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S U M M A R Y
We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian pos-
terior model probability density function of 2-D seafloor resistivity as constrained by marine
controlled source electromagnetic data. This density function of earth models conveys infor-
mation on which parts of the model space are illuminated by the data. Whereas conventional
gradient-based inversion approaches require subjective regularization choices to stabilize this
highly non-linear and non-unique inverse problem and provide only a single solution with no
model uncertainty information, the method we use entirely avoids model regularization. The
result of our approach is an ensemble of models that can be visualized and queried to provide
meaningful information about the sensitivity of the data to the subsurface, and the level of res-
olution of model parameters. We represent models in 2-D using a Voronoi cell parametrization.
To make the 2-D problem practical, we use a source–receiver common midpoint approximation
with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where
the number of resistivity cells within a 2-D depth section is variable, as are their positions
and geometries. Two synthetic studies demonstrate the algorithm’s use in the appraisal of a
thin, segmented, resistive reservoir which makes for a challenging exploration target. As a
demonstration example, we apply our method to survey data collected over the Scarborough
gas field on the Northwest Australian shelf.

Key words: Inverse theory; Probability distributions; Non-linear electromagnetics; Marine
electromagnetics; Australia.

1 I N T RO D U C T I O N

The marine controlled source electromagnetic (CSEM) method is
an active source sounding method that has been in use for over
three decades for the detection of geology with high resistivity con-
trasts (Young & Cox 1981; Chave & Cox 1982). Industry funded
research and extensive commercialization of this technology over
the last decade has led to CSEM being added to the standard suite of
seismic methods in an exploration scenario (Ellingsrud et al. 2002;
Constable 2010). Conductive media such as sea water or brine filled
sediments have a characteristic electromagnetic scale length (skin

depth) δ =
√

2
μωσ

that is dependent on both the medium conductiv-

ity σ and the frequency of propagation ω, where μ is the permeabil-
ity of the medium. Owing to the fact that δ is smaller in conductive
media, marine geophysical EM methods almost always operate in
the lower frequency quasi-static regime. This allows for deeper pen-
etration of the CSEM fields into the Earth, but as a consequence it is
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more a diffusive process than wave like (Loseth et al. 2006). To first
order, it is this diffusive decay which helps characterize the con-
ductivity of a given medium. For hydrocarbon bearing geology, it
is the high resistivity of the hydrocarbon accumulation with respect
to its surroundings that produces a signature quite different from
what would have been observed in the absence of hydrocarbons
(e.g. Constable 2006).

Given this diffusive nature, the stratigraphic resolution of CSEM
is much lower than that of the seismic method. However, the value of
CSEM lies in its sensitivity to resistivity, which may be indicative of
hydrocarbon saturation, and not seismic impedance, which is more
indicative of geological structure. Given that the seismic amplitude
response saturates quickly with gas saturation in a formation, CSEM
may be able to tell apart fizz gas from a commercially viable hydro-
carbon resource. As a consequence of its diffusive nature, robust
inferences made from a CSEM survey are necessarily from inver-
sion of the data, and not merely from examination of the data itself
(Weiss 2007). Typically, regularized and linearized gradient-based
inversion methods have been used to arrive at models that minimize
data misfit and are also ‘optimal’ in some user-defined sense. For
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instance, models can be pre-determinedly smooth or prejudiced to
be close to a reference model. By means of regularization, highly
oscillatory features in the model that are thought to be outside
the resolution of CSEM are suppressed (e.g. Constable et al. 1987;
MacGregor & Sinha 2000; Newman & Alumbaugh 2000; Abubakar
et al. 2008; Key 2009; Mittet & Gabrielsen 2013; Sasaki 2013).
Though gradient-based inversion methods are highly efficient and
well understood, they provide only a single smooth model as a re-
sult, or a suite of smooth models. These models provide a limited
insight into the various classes of models that are compatible with
the observed data given the noise. Furthermore, a clear understand-
ing of the resolvability of subsurface resistivity and non-uniqueness
of the final solution does not emerge from a linearized treatment of
the non-linear CSEM problem.

To quantify the uncertainty inherent in the inversion of CSEM
data, one can utilize a Bayesian framework where information is
expressed as probability density functions or PDFs. Since Bayesian
probability (Bayes & Price 1763) is a measure of information and
since it is the aim of geophysical inversion to provide information
about the Earth’s subsurface, it is natural to postulate geophysical in-
verse problems in a Bayesian framework (Tarantola & Valette 1982;
Mosegaard & Tarantola 1995; Scales & Sneider 1997). In such a
framework, model parameters are treated as random variables, and
their fit to the observed data given the observed statistical noise al-
lows one to formulate a model likelihood. To make the connection
with deterministic inversion methods, to first order, models with
low misfit possess a higher likelihood. After incorporating prior
knowledge of the models that is independent of the data, the prod-
uct of the prior model probability and the likelihood is known as the
posterior model probability. This posterior PDF describes the full
solution to the inverse problem—it represents the probability of the
model, given the observed data. Those parts of the model space that
are more frequently required by the data than other parts manifest
with greater posterior probability, and hence are more certain to be
properties of the Earth (Backus 1988).

Our study is not the first to apply Bayesian methods for inver-
sion of marine CSEM data. One of the earliest applications fo-
cused on joint inversion of CSEM and seismic data in order to
improve estimates of reservoir properties (Hou et al. 2006; Chen
et al. 2007). Gunning et al. (2010) use a hierarchical Bayesian-
ized bootstrap scheme for CSEM inversion. Trainor-Guitton &
Hoversten (2011) use a sampling scheme which involves both the
Metropolis–Hastings algorithm (Hastings 1970) and slice sampling
(Neal 2003) in order to improve convergence upon the PDF of solu-
tion models. Buland & Kolbjornsen (2012) apply the Metropolis–
Hastings algorithm to invert marine CSEM data together with mag-
netotelluric (MT) data in order to constrain the range of likely
resistivities as a function of depth. In all these studies, with the
exception of Gunning et al. (2010) who use a maximum a posteri-
ori estimate–based layer splitting approach, the parametrization is
fixed at the outset by the user. However, fixing a particular model
parametrization (e.g. fixing the number of layers or cells) for the
inversion is known to produce posterior PDFs, ‘only’ for the given
parametrization (Dettmer et al. 2010). This is where the ‘transdi-
mensional’ or ‘reversible jump’ (Green 1995) Markov chain Monte
Carlo (RJ-MCMC) differs from traditional MCMC methods (e.g.
Gilks et al. 1996), in sampling from a posterior PDF where the
number of unknowns (i.e. the parametrization) is also treated as
part of the inverse problem. In other words, the parametrization is
also inferred from the observed data. A review of applications which
use transdimensional MCMC can be found in Sisson (2005). Such
algorithms have a ‘parsimony’ property (Malinverno 2002), which

refers to the fact that Bayes’ theorem deems models that explain the
data with simpler parametrizations more probable. MacKay (2003)
discusses this aspect of Bayes’ theorem in some detail. Malinverno
(2002) was the first to use this method in a geophysical applica-
tion for DC resistivity inversion. Sambridge et al. (2006) further
discuss this method in the context of evidence-based model selec-
tion (Bernardo & Smith 1994; Denison 2002). Bodin & Sambridge
(2009) use transdimensional MCMC for solving the seismic sur-
face wave tomography problem. Agostinetti & Malinverno (2010)
have used this method for receiver function inversion, as have Bodin
et al. (2012). Recent applications of the transdimensional method
to solve geophysical EM methods can be found in Minsley (2011)
and Brodie & Sambridge (2012), who apply it the airborne EM
problem, and in Ray & Key (2012), who tackle the marine CSEM
problem. An introduction to geophysical transdimensional Bayesian
inversion can be found in Sambridge et al. (2013).

