward problem proceeds as follows: (1)
Given the temperature and viscosity fields described by
Equations (1) and (4), respectively, we first numerically
solve an instantaneous 3-D convection problem with
temperature-dependent viscosity that is benchmarked
against Samuel (2012, 2018). (2) Using the velocity field
obtained from (1), we compute velocity gradients using
finite differences. (3) Under a steady-state assumption,
we then trace the flow backwards in time using fourth-
order Runge-Kutta, and at each time step along the flow
line, a local velocity gradient tensor is estimated. (4)
We then track CPO evolution of olivine aggregates us-
ing D-Rex (Kaminski et al., 2004). This computes the
anisotropic part of the elastic tensor. Later in the in-
verse approach, we replace step (2) with an artificial
neural network (Bishop et al., 1995) whose architecture
follows that of LeCun et al. (2015). The training data
are comprised of a pair of flow lines with local veloc-
ity gradients at discrete time steps along the path (train-
ing input) and the deviatoric part of the elastic tensor
predicted with D-Rex (training output). This speeds
up the computation of anisotropy by several orders of
magnitude (Magali et al., 2021b), and hence is befitting
within a sampling-based inversion scheme (Hansen and
Cordua, 2017; Köpke et al., 2018; Conway et al., 2019;
Moghadas et al., 2020). (3) From the temperature field
and the hydrostatic pressure, we derive the pressure
and temperature dependence of the isotropic part of
the elastic tensor using a thermodynamic model for
a given bulk composition using Perple_X (Connolly,
2005, 2009; Stixrude and Lithgow-Bertelloni, 2011). The
result from (2) and (3) is a complete elastic tensor at
each point in space. (3) The last step involves comput-
ing synthetic surface wave dispersion curves using nor-
mal mode summation in a spherical earth (Smith and
Dahlen, 1973) using DISPER80 (Saito, 1988) and their
azimuthal variations (Montagner and Nataf, 1986) from
the elastic tensor. We refer the reader to Magali et al.
(2021b), and Chapter 3 of Magali (2021) for a compre-
hensive description of the full forward problem.

3.3 Synthetic data
The synthetic data to be inverted consists of local
surface wave dispersion measurements and their az-
imuthal variations at the surface. The form of the
Rayleigh wave dispersion curve is the sum of an
isotropic component cR,0 and its azimuthal variations
c1 and c2:

(6)cR(P, ψ) = cR,0(P )+c1(P ) cos(2ψ)+c2(P ) sin(2ψ),

and for Love waves we simply have:

(7)cL(P ) = cL,0(P ),

where P is the period, and ψ is the azimuth of propaga-
tion. Notice that we have neglected the azimuthal terms

for Lovewaves. Such simplifications are reasonable due
to sparse azimuthal coverage and higher noise levels on
Love waves relative to Rayleigh waves in real-Earth data
(Maupin and Park, 2015).

3.4 Inversionmethod
Bayesian inversion is implemented where the solution
is an ensemble of models (i.e. model parameters found
in Equation (5)) distributed according to the posterior
probability density function p(m|dobs), accompanied
by their uncertainty bounds. In this framework, Bayes’
theorem is written as:

(8)p(m|dobs) ∝ p(m)p(dobs|m).

The parameter space is searched using a Markov chain
Monte Carlo (McMC) algorithm. To produce reasonable
acceptance rates, we employed an adaptive perturba-
tion scheme.

3.4.1 Likelihood function

The likelihood function p(m|dobs) quantifies how well
themodel parameters fit the observed data. Herewe as-
sume that the errors are uncorrelated and follow a uni-
variate Gaussian distribution with zero mean, and vari-
ance σ2

c , the likelihood function corresponding to a sin-
gle dispersion measurement can be written as:

(9)p(cobs|m) = 1
(2πσ2

c )N/2 exp
[

−||cobs − cest||2

2σ2
c

]
,

where m is the model vector, N is the number of dis-
crete periods, σ2

c is the estimated variance of the data
noise, cobs is the observed synthetic data to be inverted,
and cest is the synthetic data estimated during the inver-
sion process. The likelihood functions of the 2θ terms
can be cast in the same manner.

