
1. Introduction
Measured scientific data make possible a quantitative analysis of observations (e.g., a seismometer can record 
seismic waves, which are only felt by humans as transient phenomena). Scientific data are routinely processed 
before making inferences on the spatio-temporal distribution of physical quantities and/or physical processes 
(e.g., arrival times for seismic P-waves are extracted from continuous seismic recordings to infer the position of 
a seismic source). Processing steps can be necessary to remove spurious data (e.g., arrival times from seismic 
sensors that are not synchronized), but also to enhance data to better represent the most relevant signal for the 
problem being investigated (e.g., seismic waveforms may be filtered in the frequency domain before picking 
relative arrival times by cross-correlation (VanDecar & Crosson, 1990), for a clear identification of phases and 
for removing noise-site-effect interferences with targeted signal wavelet).

Geo-scientific data are especially challenging, because they are generally used to make inferences on phys-
ical quantities which are not directly measurable, but need to be estimated by solving an inverse problem 
(Tarantola, 2005), where processed measurements (e.g., P-wave arrival times or maximum wavelet amplitudes) 
are combined with hypotheses about the physics of the system (e.g., models of seismic wave propagation in the 
rock volume or seismic energy released by source). In this case, data processing typically includes selecting a 
subset of the data that is most relevant for the problem at hand (e.g., by removing arrival times for P-waves that 
do not travel directly from source to receiver). Additionally, seemingly less accurate data are often excluded or 
apriori downweighted to make them less influential in the final solution (e.g., arrival times recorded at distant 
seismic sensors that are likely to show larger effect of influence by attenuation or scattering along the ray-path). 
These data processing steps are usually based on expert opinion, but expert decisions made a priori before solving 
the inverse problem can be somewhat arbitrary and bias the inversion results.
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Here we propose a novel approach to incorporate the choice of weights for the data in the inversion process (or, 
more precisely, the variance of data noise). Our approach is based on trans-dimensional Markov chain Monte 
Carlo (McMC) sampling (Piana Agostinetti et  al.,  2021; Piana Agostinetti & Sgattoni,  2021) and works by 
proposing and accepting/rejecting data weighing schemes following the Metropolis algorithm (Sambridge & 
Mosegaard, 2002) where the data weighing schemes have a variable number of parameters (Malinverno, 2002; 
Sambridge et al., 2006). The complexity of the weighing scheme is dictated by the data themselves, rather than 
by user-defined choices made during pre-processing. The assigned weights depend on how closely different data 
match the fundamental assumptions made in solving the inverse problem.

The novel approach is developed in a fully consistent Bayesian framework, which means that Posterior Probabil-
ity Distributions (PPD) for the weights are retrieved at the end of the McMC sampling. From a Bayesian point of 
view, what we call “weights” are data variances (i.e., data uncertainties). In Hierarchical Bayes, estimated data 
uncertainties is known to incorporate both measurement errors, modeling errors and other sources of uncertainty 
(e.g., Bodin et al., 2012). Along these lines, our approach can be considered a step further in the context of the 
algorithms for error covariance estimation (Bodin et al., 2012; Dettmer & Dosso, 2012; Galetti et al., 2016; Kolb 
& Lekić, 2014; Mustać & Tkalčić, 2015; Piana Agostinetti et  al.,  2021; Piana Agostinetti & Sgattoni,  2021; 
Steininger et al., 2013; Xiang et al., 2018). In particular, Ghalenoei et al. (2022) developed an approach, where 
two separate trans-D samplings are applied to both error and geophysical models.

We test our approach in the geophysical inverse problem of locating a seismic point source using P- and S-wave 
arrival times recorded by sensors in a seismic network. In this inverse problem, data are generally downweighted 
with distance of the sensor from the seismic source or are removed in a pre-processing step if the sensors are 
farther than a chosen distance from the source. In our novel approach, we define a set of spherical shells centered 
on the source (Figure 1a). All sensors within a shell are assigned the same weight (Figure 1b), but more complex 
weight assignments can be made (e.g., weights that vary linearly with distance from the source within each shell; 
see Figure 1c). The number of shells, their radii and weights are unknown, and will be defined by the McMC 
sampling. The stations that receive the largest weights will be those that measure arrival times consistent with the 
fundamental assumptions made in the inverse problem (namely, a point-wise seismic source and constant P- and 
S-wave velocities in the rock volume).