For probabilistic inversion, the final solution is a large ensemble
of models which are statistically distributed according to a posterior
model PDF. As this involves a direct parameter search, hundreds of
thousands of models must be evaluated and sampled before con-
vergence to the desired posterior model PDF. This computational
expense has largely limited the application of Bayesian methods
for highly non-linear problems to those with a computationally effi-
cient 1-D model parametrization. Notable exceptions can be found
in the work of Chen et al. (2012) and Rosas-Carbajal et al. (2013).
However, though both of these works invert 2-D MT and plane
wave electrical resistivity tomography (ERT) data, respectively,
they use a fixed number of parameters. JafarGandomi & Binley
(2013) use a transdimensional approach to invert multiple data sets
within a 2-D depth section, but only the vertical parametrization
is transdimensional while the lateral parametrization is fixed. Fully
two-dimensionally parametrized, transdimensional inversions have
been carried out only within the last 5 yr. For example, Bodin &
Sambridge (2009) perform seismic surface wave tomography us-
ing Voronoi cells in a transdimensional formulation. Luo (2010)
finds the shapes of bodies which cause a gravity anomaly (given
a fixed density contrast). Young et al. (2013a,b) use transdimen-
sional inversion for P wave tomography and seismic ambient noise
inversion. Dettmer & Dosso (2013) use this approach for geoacous-
tic inversion. To the best of our knowledge, this work is the first
transdimensional Bayesian inversion that uses a true 2-D model
parametrization with Voronoi cells for the inversion of geophysical
EM data.

After validating our methodology using synthetic examples,
we invert CSEM data from over the Scarborough gas field on
the Exmouth Plateau, off the North West Australian shelf (Myer
et al. 2010, 2012).

2 T H E O RY

2.1 Bayesian inversion with the RJ-MCMC algorithm

Bayesian information is contained in PDFs represented by p(·).
Using Bayes’ theorem, we write

p(m|d) = p(d|m) · p(m)

p(d)
. (1)

For Bayesian geophysical inversion, the observed data vector d is a
constant. All PDFs with a model dependence are functions of the
random variable m. The term p(d|m) can then be interpreted as
the model likelihood, the functional form of which depends on the
statistics of the noise distribution, and the value of which depends
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on the model m being sampled and its fit to observed data. For
Gaussian noise, the model likelihood is given as

p(d|m) ∝ exp

(
− [d − f (m)]TCd

−1[d − f (m)]

2

)
. (2)

Here, f (m) corresponds to the modelled data and Cd is the co-
variance matrix of the residual data errors including theory error
and [d − f (m)]TCd

−1[d − f (m)] is the χ 2 misfit for the evaluated
model m. Care must be taken to ensure that for complex observed
data (such as frequency domain data) where the total variance equals
twice that of the real or imaginary parts, the factor of 2 should be
removed from eq. (2) and that the vector transpose should be Her-
mitian (see the chapter on circularly symmetric complex random
variables in Vaidyanathan et al. 2010).

For marine CSEM, the Fourier coefficients at the frequencies of
interest are stacked over non-overlapping time windows to produce
Gaussian data errors through central limiting. This enables us to use
a Gaussian likelihood function. However, uncertainty in the trans-
mitter position, theory error and insufficient model parametrization
among various other factors can lead to correlated error in the
observed data. Since correlated error violates the assumption of
independent data noise it can manifest in spurious structure in in-
verted models. Hierarchical Bayesian approaches to estimating Cd

where Cd is itself ‘sampled’ can be used (e.g. Gelman et al. 1995;
Carlin & Louis 2000; Malinverno & Briggs 2004; Bodin et al. 2012;
Dettmer et al. 2012; Ray et al. 2013b; Steininger et al. 2013). Such
an approach is not the focus of this work though it is an active area
of research.

The prior model PDF p(m) represents our state of knowledge
‘independent’ of the survey data. The evidence term p(d) corre-
sponds to a constant PDF normalizing factor equal to the integral
over all models of the numerator in eq. (1). The evidence allows us to
perform ‘model selection’ (Bernardo & Smith 1994; Denison 2002;
MacKay 2003) or the process of deciding which model parametriza-
tion is more probable than the other—for example, should we use
two cells as opposed to three to represent the subsurface? However,
evidence is very challenging to compute as it requires evaluation of
a multidimensional integral over different models, evaluated for dif-
ferent model parametrizations. Another means of performing model
selection is to use a hierarchical Bayesian scheme to estimate the
posterior PDF over multiple models of interest, that is, estimate
a transdimensional posterior p(m|d) where all models of interest
are considered simultaneously according to their support by the data
(Sambridge et al. 2006; Dettmer et al. 2010). This is the RJ-MCMC
approach that we have used in this paper, which is different from
the usual MCMC approach in the following manner: Treating the
evidence as a proportionality constant, it follows from eq. (1) that

p(m|d) ∝ p(d|m) × p(m). (3)

In the transdimensional method, for a given model m, we split the
prior PDF p(m) into two parts. One part contains information about
the number of cells k in the model, p(k). The other part p(mk|k)
contains information about their physical properties such as the
locations of the cells and what the resistivities of these cells are,
given the number of cells k. Thus, it follows from eq. (3) that

p(m|d) ∝ p(d|m) × p(mk|k) × p(k). (4)

This formulation allows the parametrization to be an unknown in the
problem. Our task is to evaluate uncertainty in the models inverted
from the observed data. To this end, we must arrive at the posterior
PDF of models, most of which fit the data well, by evaluating

their misfit and sampling models according to eq. (4). However,
it is nearly impossible to exhaustively sample the model space for
more than a few parameters owing to the ‘curse of dimensionality’,
hence we resort to probing this highly non-linear PDF using various
MCMC methods (e.g. Gilks et al. 1996; Liang et al. 2011) and focus
on the RJ-MCMC or transdimensional method.

2.2 Parametrization with Voronoi cells

Voronoi cells are an efficient topology for parametrizing a 2-D
space (Voronoi 1908). They can represent various complicated ge-
ometries, and their tessellations are simple to compute (Okabe
et al. 2009). We can specify a set of points (Voronoi nodes) in
a bounded plane, and for each node there will be a correspond-
ing region consisting of all points closer to that node than to any
other node. These regions are called Voronoi cells. For geophysical
problems, this parametrization presents itself as a convenient means
to assign Voronoi cells with properties such as velocity (Bodin &
Sambridge 2009; Dettmer & Dosso 2013) or as we propose to do
in this work, resistivity. Only the Voronoi nodes and their locations
need to be kept track of. This is shown in Fig. 1, where a tabular
body of resistivity 100 ohm-m in a 1 ohm-m background has been
approximated almost perfectly by a sparse Voronoi representation
with five cells. It should be noted that this Voronoi diagram is not
the solution to a geophysical inverse problem but merely an exam-
ple illustrating its use in simple representations of common shapes.
Details on how Voronoi cells are used to construct a 2-D spatial
posterior PDF are given in Section 3.2.