3.4.2 Prior distribution

Weassume themodel parameters to be independent. In
this way, the prior distributions for each model param-
eter are separable and can be expressed as a product of
each distribution:

(10)p(m) =
∏

p(L)p(θ)p(R)p(Tc)p(E).

Each prior on the model parameters follows a uniform
distribution with wide bounds to avoid imposing hard
constraints from the prior. Such a setup mimics a sce-
nario where prior knowledge about the regional setting
is scant and thus the solution to our inverse problem
is more likely driven by the information provided by
the data. The prior bounds are as follows: (1) 100 km
- 200 km for L, (2) 80 km - 150 km forR, (3) 20◦ − 45◦ for
θ, (4) 500 K to 1000 K for Tc, and (5) 5 to 12 for E.

3.4.3 Generation of new models along the
Markov chain

Weuse a aMarkov chainMonteCarlo (McMC) algorithm
to search the parameter space that could explain the
data. The sampler initiates by randomly drawing a set
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of L, R, θ, Tc, and E values within the prior bounds fol-
lowedby the evaluationof the likelihood function. Then
at each iteration in theMarkov chain, a newmodelm′ is
proposed by randomly selecting one of the possible set
of moves:

1. Vary the length of the slabL. The slab length is per-
turbed according to a univariate Gaussian distribu-
tion centered at the current value of L.

2. Vary the dip angle θ. The dip angle is perturbed ac-
cording to a univariate Gaussian distribution cen-
tered at the current value of θ.

3. Vary the thickness of the slabR. The slab thickness
is perturbed according to a univariate Gaussian dis-
tribution centered at the current value of R.

4. Vary the temperature of the slab Tc. The slab
temperature is perturbed according to a univariate
Gaussian distribution centered at the current value
of Tc

After choosing one of the four possibilities, the proposal
is always accompaniedby theperturbationofE. The ac-
tivation energy is perturbed using a univariate Gaussian
distribution centered at the current value of E.

4 Full forward procedure to predict
surface wave measurements from
the subductionmodel

Tab. 1 summarizes the true model parameters used to
describe the thermal and rheological structure of the
synthetic subduction zone. Note that the other scalar
variables uninvolved in the inversion procedure, such
as the dimensionless parameters defining the Rayleigh
number, are preserved as inMagali et al. (2021b). When
computing CPO anisotropy with D-Rex, we use the ac-
tive slip systems of olivine corresponding to dry upper
mantle conditions, and estimate the evolution of the
texture onto ∼2000 olivine crystals for 10 My. Other pa-
rameters such as the grain boundary mobility and the
threshold volume fraction for grain boundary sliding
are taken from the reference D-Rex model (Kaminski
et al., 2004).

Model parameter Assigned value
L 150 km
R 120 km
θ 35◦

Tc 800 K
E 11.0

Table 1 True model parameters defining the thermal
structure of the subduction model.

The instantaneous flow is computed in a 400 km× 400
km × 400 km box with a 6.25 km × 6.25 km resolution.
Tangential velocities are prescribed at the top to repli-
cate real Earth subduction dynamics. The bottom and
lateral boundary conditions are free-slip.

Fig. 2a shows the vertical cross-section of the 3-D in-
stantaneous flow field induced by subduction. We ob-
serve one of the conspicuous features of subduction-
induced flow, that is the existence of a local convec-
tion cell beneath the slab tip attributed to retrogade
slab motion. This is accommodated by the existence
of back-arc motion towards the trench made respon-
sible mainly by trench suction and in part by the in-
duced leftward motion due to the imposed plate veloc-
ity across the overriding plate. This also ensures flow
ascension in front of the slab. The vigorous mixing
observed across the sub-slab mantle resembling roll-
back motion is mainly influenced by horizontal bound-
ary effects. Such effects can be reduced by increas-
ing the size of the model domain. Nevertheless, most
features observed across the vertical cross-section are
mainly predisposed by poloidal flow (i.e., buoyancy-
related motion). In essence as with any divergence-free
vector field, our velocity field can be decomposed into
a poloidal component, and a toroidal component which
relates to horizontal flow due to the presence of lateral
viscosity contrasts (Gable et al., 1991; Bercovici, 1995).
Since we imposed temperature-dependent viscosity, we
are compelled to deal with toroidal motion due to lat-
eral variations in viscosity as shown in Fig. 2b (i.e. the
horizontal projection of the flowwhose plane is normal
to the z−axis) where we observe some local vorticities
around the slab edges.