Our natural laboratory is Kiirunavaara mine (Sweden), a 6 km-long active mine with more than 200 seismic 
sensors in a 3D configuration that spans along the exploited rock volume (Dineva et al., 2022). Given such an 
extensive seismic network, events can be well located in three dimensions. We selected two seismic events. The 
first is a man-made blast, used to calibrate the seismic network (Figure 1d). The actual location of this seismic 
source is known within <1 m and can be immediately used to evaluate our results. The second is a natural Mw 4.2 
multi-phase seismic event that occurred on 18 May 2020 (Dineva et al., 2022) and it was recorded on all working 
sensors in the mine (Figure 1e). Our experiment is structured as follows. We first compute a reference solution 
for the calibration blast by applying a standard McMC algorithm (Riva et al., 2023). In this reference solution, 
we do not use our novel approach, but we solve for the source location by removing data from sensors at a range 
of distances from a preliminary location of the seismic source, as done in standard seismological workflows in 
mines. This is intended to simulate a range of possible expert opinions on the distance threshold for data selection 
(here we assume that the hypocentral distance is of such utmost importance that observational quality differences 
may be neglected, which is not the case in crustal studies). We then apply our novel approach to the complete 
data set for the calibration blast and compare the results with those in the reference solution. Finally, we apply 
our methodology to the natural seismic event, to observe its performance for a larger and more complex event.

2. Data and Methods
In our study, we performed three different experiments based on two data sets of seismic measurements. Raw seis-
mic waveforms were recorded in the Kiirunavaara mine (Sweden) by a seismic network (253 seismic sensors span-
ning the 3D volume around the ore body (Dineva et al., 2022)). From the raw seismic waveforms, P- and S-wave 
arrival times were automatically retrieved and manually revised by the local seismic system provider (Institute of 
Mine Seismology, IMS). These arrival times are the data used to solve the geophysical inverse problem of locating 
the seismic source. In the first data set, the seismic source is a man-made blast used to calibrate the seismic system. 
The position of the seismic source is known with an accuracy less than 1 m. This data set can be used as the input of 
a robust field test, as the source location is known with an accuracy higher than the half-width of the characteristic 
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Figure 1.
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wavelength of the P-wave (given a blast corner frequency close to 1,000 Hz, if we assume Vp = 6,600 m/s, e.g., 
the half-wavelength is 3.3 m). Due to the limited amount of explosive used (5 kg), seismic waves have been clearly 
recorded at 57 seismic sensors only (with 57 P- and 9 S-wave arrival times), which translates in a minimum and 
maximum sensor distance from the source of 83 and 710 m, respectively. The second data set is based on P- and 
S-waves generated during a Mw 4.2 event that occurred on 18 May 2020. This large event partially destroyed the 
mine infrastructure in a section about 1,300 m wide (Dineva et al., 2022). The resulting P- and S-waves were 
recorded at 151 seismic sensors (151 P-wave and 81 S-wave arrival times) as far as about 2,130 m from the prelim-
inary seismic source location. Our preliminary seismic source is the official location (Dineva et al., 2022), even 
though the damaged area may be as large as 700 × 250 m. For the present study, we specifically revised all P- and 
S-wave arrival times associated to this event to include as many seismic sensors as possible. It is worth noting that 
some seismic sensors close to the rupture area were destroyed during the event, limiting the availability of data near 
the source. The closest sensor to the preliminary seismic source is about 140 m away.

2.1. The Reference Solution: McMC Location of a Seismic Event

Our fist experiment obtains a reference solution that consists of estimated source locations obtained using only 
sensors within a maximum distance from the calibration blast (which is equivalent to have equal weight for all 
stations within the max distance and ignore stations that are beyond the maximum distance). By considering a 
range of possible maximum sensor distances, we aim to reproduce the results that would be obtained by different 
expert opinions.