2.3 Forward modelling and parametrization

For a given transmitter–receiver (Tx–Rx) separation, we use the
approximation that observed data are primarily sensitive to the ver-
tical profile of seafloor resistivity at the Tx–Rx midpoint (Mit-
tet et al. 2008; Gunning et al. 2010; Silva Crepaldi et al. 2011).
This is similar to a common midpoint formulation (CMP) used in

Figure 1. Five Voronoi cells being used to approximate a rectangular reser-
voir in a uniform background. The nodes are shown with white plus signs.
The cells are entirely defined by their node positions, as the edges (green
lines) run through the perpendicular bisectors between neighbouring nodes.
A profile through the reservoir (dashed red) is located at a source–receiver
midpoint with source and receiver locations each marked by an X.
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reflection seismology. This 1-D approximation is numerically far
less expensive than modelling the full 2-D problem. A 2-D model
forward evaluation, depending on the geological complexity of the
model, the number of frequencies and parallel cores used, may take
from a few seconds to minutes (Key & Ovall 2011). However, 1-D
evaluations across all CMPs for a 50-km long 2-D line takes little
more than half a second on average. We use 2-D Voronoi cells to
parametrize the vertical cross-section of the Earth in a profile along
the survey line (e.g. Dettmer & Dosso 2013). For each CMP, a ver-
tical profile is extracted through this Voronoi cell parametrization
as shown in Fig. 1. The response due to this 1-D profile, at the given
Tx–Rx offset and data frequencies is calculated using Dipole1D
(Key 2009). Since we use Voronoi cells to parametrize a 2-D depth
section, a vertical profile can be extracted anywhere within this sec-
tion. This ensures that there is no restriction on locations of sources
or receivers along a linear profile. Care must be taken to ensure
that the CMP approximation is only applied till a maximum offset
length, which is target geology dependent. In general, longer off-
set data display 2-D or 3-D behaviour that should not be used for
inversion with a CMP approximation.

2.4 Transdimensional Bayesian inversion

In the simplest terms, the objective of transdimensional Bayesian
inversion is to sample the model PDF given by (4). This is achieved
with the RJ algorithm by drawing candidate models from a proposal
PDF. These models are then examined to see if they fall within geo-
physically sensible uniform bounds of resistivity and depth. If a
proposed model falls outside the prior PDF, it is rejected and the
Markov chain retains the previous model as the next model. If a
proposed model is within the prior bounds, an acceptance probabil-
ity is calculated using a ratio of the proposal probability, the prior
probability and the likelihood of the candidate model with respect to
the previous model. The proposed model is either accepted with the
calculated probability and it becomes the next model in the chain,
or it is rejected and the previous model is retained as the next in the
chain. Complete details of this process are given in the Appendix for
the interested reader. As the algorithm proceeds, hundreds of thou-
sands of models are sampled, with a data-driven addition or deletion
of Voronoi nodes (‘birth/death’ in RJ-MCMC parlance), such that
a chain of models, most of which fit the data well within the noise,
are retained at the end. To ensure thorough sampling of this multi-
dimensional parameter space, various independent Markov chains
with different starting models are run in parallel and finally con-
catenated into a model ensemble that is representative of the sought
after posterior model PDF (4).

3 2 - D S E G M E N T E D R E S E RV O I R
E X A M P L E

In order to validate our methodology, we created a 60-km-long
synthetic model, with a 1-km-deep sea water layer and a 30-km-
long, 30-m-thick segmented reservoir buried at 1 km below the
seafloor (Fig. 2). The resistivity segments for the reservoir are 30,
10 and 5 ohm-m, tapering away from the centre. The background
resistivity is 1 ohm-m. Given that the reservoir is thin and that the
resistivity contrasts are not very high, this presents a challenging
exploration target. This geometry is motivated by the size and shape
of the Scarborough reservoir in the NW Australian shelf (Myer
et al. 2010), which we consider later in this work. Synthetic data
were forward calculated using the 2.5-D adaptive finite element

Figure 2. A 30-km long, 30-m thin synthetic segmented resistor model
representative of the Scarborough reservoir.

code of Key & Ovall (2011). Gaussian noise at 5 per cent of the
signal amplitude was added to the data at four different frequencies
of 0.1, 0.3, 0.7 and 1.1 Hz. Receivers recording the inline electric
field were spaced every 500 m along the line.

3.1 1-D modelling and inversion through the central
segment

Before embarking on the inversion of 2-D data, we examine a 1-
D Bayesian inversion of 1-D responses from the central part of
the segmented reservoir model to highlight some salient features
of Bayesian inversion. We use the 1-D CSEM code and inversion
algorithm described in Ray & Key (2012). 96 independent, parallel
MCMC chains with 500 000 models in each chain were sampled
to form a posterior model PDF. This inversion required 4 hr on 96
CPU cores (dual socket @2.6 GHz). 50 random models from the
sampled posterior, along with their data fits in phase and amplitude
are shown in Fig. 3. The true model is shown in red in the leftmost
panel.

To visualize the full posterior PDF, we separately bin the resistiv-
ities and interfaces at 10-m depth intervals. The resulting marginal

Figure 3. Inversion of noisy, synthetic radial electric field data Er calculated
from the 1-D reservoir corresponding to the centre of the 2-D segmented
reservoir model. The true 1-D model is shown in red in the left-hand panel,
with 50 randomly selected models from the posterior PDF p(m|d) shown
in black. The responses due to these models, along with the observed data
are shown as E field amplitude (centre panel) and phase (right-hand panel)
plots with range.
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Figure 4. Marginal PDFs on resistivity (left-hand panel) and interface depth
(right-hand panel) from the 1-D synthetic data inversion with true model
corresponding to the 1-D segment through the centre of the 2-D synthetic
model. The true model is shown with a thick black line in the left-hand
panel. The 5 and 95 per cent quantiles on resistivity with depth are shown
as thin black lines on the left-hand panel. Hotter colours are more probable.

densities on resistivity and interfaces at depth are shown in Fig. 4.
The 5 and 95 per cent quantiles on resistivity with depth are shown
in the left-hand panel as thin black lines. Hotter colours correspond
to higher probabilities in the left-hand panel. It can be seen that
the true reservoir resistivity is not the most probable, that it is even
outside the 95 per cent quantile, but we do see a clear trend in
sampled resistivities increasing with depth and then returning to a
background value. The fact that the true values are not the most
probable, though not intuitive, is not new as has been shown by Ray
et al. (2013a). This should serve as a note of caution to prevent re-
searchers from picking the mode of any posterior model PDF as the
‘truth’. This seems to be a statement of the fact that there are many
more different ways to fit the data within the noise, than with the
very delta function like true model. In fact, one can clearly see the
well-known CSEM trade-off between thicker, less resistive layers
and thinner, more resistive layers (e.g. Constable & Weiss 2006). It
is worthwhile to point out that such trade-offs cannot be quantified
by any single result from a conventional gradient-based determin-
istic inversion scheme. The interface probabilities in the right-hand
panel do show a pronounced peak in the probability of interfaces
at the right depths. For a thin reservoir, this seems to imply good
sensitivity to the bottom.