Fig. 3 shows the vertical cross-section of the finite
strain representation of the subduction model. Solid
black lines pertaining to the orientation of the long axis
of the finite strain ellipsoid (fse) are superimposed on
top of the natural strains (i.e., amplitude of finite de-
formation in terms of the natural logarithm of the ra-
tio between the long and short axes of the fse). Finite
strain orientations to first-order tend to be parallel to
the direction of flow, however, may lag behind in some
instances where deformation rapidly varies along the
flow trajectory (Kaminski and Ribe, 2002). The absence
of deformation correlates well with the presence of the
fortified and highly-viscous slab.

From the velocity field, we gain access to the macro-
scopic velocity gradients by finite differencing. The 3-D
map of the local velocity gradient in conjunction with
the temperature field are utilized to construct an elastic
model of the synthetic subduction zone using a micro-
mechanicalmodel for CPO evolution for the anisotropic
part, and a thermodynamicmodel for the isotropic part,
respectively. At any arbitrary location in 3-D space, the
elastic model contains the full elastic tensor. Since it
is arduous to interpret a fourth-rank tensor, it is often
convenient to decompose S into a specific symmetry
class to better analyse its properties. Fig. 4 illustrates
the vertical cross-section of the elastic constants A0 re-
lated to PV−waves and L0 related to SV−waves as-
sociated with the subduction model. The elastic con-
stants are computed from the elastic projection of S to
an azimuthally-averaged VTI medium (Montagner and
Nataf, 1986). Both panels robustly map the cold sub-
ducting slab with L0 exhibiting sensitivity to tempera-
ture variations more fervently than A0. Since the con-
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Figure 2 Instantaneous velocity field induced by subduction. The effective viscosity in log units is superimposed. Model
domain is of the size 64 × 64 × 64 elements, free-slip boundary conditions are imposed at the lateral and bottom sides. Op-
posing plate velocities are prescribed at the top to drive horizontal motion. (a) Vertical cross-section of the velocity field. (b)
Overhead view of the velocity field at a depth of∼ 100 km. Figure (b) illustrates the significance of lateral viscosity variations
to produce toroidal fluid flow.

Figure 3 Cross-sectional view in the xz− plane of the nat-
ural strains (i.e., amplitude of the fse in terms of the natu-
ral logarithm of the ratio between the long and short axes).
Solid black lines are attributed to the orientation of the long
axis of the fse. Finite strain framework is usually used as a
proxy to infer convective flow in the mantle.

stantsA0 andL0 arenot the isotropic averages of the fast
and slow velocities but a linear combination of the elas-
tic tensor, they possess small anisotropic perturbations
thus explaining the presence of smearing in some areas
of the maps.

On theotherhand, Fig. 5 represents the vertical cross-
section of S−wave radial anisotropy ξ (left panel) and
of the amplitude of total anisotropy in terms of the
anisotropy index (i.e., normfractionof the elastic tensor
with respect to the isotropic component) (right panel).
As observed, regions of positive radial anisotropy ξ > 1
correlate well with horizontal flow and of negative ra-

dial anisotropy ξ < 1 with vertical flow. In terms of
the anisotropy index, the entrained mantle wedge ad-
jacent to the plunging slab, and beneath the back-arc
produced the most CPO due to shear deformation ini-
tiated by slab pull and reinforced by trench suction.
Strong anisotropyproduced across the shallowerdepths
of the sub-slab can be attributed to roll-back motion
augmented by boundary effects. Across the slab itself,
we expect ξ ≈ 1 since the material is designed to mimic
rigid plates that withstand deformation. This is also ob-
served at the right panel where the anisotropy index
across the slab appears to be close to zero. Thus in this
case, the subducting slab can be regarded as isotropic
since no CPO is generated due to its resilient rheolog-
ical integrity. The presence of small-scale artifacts in
the anisotropic structures may be attributed to numeri-
cal errors associated with the forward calculations.