The observed arrival time data in a vector d are 𝐴𝐴 𝐴𝐴obs
𝑥𝑥𝑥𝑥𝑥

 , where x = P or S, i = 1, …, N, and N = NP + NS = 66, with 
NP and NS being number of P- and S-wave arrival times, respectively. We apply a standard Markov chain Monte 
Carlo approach to solve the inverse problem of locating the source. We make four simplifying assumptions: (a) 
The rock volume is a homogeneous half-space; (b) The seismic event is a point source; (c) The arrival times have 
associated uncertainties equal to the sampling rate (i.e., σ0 = 1/6,000 s); and (d) The covariance matrix of the 
data errors 𝐴𝐴 𝐂𝐂

∗

𝑒𝑒 is diagonal, that is, 𝐴𝐴 𝐂𝐂
∗

𝑒𝑒 = 𝜎𝜎2

0
𝐈𝐈 , with I being the identity matrix (see Riva et al., 2023) for details on 

the methodology).

The model vector m in the inverse problem contains eight parameters. Six parameters are related to the physical 
model: the coordinates of the seismic source (Xs, Ys, Zs), the origin time measured with respect to the first P-wave 
arrival time (OT), the P-wave velocity of the half-space (VP), and the ratio between P-wave velocity and S-wave 
velocity in the half-space (VP/VS). Two additional “hyperparameters” (Malinverno & Briggs, 2004) πP and πS, 
defined below, control the data uncertainties. Thus:

𝐦𝐦 = (𝑋𝑋𝑠𝑠, 𝑌𝑌𝑠𝑠, 𝑍𝑍𝑠𝑠, 𝑂𝑂𝑂𝑂𝑠𝑠, 𝑉𝑉𝑃𝑃 , 𝑉𝑉𝑃𝑃∕𝑉𝑉𝑆𝑆, 𝜋𝜋𝑃𝑃 , 𝜋𝜋𝑆𝑆 ) 

In our experiment, all prior probability distributions are uniform within the minimum and maximum values given 
in Table S1 in Supporting Information S1.

For the given assumptions, the seismic ray paths for model m are straight lines from the seismic source in (Xs, Ys, 
Zs) to the known position of each seismic sensor. Thus, predicted arrival times 𝐴𝐴 𝐴𝐴

pred

𝑥𝑥𝑥𝑥𝑥
 (with x = P, S and i = 1, …, 

N) can be easily computed from the source-sensor distance, VP, and VP/VS. The vector 𝐴𝐴 𝐞𝐞 = 𝑡𝑡obs
𝑥𝑥𝑥𝑥𝑥

− 𝑡𝑡
pred

𝑥𝑥𝑥𝑥𝑥
 contains the 

residual differences between predicted and observed arrival times. The hyperparameters πP and πS multiply the 
error variances that define the error covariance matrix as follows: 𝐴𝐴 𝐴𝐴2

𝑥𝑥(𝐦𝐦) = 𝐴𝐴2

0
⋅ 102𝜋𝜋𝑥𝑥 , where x = P or S. Therefore, 

the error covariance Ce(m) is a diagonal matrix that contains the values of 𝐴𝐴 𝐴𝐴2
𝑥𝑥(𝐦𝐦) for each P- or S-wave arrival time.

In this context, the likelihood function can be written as

𝐿𝐿(𝐦𝐦) = 𝑃𝑃 (𝐝𝐝|𝐦𝐦) =
1

[
(2𝜋𝜋)

𝑁𝑁 |𝐂𝐂𝑒𝑒(𝐦𝐦)|
]
1∕2

exp

(
−
1

2

𝐞𝐞
𝑇𝑇
𝐂𝐂𝐞𝐞(𝐦𝐦)

−1

𝐞𝐞

)
, (1)