3.2 Inversion of 2-D data with the CMP approach

In this section, we present the inversion of the noisy synthetic 2-D
data from the segmented reservoir model using the transdimensional
Voronoi parametrization and the CMP approach. During the inver-
sion, we calculate the forward responses for 1-D profiles through
the Voronoi tessellation at every CMP location. 96 independent,
parallel RJ-MCMC chains were run on 96 CPU cores (dual socket
@2.6 GHz), out of which 92 chains converged to acceptable rms
(root mean square) values. We would like to point out here that
not all Markov chains are able to escape local probability max-
ima within the given run time. Each chain sampled 106 models
but the first half of the chain is thrown away to achieve ‘burn-in’
to rms values between 1.2 and 1.3. Given that the model physics
is approximate and parametrization not the same as was used to
create the forward model, we do not expect the mean rms mis-
fit of the sampled models to be exactly 1.0. Posterior PDFs on
all parameters of interest were analysed for the first half and then

the second half of the post burn-in samples. As the two sets of
PDFs were found to be similar, the ensemble was deemed to have
achieved convergence. More details on convergence are given in
the Appendix. Uniform prior bounds require models to possess re-
sistivities between 0.3 and 200 ohm-m, and from 10 to 150 nodes
placed between 1 and 3-km depth anywhere within the 60-km long
2-D line.

To illustrate the process of forming the posterior model ensemble,
one MCMC chain is shown in Fig. 5. All converged chains can be
concatenated to form an ensemble of models like the one shown
in the figure. One slice shows an arbitrary 2-D model parametrized
by Voronoi cells. The other perpendicular slice, near the beginning
of the line, shows resistivities in vertical section across all sampled
models. A histogram of resistivities with depth can be made from
the vertical section to produce a display akin to the left-hand panel in
Fig. 4. Furthermore, such histograms can be made from all vertical
slices along the 2-D line to form a probability cube, with axes being
resistivity, line distance and depth, as shown in Fig. 6. A vertical

Figure 5. Example MCMC chain from the segmented reservoir inversion.
Here we show both a particular Voronoi cell model #2500 and a vertical
slice across all models at −20 km along the line. Colours correspond to
log10 of resistivity.

Figure 6. Slices through a probability cube from the segmented reservoir
inversion, with axes representing log10 resistivity, position along the 2-D
line and depth. The probability cube is made from histograms of all MCMC
chains such as the one shown in Fig. 5. Hotter colours correspond to higher
probabilities. The inset box shows the PDF on the number of Voronoi nodes
required to form the probability cube.
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slice of the probability cube through the centre of the 2-D line (the
central segment of the reservoir) shows that there is a clear rise
in the resistivity of the subsurface with depth and then a return
to the background. A horizontal slice at 2000-m depth shows a
clear increase in resistivities from a 1 ohm-m background as we
move along the survey line, increasing in steps and symmetrically
decreasing as we would expect for the segmented reservoir. Also
shown in this figure is the PDF on the number of Voronoi cells
(nodes) required to form the displayed probability cube. Note how
the algorithm does not cluster around the maximum or minimum
possible number of nodes (10 and 150) required to fit the observed
data.

Based on the experience of our 1-D modelling study showing
the posterior trade-off between resistivity and reservoir thickness,
we would not expect the most probable resistivities sampled to be
the true values, and this is indeed the case. The maximum sampled
resistivity (Fig. 6) is around 10 ohm-m at the reservoir depth in
the central segment, which is quite distant from the true value of
30 ohm-m. However, the probability of the integrated resistivity
thickness product τ = ∫

ρ(z)dz between 1500 and 2500-m depth,
containing the reservoir interval, yields some valuable insights, as
can be seen in Fig. 7. True values are shown with black lines,
and the background and segmented reservoir τ values are clearly
visible as falling within the probable parts of the marginal PDF.
Previous studies have shown that τ seems to be a more robust
indicator of reservoir presence than resistivity alone (Constable &
Weiss 2006; Myer et al. 2012; Connell & Key 2013). The posterior
probabilities on this quantity bolster this idea. For instance, even
if we were to pick the mode of this PDF on τ in Fig. 7 near the
centre of the line, though 1700 ohm-m2 is less than the true value of
1870 ohm-m2, it would not lead to a bad estimate of the reservoir
resistivity. Assuming a 30-m-thick resistive layer and a 1 ohm-m
background, this τ value is consistent with a 24 ohm-m reservoir
resistivity. Often such information on thickness is available from
an external source such as seismic imaging. Conversely, if the true
resistivity of 30 ohm-m was known, for example from well-logs, we
could then estimate a probable thickness of 24 m which is not too
far from the true value of 30 m.

Figure 7. Probability of the integrated resistivity thickness product τ be-
tween 1500 and 2500-m depth from the segmented reservoir inversion. Black
lines show the true values corresponding to the background and reservoir
segments. Hotter colours are more probable.

Figure 8. A map of the Scarborough reservoir outline (white) overlaid on
the bathymetry. Instruments were deployed at points marked by filled circles
in four phases coloured red, blue, green and magenta. In this work, we have
focused on the flagship Line 2 towards the south. Modified from Myer et al.
(2012).

4 R E A L DATA : S C A R B O RO U G H G A S
F I E L D O N T H E E X M O U T H P L AT E AU,
N W AU S T R A L I A N S H E L F

4.1 Regional geology and reservoir setting

In this section, we apply our methodology to data from the Scarbor-
ough gas field, which lies inside the Exmouth Plateau. The plateau
(Fig. 8) is a passive margin between continental and oceanic crust
which remains after the break-up of Australia and India, and is
surrounded on three sides by oceanic crust at abyssal depths. The
plateau, which is ∼400 km × 600 km, is bounded to the northeast
and southwest by transform faults. The transition between continen-
tal and oceanic crust to the northwest is thought to be bounded by a
subhorizontal detachment fault that undercuts the plateau at about
10-km depth, dipping towards the Australian continent (Driscoll
& Karner 1998). Since the Mesozoic era, the plateau has under-
gone a complex sequence of fracture, extension, uplift, truncation
and subsidence. The result is that the plateau is covered by a num-
ber of mostly horizontal sedimentary layers of resistivities varying
between 1 and 10 ohm-m (Myer et al. 2012).

Five exploration wells have been drilled in the Scarborough gas
field and their data, combined with 3-D seismic coverage, were used
to define the areal extent and section profile of the reservoir. The
white contour in Fig. 8 is the 50 per cent gas saturation line. The
reservoir itself (Fig. 9) is a 20–30 m layer residing between 1900
and 2000 m below sea level (mbsl) in about 900–950 m of water. It
has a moderate resistivity of 25 ohm-m and is overlain by several
thin layers of lower gas saturation with resistivities of 5–10 ohm-m.

4.2 Scripps 2009 survey and previous work in 1-D

CSEM and MT data were collected during a month long research
cruise using the Scripps Institution of Oceanography’s R/V Roger
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Figure 9. Simplified cross-section of Scarborough reservoir electrical re-
sistivity structure, reproduced from Myer et al. (2012)

Revelle (Fig. 8). Details of the CSEM acquisition and MT mapping
of a deep subhorizontal conductive layer can be found in Myer et al.
(2011, 2012) and Myer et al. (2013), respectively. In this work, we
have concentrated our efforts on inverting the inline electric field
CSEM data at frequencies of 0.25, 0.75, 1.75 and 3.25 Hz acquired
over the ∼50-km-long Line 2 to the south.