From an elastic medium built from the spatial distri-
bution of S, it is now possible to compute 2-D phase
velocity maps and their azimuthal variations. For in-
stance, Fig. 6 shows amap of the computed phase veloc-
ity and azimuthal anisotropy for Rayleigh waves at 100
s. The increase in velocity on the left portion of themap
shown in Fig. 6a indicates the influence of the cold sub-
ducting slab. In Fig. 6b, the characteristic blue margin
in between the yellow regions corresponds to the slab it-
self. This is also delineated by the shortening of the fast
axis of azimuthal anisotropy within its vicinity (solid
black lines). Although the orientation of the fast axis
is a sufficient proxy to infer the horizontal projection
of flow, it may still fail to render some important char-
acteristics such as the presence of a toroidal compo-
nent in the flow. This is because azimuthal anisotropy
in surface waves is an integrated effect of the elastic
anisotropywith depth. Furthermore, the latter depends
on the deformation trajectory. Hence, absolute flow
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Figure 4 Cross-sectional view in the xz− plane of the elastic constantsL0 (left panel) andA0 (right panel). Since elasticity
strongly depends on temperature, we can easily map the cold subducting slab in the seismic models. The cross sections are
taken at the center of the y− axis.

Figure 5 Cross-sectional view in the xz− plane of the S−wave radial anisotropy ξ (left panel) and the anisotropy index
expressed in terms of the tensor norm fraction of S with respect to its isotropic component (right panel). The cross sections
are taken at the center of the y− axis.

velocities may be well away from the orientation of
its fast propagation. Finally, the deformation induced
by subduction seemingly produces about 2% azimuthal
anisotropy in surface waves which spreads out almost
evenly throughout the map and is only restricted by the
existence of the slab.

5 Inversion results

Using the values of the model parameters summarized
in Tab. 1, we generate synthetic surface wave disper-
sion curves and their azimuthal variations at periods be-
tween 10 and 200 s with 10 s intervals. The complete
data consist of a regular array of 8 × 8 locations con-
taining cR, cL, c1, and c2 spanning the entire surface.
The synthetic data are computed based on the full elas-

tic tensors (i.e. with 21 independent coefficients) calcu-
lated with D-Rex.

We add Gaussian uncorrelated noise onto cR,0, cL,0,
c1, and c2. We assign very low noise levels for
cR,0 and cL,0 with σR,L = 0.001 km s−1 to mimic
periodically-correlated surface wave dispersion mea-
surements. Conversely, the azimuthal variations are as-
signedwith σ1,2 = 0.005 km s−1. Fig. 7 shows a synthetic
surface wave dispersion curve with and without added
noise at one specific geographical location.

The inversion consists of 20 independent Markov
chains containing 40 000 samples each initiated at a ran-
dom model (i.e., values for L, θ, R, Tc, and E are ran-
domized for all chains) to ensure loose compliance to
the initial model. Job array processing has been imple-
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Figure 6 Phase velocity maps derived from a 3-D deforming upper mantle beneath a subduction zone at 100s period. (a)
Rayleigh wave phase velocity (km/s). (b) Azimuthal anisotropy in Rayleigh waves (km/s). The solid black lines correspond to
the direction of the fast propagation axis. Surface wavemaps always lie along the xy− lateral plane.

Figure 7 Synthetic surface wave dispersion curves from
10 to 200 s at a given geographical location (blue lines). The
data used in the inversions have been added with Gaussian
uncorrelated noise (red circles).

mented where each Markov chain is assigned with one
element of the job array. Each job array then contains
one task per node. Meanwhile for each task (and hence
each node), 12 CPUs are assigned for multi-threading
flow computations with OpenMP (OpenMP Architec-
ture Review Board, 2008). As for the rest of the compu-
tations involved in the full forward procedure, we use a
serial implementation for each task. On average it takes
approximately 10 seconds to complete one McMC cycle
(i.e. model proposition + forward computation + likeli-
hood function computation).