Figure 1. The arrival time weights wk are associated with a set of k concentric 3D spherical shells with radii rk, centered on a preliminary event location. (a) 2D 
representation of the spherical shells. (b) Constant weights within each shell. (c) Alternative parameterization with linearly varying weights within each shell. (d)–(e) 
Seismic data used in this study: sensor locations projected on a horizontal plane (circles) and arrival times for P-waves relative to the earliest recorded arrival time 
(circle colors). Dashed circles show the distance in meters from the preliminary event location. Important geological features are depicted with colored dots: gray = ore 
body; blue = clay zones; red/purple = diapir/diabase. Panel (d) shows seismic arrival times for a calibration blast (yellow Sun symbol), and (e) for a Mw 4.2 event 
(yellow star). The red box in (e) shows the smaller area plotted in (d).
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where the determinant of the diagonal covariance matrix is the product of its diagonal entries, that is, 
𝐴𝐴 |𝐂𝐂𝑒𝑒(𝐦𝐦)| = 𝜎𝜎

2𝑁𝑁𝑃𝑃

𝑃𝑃
(𝐦𝐦) 𝜎𝜎

2𝑁𝑁𝑆𝑆

𝑆𝑆
(𝐦𝐦) . The complete results for one choice of the maximum distance are reported in 

Figure S1 in Supporting Information S1 for references.

2.2. Assigning Data Weights With a Trans-Dimensional Algorithm

The novel approach applied in our second and third experiments (using arrival times from the calibration blast 
and the natural event) follows the algorithm presented in Piana Agostinetti and Sgattoni (2021), except that here 
we use spherical shells in space rather than change points in time. In our case, the spherical shells are centered at 
an approximate preliminary location of the source (see in Supporting Information S1 for a discussion on deter-
mining a preliminary source location). The models sampled by McMC are composed by six physical parameters, 
as done earlier, plus a variable number of parameters related to the spherical shells: the number of shells k, the 
k-vector of shell radii rk, and the k + 1-vectors of the weights for P- and S-wave arrivals in each shell wk,P and 
wk,S. Thus:

𝐦𝐦 = (𝑋𝑋𝑠𝑠, 𝑌𝑌𝑠𝑠, 𝑍𝑍𝑠𝑠, 𝑂𝑂𝑂𝑂𝑠𝑠, 𝑉𝑉𝑃𝑃 , 𝑉𝑉𝑃𝑃∕𝑉𝑉𝑆𝑆, 𝑘𝑘, 𝐫𝐫𝑘𝑘,𝐰𝐰𝑘𝑘,𝑃𝑃 ,𝐰𝐰𝑘𝑘,𝑆𝑆 ) 

As for the previous reference solution, all Priors for the spherical shell parameters are uniform probability distri-
butions (see Table S2 in Supporting Information S1). Given the model vector m, we compute a modified version 
of the covariance matrix of the data errors Ce(m) that accounts for the data weights as follows:

𝐂𝐂𝐞𝐞(𝐦𝐦) = 𝐖𝐖
−1

(𝐦𝐦)𝐂𝐂
∗

𝐞𝐞 𝐖𝐖
−1

(𝐦𝐦) (2)

where W(m) is a diagonal matrix that contains the weight assigned to each arrival time; as 𝐴𝐴 𝐂𝐂
∗

𝐞𝐞 is diagonal, Ce(m) 
is also diagonal. We remember here, as stated in Section 1, that an equivalent view is that the algorithm samples 
variances, rather than weights, in each of the spherical shells as in a hierarchical Bayes strategy (Malinverno & 
Briggs, 2004). In fact, in a Bayesian framework, “data noise” includes observational and theoretical errors. For 
example, here, as the source-station distance increases, the theoretical “noise,” due to a wrong velocity model 
hypothesis, increases. The resulting variances in the diagonal matrix Ce(m) will be consistent with the size of the 
residual differences between predicted and observed arrival times in the vector 𝐴𝐴 𝐞𝐞 = 𝑡𝑡obs

𝑥𝑥𝑥𝑥𝑥
− 𝑡𝑡

pred

𝑥𝑥𝑥𝑥𝑥
 .