The reservoir is not a large CSEM target, as the τ value is
only ∼900 ohm-m2 above the background levels of ∼200 ohm-m2

for the reservoir section. This difference is much less than typical
transverse resistances of 104 considered in many past marine CSEM
model studies (Constable & Weiss 2006; Myer et al. 2012). Fur-
thermore, there is a confounding overlying layer in the form of the
resistive Gearle siltstones between 1650 and 1750 mbsl (Veevers &
Johnstone 1974), which may make it difficult to tease apart the reser-
voir layer and the Gearle siltstones without a priori information, as
reported by Myer et al. (2012) and illustrated in Fig. 10. Without in-
troducing cuts in the inversion to separately delineate the siltstones
and the reservoir, the Occam1DCSEM inversion (thick black line)
was unable to distinguish these two layers from a single layer of
moderately increased resistivity near reservoir depth. For 1-D com-
parison, we performed purely 1-D Bayesian inversions using the
methodology of Ray & Key (2012) at both the on and off reservoir
sites (Fig. 10). These inversions suggest that the posterior PDF of
resistivities at reservoir depth on reservoir (bottom, left-hand panel)
is more resistive than the PDF at the same depth off-reservoir (top,
left-hand panel). Note that the 1-D RJ-MCMC Bayesian inversions
did not utilize any prejudice models or roughness penalty cuts.

The separate transdimensional Bayesian results shown in Fig. 10
do indeed indicate that it is more probable to have a resistive

Figure 10. 1-D Occam’s inversion results (thick black line) from Myer
et al. (2012) with roughness penalty cuts at the reservoir and Gearle silt-
stone sections at sites off reservoir (top) and directly on reservoir (bottom)
overlain on purely 1-D Bayesian inversion probabilities for resistivity with
depth using the same data. The 5 and 95 per cent quantiles on resistivity
with depth are shown as thin black lines on the left-hand panels. The 1-D
Bayesian inversions followed the methodology of Ray & Key (2012) and
were performed separately.

reservoir at the on reservoir site than at the off reservoir site. How-
ever, these results follow from a 1-D parametrization, and PDFs
of resistivity with depth at each site are independent of each other.
Posterior inference on resistivities between these two sites can be
performed using sequential Bayesian techniques (Yardim & Ger-
stoft 2012) but require the careful use of bridging distributions to
evaluate 1-D resistivity posterior PDFs at adjacent sites (Dettmer
et al. 2011). These considerations motivate the next part of this sec-
tion on inverting the Scarborough CSEM data along Line 2 using a
fully 2-D model parametrization and the RJ-MCMC method.

4.3 Results from 2-D parametrized transdimensional
inversion using the CMP approach

An inversion with 160 independent parallel chains on 160 CPU
cores (dual socket @2.6 GHz) was run on CSEM data acquired
along Line 2. Four frequencies at 0.25, 0.75, 1.75 and 3.25 Hz were
used, but Rx–Tx offsets were limited to 4 km for the observed data
to be compatible with the 1-D forward model physics. Given that
variations in bathymetry along the line are minimal (see Fig. 8),
the 2-D models used a flat seafloor. The true Rx–Tx elevation and
relative sea water conductivity stratification was maintained. Each
chain sampled 2 × 106 models, with the first half of the chain being
thrown away to achieve sampled rms values between 1.28 and 2.08,
with a total of 90 chains converging to acceptable values. The total
run time was 192 hr. As with the synthetic example, posterior PDFs
on all parameters of interest were analysed for the first half and
then the second half of the post burn-in samples. As the two sets of
PDFs were found to be similar, the ensemble was deemed to have
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Figure 11. Top panel: A slice through the probability cube for the Scar-
borough data inversion at 1950-m depth. Hotter colours are more probable.
Note the probability of increasing resistivity between 6 and 24 km along
Line 2, indicative of reservoir. Middle panel: A slice through 11 km along
the line (on reservoir), within the known reservoir outline shown head on.
The probability of a 10 ohm-m resistive anomaly is seen clearly at 2000-m
depth. Bottom panel: A slice through 50 km along the line (off reservoir
area), 25 km east and outside of the known reservoir outline. The probability
of a resistive anomaly at 2000-m depth has now all but disappeared.

achieved convergence. Uniform prior bounds require that models
possess resistivities between 0.2 and 200 ohm-m, and from 20 to
400 nodes placed between 940.6 and 3500 m depth anywhere within
the 50-km long 2-D line.

A probability cube with axes representing log10 resistivity, Line
2 distance and depth was formed as is shown in Fig. 11. The top
figure shows a horizontal slice at 1950 m depth (reservoir level).
The background resistivity is well sampled in this slice, at around
1 ohm-m. The Gearle is also visible everywhere at 3.2 ohm-m in
this horizontal slice (though it should be shallower, between 1650
and 1750 mbsl and not visible in the 1950 m slice). Most interest-
ingly, between 6 and 24 km along Line 2, where the gas saturation
was deemed to be greater than 50 per cent from seismic and petro-
physical analyses, there is a gradual increase in resistivities such
that they lie largely between 6.3 and 15.8 ohm-m. Given that we
have not regularized or guided our inversion in any manner be-
sides use very broad uniform parameters to sample within, this
is a clear indication of a more resistive body in that section of
line at ∼1950-m depth. The middle figure shows a vertical section
through 11 km position along the line, which lies in the middle
of the reservoir outline on Fig. 8 (on reservoir). There is a clear
increase in resistivity at 2-km depth to values of 10 ohm-m and

Figure 12. PDF on the number of Voronoi nodes required by the transdi-
mensional inversion to fit the Scarborough CSEM data.

above, with a return to background values at deeper depths, with
suggestions of a very resistive basement at 3-km depth. The bot-
tom figure shows a vertical section through 50 km along Line 2,
at the extreme east end of the line, 25 km outside the reservoir outline
(off reservoir area). If we follow the PDF of resistivities along the
line at 2-km depth from the middle figure to the bottom figure, the
bulk of the models in the PDFs of resistivity at 2-km depth change
from values above 10 ohm-m down to values close to 3.16 ohm-m.
Thus, looking at all three parts of Fig. 11, we are able to infer that
there is indeed a resistor at 1950–2000 m depth, the lateral extents
of which are limited roughly between 6 and 24 km position along
the line. We emphasize here that looking at the spatial changes in
the PDFs of resistivity—as made possible by a Bayesian inversion,
is a more robust method of interpreting geology, than looking at the
changes in one single, inverted model from a regularized inversion
method. The PDF on the number of Voronoi nodes required by the
transdimensional inversion is shown in Fig. 12. Again, this PDF
does not cluster either around the maximum or minimum possi-
ble number of nodes (20 and 400) and shows that the data require
50–150 nodes to be fit.

At this juncture, it is important to keep in mind that posterior data
residuals could indeed be correlated to some degree—violating the
assumption of spatially independent noise. As mentioned in the
introduction, this could be due to a number of reasons, chiefly
the acquisition systematics and the 1-D CMP approximation. This
could lead to an incorrect estimation of the posterior PDF. However,
previous work in 1-D has shown that even when the correlations
are dealt with using an iterative hierarchical Bayesian scheme to
sample the residual data error including the off-diagonal terms in
Cd, the probability of a resistive interface at reservoir depth does not
disappear (Ray et al. 2013b). Of course, to be completely rigorous,
one should not only model the residual correlations but use 2.5-D
or 3-D forward modelling codes, which we hope we will be able to
do in future.

The probability of τ between 1500 and 2500 m depth, illustrated
in Fig. 13 (top panel), shows three modes corresponding to the
background (1000–2000 ohm-m2), Gearle (2500–3000 ohm-m2)
and the basement (>104 ohm-m2) resistivities. In addition, there is
a clear departure from the Gearle resistivities in the same lateral
section of line as the reservoir is known to be in. This is highlighted
by the boxed area of Fig. 13 (top panel) and in the close view given in
Fig. 13 (bottom panel). Furthermore, this anomaly is ∼900 ohm-m2

above the background modal value of 3000 ohm-m2, as expected
for the reservoir.