We demonstrate two cases: (1) an isotropic inver-
sion and an (2) anisotropic inversion (i.e., geodynamic
tomography). Both cases are imposed with wide uni-

form priors allowing for moremobility when searching
the parameter space. For efficient sampling, we com-
mence geodynamic tomography by first employing an
isotropic inversion. Once the independent chains have
converged in this phase, we then proceed with the ac-
tual anisotropic inversion procedure. It is important to
emphasize that we implement an artificial neural net-
work (ANN) algorithm to approximateD-Rex. Since the
current architecture of the network is problem-specific,
it is designed based on training data generated by flow
models produced by a family of thermal subduction
models described by Equations (1), (2), and (3).

5.1 Marginal posterior probability distribu-
tions of the recoveredmodel parameters

Figs 8 and 9 show the 1-Dmarginal posterior probability
distribution on eachmodel parameter (diagonal panels)
and the joint marginal posterior probability distribu-
tion between a pair of model parameters (off-diagonal
panels) to explore possible trade-offs for isotropic in-
version and anisotropic inversion, respectively. The red
lines and the black circles indicate their correct val-
ues. Both cases have exhibited a single misfit minima
for the model parameters that define the thermal struc-
ture of the subduction model. However by incorpo-
rating geodynamic and petrological constraints, we ob-
serve that the entirety (this includes E) are much more
tightly constrained than the isotropic case, as evidenced
by the considerable decrease in the spread of the dis-
tributions. The narrow widths of the posterior distri-
butions are also a manifestation of the low noise lev-
els accounted for in the inversions. Between these two
effects, it can be implied that the imposition of geody-
namic constraints contributes far more toward the ro-
bustness of the solutions than the usage of low-noise
data. Finally, the existence of a linear trade-off between

8 SEISMICA | volume 1.1 | 2022



SEISMICA | RESEARCH ARTICLE | Bayesian Approach to the Tomographic Problem with Constraints from Geodynamic Modeling

a pair of parameters appears to bewidespread. Such be-
havior ismost apparent between the temperature of the
slabTc and the slab geometry, particularlyL andR. This
is likely due to the accommodation of the increase in the
slab temperature by an increase in its size.

It is expected that isotropic inversion hardly con-
strainsE since isotropic velocities do not depend on de-
formation history but are directly derived from temper-
ature and pressure for a given chemical andmineralog-
ical composition. Contrastingly, anisotropic inversion
effectively constrainsE although the result is clearly bi-
ased as it is observed to differ from its true value. In ac-
tuality, bias exists in all the parameters at least except
for the length of the slab L. Thus the existence of misfit
minima that are not in agreement with the true model
parameters can either be explained by the use of an in-
correct surrogate model in the inversion or the incapa-
bility of surface wave data to recover the synthetic sub-
duction zone.

To demonstrate that surface waves can recover sim-
ple models of subduction, we include another test
where the observed surface wave data is generated by
an elastic medium predicted with ANN (i.e. the sur-
rogate model). Fig 10 now shows the 1-D and joint
marginal probability distributions as a result of this
new numerical experiment. Here, we notice the mit-
igation of model uncertainties through the narrowing
of the distributions. Furthermore, we also observe how
these distributions are centered at the true values of the
model parameters. Based on these results, it is now
clear that the behavior exhibited in Fig 9 is a direct con-
sequence of using D-Rex in the full forward procedure
and using a surrogatemodel based on ANN in the inver-
sion. Indeed, implementing the correct forward model
to compute anisotropy decreases model uncertainties
and eliminates the bias. Since these forward models
tend to be computationally expensive when employed
with direct-search algorithms, it is imperative to utilize
fast-forward approximations such as neural networks.
This however necessitates the inclusion of additional
training data and/or possibly the partial or complete
overhauling of the network architecture.

