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SUMMARY

Uncertainty in the transmitter position, theory error and insuf-
ficient model parameterization amongst various other factors
can lead to significant correlated error in observed controlled
source electromagnetic data. These errors come to light by an
examination of the residuals after performing inversion. Since
correlated error violates the assumption of independent data
noise it can manifest in spurious structure in inverted mod-
els. We demonstrate this using both synthetic data and real
data from Scarborough gas field, North West Australia. In this
work we propose a method which uses a hierarchical Bayesian
framework and reversible jump Markov chain Monte Carlo to
account for correlated error. We find that this removes suspect
structure from the inverted models and within reasonable prior
bounds, provides information on the resolution of resistivity at
depth.

INTRODUCTION

Useful inferences from marine controlled source electromag-
netic methods (CSEM) are obtained through inversion of the
observed data, and not directly from the data itself (Weiss,
2007). Through stacking of observed data and the central limit
theorem, the data errors are often justified as being Gaussian
distributed and independent. Owing to various kinds of ob-
servational error (such as transmitter positioning), insufficient
model physics or parametrization, correlated error can arise
and violate the independent Gaussian assumption. Since an
inversion that assumes such errors depends solely on the χ2

misfit value to navigate the misfit space, incorrect assumptions
about a diagonal data covariance matrix will lead to incorrectly
inverted structure and spurious interpretation of subsurface re-
sistivity.

THEORY

In this work we utilize a reversible jump Markov chain Monte
Carlo (RJ-MCMC) method (Green, 1995) where the model pa-
rameterization is flexible. The number of layers, their resis-
tivities and the positions of the layers are not fixed a priori

and are treated as unknowns during the inversion. Owing to
the inherent non-uniqueness and non-linearity of the CSEM
inverse problem, a flexible parameterization using RJ-MCMC
provides a more realistic estimate of resistivity uncertainty at
depth (Ray and Key, 2012). The uncertainty estimate is pro-
vided by the posterior model distribution p(m|d) where

p(m|d) ∝ p(d|m)× p(m) (1)

p(m) is the prior model distribution and p(d|m) is the misfit-
dependent likelihood for the model m given by

p(d|m) =
1

det(πCd)
exp

�
− [d− f (m)]†Cd

−1[d− f (m)]
�

(2)
for circularly symmetric complex errors. † indicates a Hermi-
tian transpose and Cd is the data covariance matrix.

Hierarchical approaches to estimating data noise where Cd
can itself be ‘sampled’ are gaining popularity in geophyics
(e.g. Malinverno and Briggs, 2004; Bodin et al., 2012; Dettmer
et al., 2012; Steininger et al., 2013). From equation 2 it can be
seen that Cd in the determinant and in the argument of the ex-
ponential have opposite effects on the likelihood, thus ensur-
ing that sampled data error values are not too large or too small.
Thus, a hierarchical approach allows for inverted models not to
be overly simple or overfitting the data, with posteriori uncor-
related residuals. This leads to a rigorous uncertainty estimate
of resistivity at depth, a challenging task in CSEM inversion.

SYNTHETIC DATA EXAMPLE

To demonstrate the effects of correlated error, exponentially
correlated noise was added to synthetic data generated from
the red model (Trainor and Hoversten, 2009) shown in Figure
1 (left pane). In the middle and right panes, solid colored lines
represent the true model responses, the grey dashed lines show
the black background model response, and the noisy data real-
izations are shown with 1σ error bars on either side. Gaussian
noise with standard deviations equal to 3%, 5% and 7% of the
amplitude was added to the data at 0.125 Hz, 0.25 Hz and 1.25
Hz. The generated noise was correlated such that correlation
falls off exponentially with range. The offset-to-offset corre-
lation coefficients were 0.7, 0.4 and 0.2 at 0.125 Hz, 0.25 Hz
and 1.25 Hz. This is not an unrealistic model, as it is natural
that the lower frequencies will exhibit greater spatial correla-
tion owing to their longer wavelengths / skin depths.

The results of an RJ-MCMC inversion using a diagonal co-
variance matrix, ignoring off-diagonal terms is shown in Fig-
ure 2(a). In the left panel, hotter colors correspond to a higher
probability of resistivity at depth. The 5% and 95% quantile
lines of resistivity at depth are shown with thick white lines.
The true model is shown with a thick black line. The right
panel shows the probability of the presence of interfaces (re-
sistive contrasts) at depth. Using the hierarchical RJ-MCMC
Bayesian method, with both the data variance and the corre-
lation coefficient at each frequency as unknowns to be sam-
pled during the inversion, we obtain the posterior model dis-
tributions shown in Figure 2(b). It is clear that ignoring the
off-diagonal covariance terms leads to diminished sensitivity
to the middle target layer and spurious half space structure.
Clearly the hierarchical Bayesian scheme does a better job of
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Bayesian inversion and correlated data noise

quantifying the subsurface resistivity uncertainty more accu-
rately.