Similar to Myer et al. (2012), we have not been able to sepa-
rate the Gearle and reservoir levels. However, unlike Myer et al.
(2012) the Bayesian posterior PDF does concentrate models with
resistive anomalies at the reservoir depth. This in itself, we think is
a noteworthy aspect of our result.
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Figure 13. Top panel: Probability of integrated resistivity thickness product
τ between 1500 and 2500-m depth for the Scarborough data inversion. Hotter
colours are more probable. The reservoir is seen at roughly 900 ohm-m2

above the background between 6 and 24 km along the line (dashed box).
Throughout the line, the basement τ consistently shows up as being the most
probable in this depth window. Bottom panel: Same as top, but zoomed in
to the reservoir area.

4.4 Comparison with MARE2DEM deterministic
2-D inversion

An inversion over Line 2 utilizing the full range of Rx–Tx off-
sets (∼5.5 km) using the deterministic MARE2DEM code (Key &
Ovall 2011; Key 2012) is shown in Fig. 14. This inversion uses 2-D
forward model physics and fits the data to rms 1.0. For comparison
with the 2-D Bayesian inversion, the MARE2DEM inversion result
is shown intersected by two probability cube slices at 11 and 50 km
along Line 2 (Fig. 15). The resulting intersections are shown in
thick black as profiles along the two slice planes. The most dom-
inant feature from the MARE2DEM inversion at 11 km along the
line is high basement resistivity below 2500-m depth. Interestingly,
the Bayesian inversion probability slice at 11 km along the line also
shows a large change in resistivity PDF near this depth. Both the

Figure 14. The MARE2DEM deterministic inversion result using 2.5-D for-
ward modelling for Scarborough CSEM data over Line 2. Seafloor receivers
are shown as white inverted triangles. The most prominent feature is high
basement resistivity below 2.5-km depth. The reservoir section (boxed) at
∼1.9-km depth is more resistive than its surroundings. Resistivity at 1.9-km
depth falls off to lower values towards the east. For purposes of comparison
with the probabilistic inversion, two locations for vertical slices have been
shown in black at 11 and 50 km. These are the same sections shown in
Fig. 11 middle and bottom.

Figure 15. Two slices through the Scarborough inversion probability cube
shown at 11 km (on reservoir) and 50 km (off reservoir area) along the line,
comparing the Bayesian inversion PDFs (proportional to colour hotness) and
the MARE2DEM inversion result (thick black line intersecting the two slice
planes). The 11-km slice runs through the middle of the reservoir whereas
the 50-km slice is 25 km to the east of the 50 per cent gas saturation line.
These are at the same locations marked in Fig. 14 and show the same slices
as Fig. 11 middle and bottom.

Bayesian posterior PDF and the deterministic inversion show an
increase in resistivity at reservoir depth (∼1950 m) in this slice. In
the slice at 50 km along Line 2, both the deterministic and Bayesian
inversions show a much reduced resistivity at reservoir depth, and
both are unable to localize the basement resistivity.

The MARE2DEM inversion shows a single model that is more
resistive than the background in the reservoir area. Depending on
the model regularization philosophy and choices of regularization
parameter used, a different result may have been obtained. Further-
more, a single model does not yield any information on the uncer-
tainty with which the model is associated. The Bayesian ensembles
do indeed show how the posterior PDFs of resistivity vary in the
Earth. However, the Bayesian inversion, though it is parametrized
in 2-D, uses a 1-D forward modelling engine and thus approximates
the true physics. Both of these results taken jointly, reinforce each
other to make a stronger argument for the presence of a reservoir,
with an associated uncertainty.

5 C O N C LU S I O N S

We have successfully implemented a flexibly parametrized inver-
sion scheme using 2-D Voronoi cells for CSEM data. In order
to accomplish this, we have used a ‘birth/death’ RJ-MCMC algo-
rithm (Green 1995; Bodin & Sambridge 2009; Ray & Key 2012).
Synthetic studies were carried out to understand the model space
associated with thin, mildly resistive reservoirs. Our results show
that the true values of resistivity for these reservoirs are not the most
probable, a posteriori, and that the integrated resistivity thickness
product τ is a more robust quantity to examine in these cases. Fol-
lowing the spatial changes in posterior PDFs on both resistivity as
well as τ yields valuable information on the presence and possible
geometries of resistive bodies. Our Bayesian inversion of field data
from the Scarborough CSEM survey was successfully able to delin-
eate the reservoir laterally, with a good indication of its depth but not
thickness. Comparison with a MARE2DEM deterministic inversion
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showed good agreement between the Bayesian and deterministic re-
sults with the added benefit of uncertainty about the deterministic
result provided by the Bayesian posterior model ensemble. There is
a degree of reassurance in the presence of a reservoir provided by
the Bayesian posterior model PDF, when en masse, unregularized
inverted models at certain locations within the Earth tend to be more
resistive.

The obvious next step is to move to full 2-D forward modelling
of the Voronoi cell models used by our transdimensional algorithm.
While 2-D model responses are computationally more expensive
than their 1-D counterparts, with the use of accelerated sampling
methods such as parallel tempering (Swendsen & Wang 1987;
Geyer 1991) in geophysics (Dettmer et al. 2011; Dosso et al. 2012;
Ray et al. 2013a; Sambridge 2013) and the advent of highly parallel,
cluster-computing oriented 2-D forward codes (Key & Ovall 2011),
this step is not far away. Finally, we would like to point out that
our algorithm is quite flexible and can be applied to various classes
of geophysical problems such as surface wave dispersion, seismic
receiver functions, etc.
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A P P E N D I X A : M AT H E M AT I C A L
D E TA I L S F O R T H E
T R A N S D I M E N S I O NA L A L G O R I T H M

A1 The prior probability

The prior probability density function (PDF) contains information
on our knowledge about the subsurface independent of the survey
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data. This can be based on data from well-logs, seismic surveys,
etc. In the transdimensional formulation, we split the prior into two
parts. One part contains information about the number of cells k
in the model, p(k). The other part p(mk|k) in our particular case,
contains information about the physical parameters associated with
a model mk of dimension k, such as where these cells are, and what
the resistivities of these cells are. Using the chain rule, we can thus
write

p(m) = p(mk, k) = p(mk|k) × p(k), (A1)

where

mk = [z, x, ρ], (A2)

z = [z1, z2, . . . , zk], (A3)

x = [x1, x2, . . . , xk], (A4)

ρ = [ρ1, ρ2, . . . , ρk] (A5)

and

z ∈ z, x ∈ x, ρ ∈ ρ. (A6)

We use a uniform prior on k, given by

p(k) =
{ 1

kmax−kmin+1 if kmin ≤ k ≤ kmax,

0 else.
(A7)

If we restrict our region of interest to be a rectangle within the ver-
tical plane running through the controlled source electromagnetic
(CSEM) survey line, we can define a uniform prior on the position
of Voronoi nodes within this rectangle p(z, x). We assume no a pri-
ori knowledge between the locations of nodes in the model and the
Voronoi cell resistivities ρ. These random variables are independent
and therefore their PDFs can be separated in the following product
form:

p(mk|k) = p(z, x|k)p(ρ|k). (A8)

Voronoi nodes can be located anywhere in the rectangular subsur-
face area defined by [zmin, zmax] and [xmin, xmax]. A given node can
be at any of K (temporarily discrete) points within this rectangle.
For k nodes, we can arrange them without paying attention to their
ordering in K !

k!(K−k)! ways. Note that this unspecified variable K will
cancel out of the expressions we need to use in the algorithm and is
only introduced for ease of mathematical derivation. Thus,

p(z, x|k) =
⎧⎨
⎩

[
K

k(K−k)

]−1
if zmin ≤ z ≤ zmax and xmin ≤ x ≤ xmax,

0 else.