5.2 Retrieval of the temperature field and
some implicitly computed seismic
anisotropy variables

Fig. 11 illustrates the reconstructed mean temperature
field coming from the 20 Markov chains from both in-
versions (top panels) and their corresponding uncer-
tainties in terms of the standard deviation (bottom pan-
els). By visual inspection, we notice that the mean tem-
perature field from the isotropic inversion (Fig. 11a) is
not much different from the anisotropic case (Fig. 11b).
Due to the low levels of noise in the data, anisotropy
does not bringmuch in the recovery of the temperature
field. However in the case of larger noise levels, the in-
clusion of anisotropy in the inversions would be more
beneficial. The standard deviation conveys a different
story however, as observed by its smaller amplitude in
the case of geodynamic tomography (Fig. 11d). In both

cases, the uncertainties are seemingly clustered across
subducting slab with two discernible plunging stripes.
This indicates a state of relaxation, or more preferably,
convergence of the Markov chains towards a stable so-
lution. The plunging stripes therefore are a result of a
random-walk behavior of the subducting slab about its
center. The center of the slab is delineated by the area
of low uncertainty partitioning the two plunging stripes
of high uncertainties.

Fig. 12 shows the 1-D depth marginal posterior prob-
ability profiles at a given location for temperature,
S−wave radial anisotropy ξ, peak-to-peak azimuthal
anisotropy in terms of 2G/L0 where G is the horizon-
tal azimuthal dependence of L0, and the azimuth of
the fast direction of azimuthal anisotropy inferred from
geodynamic tomography. We successfully jointly re-
covered azimuthal and radial anisotropy without hav-
ing to explicitly invert for the elastic tensor. One of
the key advantages of geodynamic tomography is its
capacity to capture intricate and highly complex fea-
tures, as exemplified by the recovered amplitude of az-
imuthal anisotropy and its fast azimuth. Furthermore,
one of the long standing problems of conventional sur-
face wave tomography is the depletion of its resolving
power with depth since its energy is mostly concen-
trated across the surface. Here we have demonstrated
the ability of geodynamic tomography in the apparent
eradication of this effect as evidenced by the preserva-
tion of the width of the posteriors in depth.

Lastly, geodynamic tomography offers the capabil-
ity to resolve 3-D structures of any implicitly computed
variable. As a demonstration, Fig. 13a illustrates the S-
wave radial anisotropy ξ and Fig. 13b, the anisotropy
index obtained from the mean temperature model.
A recurring issue is the underestimation of seismic
anisotropy in comparison with the true model (Fig. 5)
due to the use of an approximate forward operator to
model CPO evolution. This is compensated by theweak-
ening of the slab rheology through the reduction of the
activation coefficient (Fig. 9 bottom right panel), in or-
der to produce larger levels of anisotropy.

6 Discussion

Most of the limitations of themethod have already been
laid out in (Magali et al., 2021b). Therewediscussed sev-
eral areas for improvement which include but are not
limited to: (1) the inclusionof other types of data suchas
gravity anomalies for better model constraints, (2) the
usage of a generalized surrogate model for computing
anisotropy, and (3) the underlying assumptions inman-
tle composition. Here, we discuss the limitations and
the resulting implications of using thermally-driven in-
stantaneous models of subduction. Finally, we discuss
what the future holds for the method, that is, its poten-
tial application to a real Earth problem.
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Figure 8 Posterior probability distribution in the five-dimensional parameter space inferred from the isotropic inversion
p(m|cR, cL). Diagonal panels show 1-D marginal distributions for each model parameter. Off-diagonal panels show 2-D
marginal distributions anddepict possible trade-offs betweenpairs ofmodel parameters. The red vertical lines and the black
markers indicate the true model values for the diagonal and the off-diagonal panels, respectively. The intensity pertains to
the level of posterior probability (i.e., high intensity means high probability, and thus lowmisfit).

6.1 Comments on the use of instantaneous
subductionmodel

Ournumerical experiments assume that the subduction
geometry is already known to a certain degree given
the ever-growing geophysical data available. This is
similar to the geodynamic inversions demonstrated by
Baumann and Kaus (2015). Because of this, the prior
boundswe have selected for themodel parameters such
as the slab length being 100 km−200 km or the angle of
subduction being 20◦−45◦ are reasonable. However, we
acknowledge the existence of some end-member slab
geometries such as those whose dip angle is nearly ver-
tical (e.g. Kermadec andMarianas) and those whose dip
angle is constant but whose slab length is> 200 km and
some even penetrating the transition zone (e.g. Central

and South Kurile) as evidenced by (Fukao et al., 2009). It
is expected that increasing the range of the prior would
not have a substantial effect on the shape of the poste-
rior due to the relatively small noise levels prescribed
in the observed data (i.e., the narrow shape of the like-
lihood compared to the prior). Nevertheless, we can as-
cribe the subduction geometries coming from our prior
distribution to short and young, or even detached slabs.