Writing δi as the distance from the source of the sensor recording the i-th arrival time, the entries of W are

𝐖𝐖𝑖𝑖𝑖𝑖 = 10
−𝑤𝑤𝑖𝑖(𝐦𝐦)

, (3)

where wi(m) is

𝑤𝑤𝑖𝑖(𝐦𝐦) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑤𝑤1,𝑥𝑥 if 𝛿𝛿𝑖𝑖 < 𝑟𝑟1

𝑤𝑤𝑗𝑗,𝑥𝑥 if 𝑟𝑟𝑗𝑗 < 𝛿𝛿𝑖𝑖 < 𝑟𝑟𝑗𝑗+1 1 < 𝑗𝑗 < 𝑗𝑗

𝑤𝑤𝑗𝑗,𝑥𝑥 if 𝑟𝑟𝑗𝑗 < 𝛿𝛿𝑖𝑖,

, (4)

where x = P or S depending on whether the i-th arrival time is for a P- or S-wave and 𝐴𝐴 �̃�𝐫𝑘𝑘 is the ordered version of 
the vector rk (i.e., 𝐴𝐴 𝐴𝐴𝐴1 < . . . < 𝐴𝐴𝐴𝑘𝑘 ). The likelihood function is as in Equation 1 with the covariance matrix Ce(m) 
of Equation 2.

Composing the covariance matrix Ce(m) needs a preliminary source location to compute the source-sensor 
distances δi. In general, an approximate preliminary location is available soon after the event takes place and can 
be safely used. If a preliminary event location was not available, the position of the sensor that receives the earli-
est P-wave arrival can be used as well. Here we use as preliminary locations the actual location of the calibration 
blast and the location of the natural event published in Dineva et al. (2022); the coordinates of these preliminary 
locations are in Table S3 in Supporting Information S1.

3. Results
The reference solution results are shown in Figure 2. Starting with all the available data (all 57 seismic sensors 
that recorded the blast to a maximum distance of 800 m from the source), we get a posterior mean event location 
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which is about 12 m away from the blast, with estimated uncertainties as large as 7 m. We then start removing data 
from sensors farther than 700 m, 600 m, etc., in steps of 100 m (see Figure 2 and “Materials and Methods”). The 
event location uncertainties and the differences with the actual blast position reach a minimum for a maximum 
sensor distance of 300 m (19 sensors). Considering sensors closer to the source (200 m, 5 sensors) results in an 
increase in uncertainties and location error.

Our novel approach applied to the blast data gives results that are consistent with those obtained in the reference 
solution (Figure 3 and Figure S2 in Supporting Information S1). The variation of weights with distance for both 
P- and S-wave arrival times follows a simple pattern, with a single step decrease at about 380 ± 30 m from 
the source (Figures 3b and 3c). The weights for S-wave arrival times decrease much more sharply than those 
for P-waves. This main step is well defined, as seen from the histogram of the sampled shell radii (Figure 3d), 
although the histogram of the number of shells has a maximum between 5 and 7 (Figure 3a). The sampled weights 
result in a cloud of event locations that closely reproduces what was found in the reference solution for a maxi-
mum distance of 400 m (red vs. black dots in Figure 3e).

In crustal studies, it has been observed that event location uncertainties depend on the azimuthal coverage (Husen 
et al., 2012). Here we computed the azimuthal coverage of the 3D distribution of seismic sensors (see “Materials 
and Methods”). Azimuthal coverage reaches a nearly stable value at a distance of ca. 300 m from the source, 
and it does not change substantially at greater distances (Figure  3d). The best reference solution was found 
when selecting stations only within 300 m from the source, which is also close to the distance where the weights 
obtained in our new method decrease substantially.

We apply our data-space exploration algorithm to the arrival times of the natural event (Figure 4). This event has 
a magnitude Mw 4.2, it is composed of several subsequent processes, where the extent of the very first sub-event 
S1 is likely ca. 100–200 m (Dineva et al., 2022)). The final posterior distribution of the source location is close 
to that initially estimated (Figures 4a and 4b). The pattern of weights with distance is more complex compared to 
that obtained for the blast. There is a main step at about 1,230 ± 70 m, but also three other maxima in the histo-
gram of shell radii (marked with colored arrows in Figure 4c). The weights for the P-wave arrival times slightly 
increase from the origin to 150 ± 50 m (gray arrow) and remain near a maximum value between 150 ± 50 and 
500 ± 60 m (red dashed arrow). At greater distances, the weight decrease slightly to a nearly constant value out to 
1,230 ± 70 m (red arrow), where there is a sharp decrease of almost one order of magnitude. The weights increase 
again at about 1,900 ± 60 m (blue arrow).