(A9)

An alternative method in prior formulation is to use the Dirichlet
prior given in Steininger et al. (2013). Assuming that all k Voronoi
cell resistivities within a given model lie uniformly between ρmin

and ρmax, independent of each other, we write

p(ρ|k) =
⎧⎨
⎩

[
1

ρmax−ρmin

]k
if ρmin ≤ ρ ≤ ρmax,

0 else.
(A10)

To obtain the explicit expression for the prior model probability, we
write �ρ = ρmax − ρmin and �k = kmax − kmin + 1 and substitute
eqs (A7)–(A10) into (A1) to get

p(m) =

⎧⎪⎪⎨
⎪⎪⎩

k!(K−k)!
K !�k(�ρ)k if z ∈ [zmin, zmax], x ∈ [xmin, xmax],

ρ ∈ [ρmin, ρmax],∀k ∈ [kmin, kmax],

0 else.

(A11)

We must mention here that it is natural in geophysical EM to
parametrize models using log10(resistivity) instead of linear resis-
tivity (e.g. Ray & Key 2012), a practice we have followed in our
implementation.

A2 MH algorithms and the acceptance probability

What guides an Markov chain Monte Carlo (MCMC) sampler like
the Metropolis-Hastings (MH) algorithm to convergence upon the
posterior PDF is the acceptance probability α (e.g. Liang et al.
2011). At every step of the Markov chain, a candidate model is sam-
pled by perturbing the current model from a known PDF (the pro-
posal PDF q) and the acceptance α is calculated. A random number
r is then sampled uniformly from the interval [0,1]. If r < α, the pro-
posed perturbation is accepted, else the old model is retained. The
rationale behind this algorithm can be explained by examining in
more detail the expression for α (Bodin & Sambridge 2009), where

α(m′|m) = min

[
1,

p(m′)
p(m)

× p(d|m′)
p(d|m)

× q(m|m′)
q(m′|m)

× |J|
]
.

(A12)

Here, m′ is the new proposed model and m is the old model (through-
out this paper, primes will denote new model values). Specifically,
p(m′)
p(m) is the prior ratio, p(d|m′)

p(d|m) is the likelihood ratio and q(m|m′)
q(m′ |m) is the

proposal ratio. The Jacobian term |J| is not to be confused with the
model Jacobian needed for gradient-based inversions (e.g. Consta-
ble et al. 1987), but is a matrix that incorporates changes in model
dimension when moving from m to m′. In a classic MH algorithm
with a fixed number of dimensions, the prior ratio (for uniform
priors), proposal ratio (for symmetric proposals) and Jacobian term
are all 1 (Dettmer et al. 2010). Hence, the algorithm always moves
towards areas of higher posterior probability if the data misfit im-
proves (likelihood ratio >1). However, it can also move to areas of
lower posterior probability with a probability α if the misfit does
not improve (likelihood ratio <1).

To be able to compare likelihoods between models with different
numbers of parameters (i.e. with different dimensions), the Jacobian
in the acceptance term in eq. (A12) needs to be evaluated. There are
various implementations of reversible-jump MCMC (RJ-MCMC),
and in all the examples cited so far, a ‘birth–death’ scheme has been
used. As shown in Bodin & Sambridge (2009) and Dettmer et al.
(2010) for the ‘birth–death’ RJ-MCMC scheme, this Jacobian term
is unity. We have adopted the ‘birth–death’ algorithm in this paper
and shall not concern ourselves with this Jacobian term any further.

As to why the algorithm should not always look to improve the
data fit by simply increasing the number of parameters (Voronoi
cells in the seabed), if we examine eq. (A12) we find that even if
the likelihood ratio times the proposal ratio is greater than one for a
proposed move that inserts a new cell into the model, the prior ratio
will be less than one owing to the fact that the new prior PDF p(m′)
needs to integrate over a larger number of parameters to equal 1.
Hence, there is an opposition to the ‘birth’ of a new layer (which
may lead to improvement of data fit) by the prior ratio.
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A3 Outline of our algorithm

We start the algorithm with a very simple model, with k = kmin. We
then allow the algorithm to iteratively add Voronoi nodes (‘birth’)
or remove them (‘death’), perturbing the Voronoi cell resistivities,
as the data may demand via the acceptance probability α in (A12).
In brief, this is how we proceed:

A3.1 Initialization

Start the algorithm with k = kmin and all resistivities set to that of
a uniform 1 ohm-m half-space. The Voronoi nodes are randomly
distributed within the prior bounds rectangle.

A3.2 Choose one of four moves

(1) Update: Perturb a randomly chosen Voronoi cell resistivity
about its current value using a Gaussian proposal q(m′|m) with a
standard deviation 
ρ , where

q(m′|m) = 1√
2π
ρ

exp

[
− 1

2
2
ρ

(ρ ′ − ρ)2

]
. (A13)

Note that this update move does not involve a change in the number
of cells.

(2) Birth of a new node: k′ = k + 1. In the rectangular area
defined by [zmin, zmax] and [xmin, xmax], randomly and with uni-
form probability we select an unoccupied point and insert a node.
This node forms the nucleus for a new Voronoi cell, the resis-
tivity of which is assigned by perturbing the old resistivity value
at that location according to a Gaussian proposal with standard
deviation 
bd.

(3) Death of an interface: k′ = k − 1. An existing node is selected
at random and deleted.

(4) Move a node location: An existing node is selected at ran-
dom and its position is perturbed by two independent 1-D Gaus-
sian proposals with standard deviation 
mz and 
mx for the z and
x-directions, respectively. Note that this step does not involve a
change in the number of cells either.

At each step, one of these moves is chosen with a certain proba-
bility, such that the move probabilities sum to unity. In addition, the
birth and death probabilities must be set equal. We set the probabil-
ities as follows:

[update, birth, death, move] ≡
[

1

4
,

1

4
,

1

4
,

1

4

]
.

At each step of the Markov chain, the proposed model is evaluated
for acceptance. If it is accepted, it becomes the current model. If it
is rejected, the current model is preserved and the algorithm moves
on to the next step. In order to compute the acceptance, one needs
to evaluate eq. (A12), for which we explicitly describe the proposal
PDFs and their ratios in the next section.

A4 Proposal PDFs and acceptance probabilities

A4.1 Fixed dimension moves

For all moves that are neither birth nor death, the number of cells
remain fixed. In these moves, we have elected to use Gaussian
proposals to suggest the new model parameters by centreing the
proposals on the old parameters and drawing a random number
from a normal PDF with a given standard deviation (step size).
We can see from eq. (A13) these kinds of moves are symmetric,

implying that the probability to go from the old state to the new
state is the same as it would be in going from the new state to the
old state:[

q(m|m′)
q(m′|m)

]
fixed

= 1. (A14)

Since the number of dimensions remains constant, the prior ratio in
eq. (A12) is 1. Hence, for fixed dimension moves, we find that the
acceptance probability is simply the ratio of the likelihoods:

αf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
[
1,

p(d|m′)
p(d|m)

]
if z ∈ [zmin, zmax], x ∈ [xmin, xmax],

ρ ∈ [ρmin, ρmax],

0 else.