It has already been shown that upper mantle miner-
als deform by dislocation creep to facilitate the devel-
opment of CPO (Karato andWu, 1993; Hirth and Kohlst-
edf, 2003). Thus, it would make sense to implement
stress-dependent rheologies (i.e. non-Newtonian flows)
in our geodynamic models. Geodynamic tomography
is still at the ‘proof-of-concept’ stage, and so incorpo-
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Figure 9 Posterior probability distribution in the five-dimensional parameter space inferred from the anisotropic inversion
p(m|cR, cL, c1, c2). With D-Rex used to generate the observed data, the marginal distributions are not centered at the true
values. The narrowness of the distributions is an imprint of the low noise levels prescribed in the observed data.

rating stress-dependent rheologies onto our instanta-
neous flow model would require additional effort for
optimization (i.e. speeding-up flow computations while
minimising sharp lateral viscosity contrasts) especially
when considering a sampling-based inversion scheme
where the flow has to be calculated numerous times.
However, it has been reported that Newtonian flows
could replicate some aspects of non-Newtonian flows
by varying the activation energy (Christensen, 1983;
Billen and Hirth, 2005). Still, a Newtonian rheology re-
mains valid when considering the large scale features
of subduction-induced mantle flow (Becker et al., 2003;
Piromallo et al., 2006), and especially when we expect
small-scales to be tomographic-filtered by long-period
seismic data (Magali et al., 2021a).

Finally, a steady-state assumption when back-tracing
flow streamlines may not be applicable in regions

where transient flow is predominant. As pointed out
by Faccenda and Capitanio (2012, 2013), steady-state as-
sumptions imposed onto convergent margins produce
anisotropic patterns in that region that are largely bi-
ased. A more consistent way of computing anisotropy
is to track the evolution with time of the path traversed
by several tracer particles, incorporate texture evolu-
tion models at each time step, and compute how much
strain is accrued by the process as they get forward ad-
vected (Faccenda, 2014; Chang et al., 2016). Indeed this
can be one of the futures avenues to be delved upon
to improve geodynamic tomography. With the steady-
state assumption, we anticipate that the anisotropy re-
covered away from the slab edges, and across the sub-
slabmantle or themantle wedge to remain robust (Mac-
Dougall et al., 2017), and close to the convergentmargin
and slab edges to be interpreted with caution.
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Figure10 Posteriorprobabilitydistribution in the five-dimensional parameter space inferred fromtheanisotropic inversion
p(m|cR, cL, c1, c2). Here, the observed surfacewavedata is generated coming fromanelasticmediumpredictedwith neural
networks. By using the correct surrogate model to match the one implemented in the inverse procedure, we observe how
themarginal distributions are centered on their respective true values. This numerical experiment confirms that the bias and
the model uncertainties observed in Fig. 9 results from the use of an ANN-based surrogate model to compute anisotropy.

6.2 Potential application to real surfacewave
dispersionmeasurements

Now that we have shown the capability of geodynamic
tomography to recover synthetic structures close to real
geodynamic settings, it is obvious that the next step is
to apply the method to real Earth data. As such, this
section briefly explains some forthcoming strategies to
fully implement the method.

To recover the present-day thermal structure of the
upper mantle from the inversion of real surface wave
data, the inversion strategy should consist of three ma-
jor stages: (1) In the first stage, we assume that surface
wave dispersion maps within the desired period range
are readily available. This is arguably the case in most

places where surface wave dispersion measurements
are widely available thanks to an ever growing amount
of seismic records. From these maps spanning the en-
tire geographical surface, we then invert local isotropic
Rayleigh wave phase velocity dispersion curves for 1-D
depth isotropic VS models. (2) From the 1-D structures,
the second stage involves the estimation of 1-D depth
profiles of temperature T using first-order scaling re-
lations between VS and T . A more elaborate yet more
computationally demanding approach is the inverse im-
plementation of self-consistent thermodynamicmodel-
ing to infer T from VS for any given bulk composition.
The 1-D depth profiles of temperature can then be juxta-
posed followed by smoothing through various interpo-
lation schemes to build a smooth 3-D temperature field.