Figure 2. (a) Blast locations obtained in the reference solution with data for sensors that are within different maximum distances from the actual source location. The 
last column reports the distance D between the posterior mean and true location of the source. The best location (where D is minimum) is obtained with data from 
sensors up to 300 m from the blast. The X (South), Y (East), and Z (depth) columns list the posterior mean value for the location coordinates. (b) Source locations 
sampled by the McMC algorithm for different maximum source-sensor distances projected on the X-Z vertical plane (dots). The maximum source-sensor distances are 
800 m (black dots), 700 m (dark blue), 600 m (pink), 500 m (yellow), 400 m (red), 300 m (light blue), and 200 m (green). Colored circles are posterior mean locations. 
The yellow sun indicates the true position of the calibration blast.
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We also conducted a test to check whether the overall pattern of weights with distance is significantly affected 
by the simple parameterization of constant weights in each spherical shell. To this end, we implemented an 
alternative parameterization where weights are defined at the shell boundaries and vary linearly within each 
shell (Figure 1c). The pattern of weights with distance obtained with linearly varying weights is very similar to 
that obtained with constant weights (see yellow contours in Figure 4c, Figures S3 and S4 in Supporting Informa-
tion S1). The choice of parameterization does not seem to strongly control the variation of weights with distance.

4. Discussion
In our first test with a controlled blast, the reference solution found with all seismic stations within 300 m from 
the source could seem to outperform our novel approach, because the mean PPD event location is slightly closer 
to the blast true position with respect to the mean PPD solution found with the novel approach. However, this 
difference is small (less than 2 m) and the pattern of the weights found with the novel approach closely mimics a 
step function (with a step at about 380 m). In case another maximum distance is picked (200, 400, 500 …meters), 
that is, in case of a different expert opinion, the solution found by our novel approach is better than the reference 
solution. Thus, we can affirm that our approach outperforms and is more robust than standard approaches in case 
of limited information about the data.

Comparing the results obtained in the two tests carried out with our novel approach, we note that the pattern of 
weights with distance seems to be event-dependent and is not a constant in a particular sensor network. While 

Figure 3. Application of the novel data-weighing method to blast recordings. (a) Posterior probability density function (PDF) of the number of spherical shells, 
approximated by the histogram obtained by McMC sampling. (b) Posterior PDF of the weights assigned to P-wave arrival times as a function of source-sensor distance. 
Green crosses indicate the distance of each sensor from the source. (c) As in (b) for S-wave arrival times. (d) Posterior PDF of shell radii. The blue dashed line 
indicates the azimuthal gap as a function of distance from the source (see “Materials and Methods” for a definition). The red dashed line indicate the prior probability 
distribution for the shell distance. (e) Sampled source locations projected onto a X-Z vertical plane (black dots) compared to source locations in the reference solution 
for a maximum source-sensor distance of 400 m (red dots; see Figure 2b). The yellow square shows the posterior mean source location obtained with the data-weighing 
method. Colored circles are the posterior mean source locations obtained in the reference solution (same as in Figure 2b). The yellow sun indicates the true position of 
the calibration blast.
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further research would be necessary to determine which event parameters (e.g., magnitude, location) affect the 
weight pattern, the results indicate that a static workflow for all events would probably introduce artifacts and 
underestimate the actual uncertainties. In contrast, our approach is adapted to each single event, giving a solution 
that is statistically consistent and parsimonious (in terms of complexity of the weight pattern parameterization). 
Alternatively, a more detailed approach to data weighting (e.g., considering a more general 2D/3D spatial distri-
bution of weights, instead of concentric shells, as done in Ghalenoei et al., 2022) could help in reducing the 
difference in the results obtained for different events.