(A15)

A4.2 Birth move

For a birth move, one can select from out of K − k unoccupied
spaces. The perturbation for the birthed cell’s resistivity is drawn
from a Gaussian with standard deviation 
bd, centred about the
old value in the cell. Since the selection of a position and the
perturbations are independent, we can write

q(m′|m) = q(z′, x′|m)q(ρ ′|m) (A16)

= 1

(K − k)

1√
2π
bd

exp

[
− (ρ ′ − ρ)2

2
2
bd

]
. (A17)

For the reverse move in a birth, keeping in mind that the current
state has k cells, there were k + 1 cells to delete from, and the
probability of removing resistivities in a cell in the reverse move
is 1. Thus, we have

q(m|m′) = q(z, x|m′)q(ρ|m′) (A18)

= 1

(k + 1)
× 1. (A19)

It follows in a birth move, from eqs (A17) and (A19), that the
proposal ratio can be written as[

q(m|m′)
q(m′|m)

]
birth

= (K − k)
√

2π
bd

k + 1
exp

[
(ρ ′ − ρ)2

2
2
bd

]
. (A20)

Finally from eqs (A11), (A12) and (A20) we get for the birth moves,
the following acceptance probability:

αb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
[
1,

√
2π
bd
�ρ

exp
[

(ρ′−ρ)2

2
2
bd

]
p(d|m′)
p(d|m)

]
ρ ∈ [ρmin, ρmax],

∀k ∈ [kmin, kmax],

0 else.

(A21)

A4.3 Death move

In a death move, one can select one of k places for deletion. Further-
more, the probability of removing resistivities in a cell is certain.
Thus,

q(m′|m) = q(z′, x′|m)q(ρ ′|m) (A22)

= 1

k
× 1. (A23)
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In the reverse move for death, since the reference state has k in-
terfaces, there are K − (k − 1) sites at which to add an inter-
face. Furthermore, the resistivity perturbations are proposed using
a Gaussian centred around the current value. Hence

q(m|m′) = q(z, x|m′)q(ρ|m′) (A24)

= 1

K − k + 1
× 1√

2π
bd

exp

[
− (ρ − ρ ′)2

2
2
bd

]
. (A25)

Thus, we can see from eqs (A23) and (A25) that the proposal ratio
for death can be written as[

q(m|m′)
q(m′|m)

]
death

= k

(K − k + 1)
√

2π
bd

exp

[
− (ρ − ρ ′)2

2
2
bd

]
.

(A26)

Again from eqs (A11), (A12) and (A26) we get for the death moves,
the following acceptance probability:

αd =

⎧⎪⎨
⎪⎩

min
[
1, �ρ√

2π
bd
exp

[
− (ρ′−ρ)2

2
2
bd

]
p(d|m′)
p(d|m)

]
∀k ∈ [kmin, kmax],

0 else. (A27)

It should be noted that the derived expressions for α in eqs (A15),
(A21) and (A27) do not involve the variable K (as promised)
and are identical in form to the expressions derived in Bodin &
Sambridge (2009).

Furthermore, we mention here that in practice, the log of the
acceptance probabilities are calculated and compared against the
log of a uniform random number between 0+ and 1. Taking log
avoids many problems of numerical stability in the evaluation of
eq. (A12).

A5 Synergy between birth and death

At this juncture, we point out that the birth and death moves operate
‘in concert’. Examining eqs (A21) and (A27), we see that for the
same change in the likelihood ratio, the birth and death acceptance
probabilities are inverses of each other. The birth move encourages
large steps to be taken in the model space, while the death move
encourages very small steps in the model space. Thus birth ensures
that there should be an increase in dimension, only when the current
model is quite different from the proposed model (within the prior
bounds, of course). On the other hand, the death move ensures that
when the proposed model is very similar to the current one, there
should be a decrease in dimensions and an unnecessary cell is then
removed.

This synergy between birth and death also explains why the RJ-
MCMC algorithm does not keep adding or deleting cells in order
to explain the observed data. This is another aspect of Bayesian
natural parsimony.

A6 Convergence to the posterior PDF

The algorithm is run for a given number of steps until it is deemed
to have collected enough samples to provide a reasonable estimate
of the posterior model PDF. There are a couple of caveats in this
regard, as there are with any MCMC sampler (Liang et al. 2011). If
the algorithm is seeded with an initial model that is in a low posterior
probability region, it may take quite a few steps till it reaches a region

of high posterior probability, such that it begins to sample models,
most of which fit the data within the given data error. The number of
such required steps (which are subsequently discarded in the final
chain) is known in MCMC parlance as the ‘burn-in’ period, which
depends on how well the proposal PDFs have been scaled (Chib &
Greenberg 1995). This brings us to the step sizes (scaling) in the pro-
posal PDFs in the form of the standard deviations 
ρ , 
mz, 
mx and

bd required in the various proposals to generate a new candidate
model. The form of the proposal PDFs should ‘emulate’ the poste-
rior for efficient sampling, but since the posterior PDF may be com-
plicated (and unknown a priori), any kind of simple PDF, symmetric
where possible, can be used. The exact form of the proposal does not
affect the final solution, at least in theory. For the Scarborough prob-
lem, post burn-in we used the following step sizes with Gaussian
proposals:

[
ρ, 
mz, 
mx, 
bd ] ≡ [0.1, 10, 150, 0.6] ,

with the resistivity step sizes 
ρ and 
bd specified in log10 units
and the move node step sizes 
mz and 
mx in metres.

The suitability of the step size for the problem at hand can be
examined by looking at the number of samples accepted in a large
interval of steps, referred to as the acceptance rate. If the acceptance
rate is too low, it means that the step sizes are too large as lots of
steps are falling outside the prior bounds or are being rejected as
they land in low-probability (high misfit) areas. If the acceptance
rate is too high, then it implies that the algorithm is not exploring
the model space enough and will again be slow to converge upon
the posterior PDF.

While the sampled posterior should not depend on the size of
the steps taken, one has to factor in the optimality of the step size
as otherwise convergence will be very slow. For an illuminating
discussion on this matter, one can refer to Chib & Greenberg (1995)
or Trainor-Guitton & Hoversten (2011) for a more recent discussion
relevant to marine CSEM. For further discussions on convergence
diagnostics such as Potential Scale Reduction Factors (Gelman &
Rubin 1992) and the practicality of their application, one can refer
to Liang et al. (2011). When the number of parameters is changing,
as in RJ-MCMC, it is very challenging to assess convergence and
this is still an active area of research (Bodin & Sambridge 2009).
A heuristic method to examine speed of convergence is to monitor
the ‘distance’ travelled from one sampling step to the next over
a window of a certain number of steps. We can project model
resistivity values on to an underlying grid, and then look at the norm
of the difference between grid values for two successive models. We
can then find the average distance travelled over a given step size
window.

The algorithm should be run long enough at the lowest accept-
able range of rms values (achieved after the burn-in period) such
that there is at least stationarity achieved in the square misfit with
iteration number. Furthermore, to ensure that the inferred posterior
is not biased due to being trapped in local maxima (of the pos-
terior probability), we recommend that the algorithm be run from
many different starting points, ideally in parallel for computational
efficiency. The final ensemble for posterior inference can be con-
structed by concatenating the various parallel chains (e.g. Dettmer
et al. 2010; Bodin et al. 2012; Ray & Key 2012). Another means
of efficient convergence to the posterior PDF can be to use parallel
interacting Markov chains as described in Dettmer & Dosso (2012)
and Ray et al. (2013a).
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