Figure 1: Synthetic model (red) from Trainor and Hoversten
(2009) for study.

SCARBOROUGH CSEM EXAMPLE

The Scarborough gas field in the NW Australian shelf presents
an approximately 1D yet challenging CSEM inversion target.
The difficulty lies in the resistive Gearle siltstone formation
overlying the gas reservoir section with both sections charac-
terized by roughly equal resistivity-thickness product (Myer
et al., 2012). Using the nominally calculated stacking errors in
a diagonal covariance matrix for RJ-MCMC inversion of on-
reservoir CSEM data, we obtain Figure 3(a). Though it seems
that high probabilities of reservoir-like resistivity are found at
depth (left pane), the interface probability curves (right pane)
are highly jagged at the Gearly level (blue horizontal lines)
and reservoir level (red horizontal lines). The black resistivity
model overlain on the left panel is an Occam’s inversion (Con-
stable et al., 1987) model over the same location from Myer
et al. (2012), where the location of the Gearle and the reservoir
had to be fixed a priori with appropriate prejudices applied to
obtain a sensible model. In Figure 3(b), a random selection
of normalized residuals from 1000 RJ-MCMC inverted mod-
els have been plotted at each offset, for each frequency (color
images). The top row shows the real residuals and the bot-
tom row the imaginary residuals. Hotter colors correspond to
a higher number of residuals at a given value, and the vertical
white line represents the zero line. Alongside the color images
are shown histogram plots of the mean residuals at each fre-
quency, along with the plots for a theoretical standard normal
Gaussian (black) and the PDF of all residuals (dashed red).
From the color panels, we can clearly see a lot of correlation
and the histogram plots alongside show that the data errors
are not very Gaussian. Thus, the posterior model distributions
shown in Figure 3(a) are not very robust.

When using a hierarchical Bayesian RJ-MCMC scheme with
a sampled correlation matrix, we obtain the results shown in
Figure 4(a). A lot of shallow structure has been removed by
the hierarchical inversion. This is expected, given that we in-
cluded a correlation model that explicitly includes short offset
correlation. There is also a booming probability of interfaces
at the reservoir depth (red horizontal lines), and kinks in the
probability of interfaces at the depth of the Gearle layer (blue

horizontal lines). Further, from Figure 4(b), the data errors are
now uncorrelated and far more Gaussian, making Figure 4(a)
a far more robust and rigorous inference.

CONCLUSIONS

In this work we have shown the benefits of explicitly dealing
with correlated noise and the inevitable pitfalls which crop up
if they are disregarded. The procedure outlined here is not re-
stricted to 1D problems alone and can be applied to 2D/3D
problems as well, given that correlated errors crop up even if
the model physics are made more complicated. Since we may
have folded subtle 2D reservoir signals into correlated error,
we are currently working on 2D methods of inverting Scarbor-
ough CSEM data within a hierarchical RJ-MCMC Bayesian
framework to provide an even more rigorous and robust mea-
sure of sub-seafloor resistivity uncertainty.
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(a)

(b)

Figure 2: a) RJ-MCMC inversion of synthetic CSEM data ig-
noring correlated error. b) Hierarchical Bayes RJ-MCMC in-
version accounting for unknown noise and correlated error.
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(a)

(b)

Figure 3: a) RJ-MCMC inversion of Scarborough gas field CSEM data ignoring correlated error. b) Color images are normalized

residuals at each frequency at each offset from 1000 randomly chosen inverted models. Histogram plots are of the mean residuals

at each frequency, the black curve is a standard normal Gaussian. Highly correlated un-Gaussian error is evident. Inferred structure

in Figure 3(a) may be spurious.
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(a)

(b)

Figure 4: a) Hierarchical Bayes RJ-MCMC inversion of Scarborough CSEM data. There is a booming probability of interfaces

(right pane) at both the Gearle level (blue lines) and reservoir level (red lines). b) Correlated errors and un-Gaussianity much

reduced compared to Figure 3(b). Figure 4(a) is now a much more robust inference about resistivity uncertainty.
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