12 SEISMICA | volume 1.1 | 2022



SEISMICA | RESEARCH ARTICLE | Bayesian Approach to the Tomographic Problem with Constraints from Geodynamic Modeling

Figure 11 Upper panel: Cross-sectional view in the xz− plane of the mean temperature field recovered from (a) isotropic
inversion, and (b) anisotropic inversion. Lower panel: Standard deviations around the mean temperature fields from (c)
isotropic inversion, and (d) anisotropic inversion. These cross-sections are taken at the center of the y− axis.

(3) The last stage is geodynamic tomography itself, that
is, using the 3-D temperature field inferred from the
previous stage as the initial model to iteratively update
its structure by inverting anisotropic surface wave dis-
persion curves. Fig. 14 is a schematic representation of
this three-step inversion strategy.

7 Conclusion

We have tested the applicability of geodynamic tomog-
raphy to a 3-D deforming upper mantle induced by sub-
duction. Isotropic Love and Rayleigh wave phase ve-
locity measurements and their azimuthal variations at
a given location were jointly inverted to recover the 3-D
thermal structure of a synthetic subduction zone. The
method is cast in a Bayesian inversion procedure where
the solution is an ensemble of unknown model param-
eters defining the thermal and rheological structure of

the subduction zone, distributed according to a poste-
rior probability density function.

In the process, not only do we successfully recover
the desired thermal structure, we have also constrained
the complete pattern of upper mantle deformation in-
duced by subduction, and provided a quantitative in-
terpretation on how these deformation patterns trans-
late to seismic anisotropy that could potentially be im-
aged by seismic tomography. We have shown that the
Bayesian framework propounds the capability to render
marginal posterior probability distributions not only
of the unknown parameters, but also of any implicitly
computed variable such as deformation and anisotropy
through geodynamic and texture evolution modeling,
and quantify their associated uncertainty limits.
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Figure12 1-Dmarginalposteriorprobabilityprofileswithdepthof several variables inferred fromgeodynamic tomography.
(a) Temperature. (b) S−wave radial anisotropy ξ. (c) Amplitude of azimuthal anisotropy in terms of 2G/L0 where G is an
elastic constant corresponding to the horizontal azimuthal dependence of L0. (d) Azimuth of the fast direction of azimuthal
anisotropy. Thedepthprofilesof temperatureand ξ are takenat (x =125km, y =225km). Toshowthatazimuthal anisotropy
is also well-constrained, we took the depth profile at (x = 175 km, y = 225 km), where the patterns of azimuthal anisotropy
arehighly complex. Geodynamic tomographyoffers thecapability toconstrain seismicanisotropy. Thesolid red lines indicate
the true structures.

Figure13 Cross-sectional view in thexz−planeof theS−wave radial anisotropy ξ (a) and theanisotropy index (b) obtained
from themean temperature model. The cross sections are taken at the center of the y− axis.
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Figure 14 Three-step approach to geodynamic tomogra-
phy. The first step involves 1-D isotropic surface wave to-
mography to infer the VS structure (solid red lines) from
a geographical array of isotropic Rayleigh wave dispersion
measurements (blue triangle on top of the 1-D column).
From the 1-D VS structures, the second step is the estima-
tionof 1-D temperature profiles (dashed red lines across the
1-D column). From the set of 1-D temperature profiles, one
may thenbuild a smooth 3-Dmodel of temperature through
interpolation. The 3-D model can thus be viewed as a col-
lection of 1-D columns containing depth profiles of temper-
ature. Geodynamic tomography commencesbyusing the3-
D temperature field (dashed red lines in the 3-Dmodel) as a
starting model followed by its iterative update through the
inversion of anisotropic surface wave dispersion measure-
ments (blue triangles on top of the 3-Dmodel).
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