The relationship between azimuthal coverage of the event and our results is not straightforward. In the controlled 
blast, the main decrease in the weights we obtains is near the distance where the azimuthal coverage increases 
substantially (Figures 3d and 4c). On the other hand, there is no clear correspondence between weight patterns 
and azimuthal coverage in the test with a natural event. This suggests that azimuthal coverage is only one of the 
factors affecting the reliability of the inverted source location. A workflow based on this parameter (e.g., where 
distant seismic sensors are removed once the azimuthal gap decreases below a certain threshold) may not give 

Figure 4. Application of the novel data-weighing method to recordings of the Mw 4.2 natural event. (a) Seismic network 
geometry (same as in Figure 1e). Colored circles report the position of the main modes in the histogram of sampled shell 
radii, indicated with colored arrows in panel (c). The inset (b) plots the sampled source locations projected onto a X-Z vertical 
plane (blue dots) compared to the preliminary location of the event (yellow star). (c) Posterior probability density function 
(PDF) of shell radii, approximated by the histogram obtained by McMC sampling. The colored arrows indicate the main 
modes in the posterior PDF, corresponding to the boundaries of the source area (gray arrow), homogeneous rock volume with 
all sensors on the same side of the ore body (dashed red), homogeneous rock volume (red), heterogeneous rock volume (blue). 
(d) Posterior PDF of the weights assigned to P-wave arrival times as a function of source-sensor distance. Green crosses 
indicate the distance of each sensor from the source. The yellow contours display the posterior PDF of the data weights 
obtained with the alternative parameterization in Figure 1c (see also Figures in Supporting Information S1).
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optimal results. In fact, if the gap is larger than 180° with stations in the epicenter near vicinity, a moderately 
distant station closing this gap may be very useful if the real subsurface velocities are not perfectly well known 
(which is almost never the case). On the other hand, closing a gap to significantly less than 180° with a single very 
distant station is at least questionable (if not useless) when considering the uncertainties of phase identification 
and frequency difference in first arriving/visible wavelets.

The pattern of weights allows us to interpret the results in terms of specific properties of the rock volumes at 
different distances from the source. We suggest that the seismic sensors closest to the natural event (at distances 
<150 m, first gray circle in Figure 4a), very likely are in the source area, where the assumption of a point-wise 
seismic source is not realistic for such a large event. Between the gray and the dashed red circle (distances of 
150–500 m) the weights reach their highest values, indicating where the inverse problem assumptions should be 
valid. Indeed, all sensors within the red dashed circle in Figure 4a are located on the same side of the ore body, 
where the rock volume is expected to be comparatively homogeneous. Between the dashed and solid red circles 
in Figure 4a (distances of 500–1,200 m) the weights are still high, but less than in the previous interval. This is 
likely due to some ray-paths partially crossing the ore body and thus violating the homogeneous rock assumption. 
Farther than 1,200 m from the source (red circle in Figure 4a), the seismic rays start to densely sample the ore 
body and the surrounding rocks on both sides of the ore body itself. Here we can expect that the assumption of a 
homogeneous rock finally breaks down, and the weights decrease significantly. Further investigations are needed 
to confirm our hypothesis and to check how complex pattern in weights could be related to a less circularity in the 
data distribution around the seismic source in the case of the natural event than in the case of the blast.

In a more general context, our novel approach can be applied to most of the scientific inference problems, where 
huge amount of data need to be pre-processed in some way, without introducing bias related to preconceptions 
of the data-analysts. We mention that our approach only works if data can be ordered or clusterized in some 
way. Here for example, they are “ordered” with regards to the source-sensor distance. In this case, “ordering” is 
necessary, but it is not the only way of performing the trans-dimensional data-space exploration. To apply our 
approach, we need either a metric to be used to ”measure” some kind of data-point distance in the data-space, 
or, equivalently, some kind of data characterization which enables data clustering, where the trans-dimensional 
approach is used to define the number of data cluster from the data themselves.

Data Availability Statement
Software and data (i.e., P- and S- arrival times for the blast occurred in the mine) can be freely accessed on 
Mendeley Data Repository (Piana Agostinetti, 2023).
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