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Abstract

In geophysical inversion the model parameterisation, the number of unknown

parameters, the level of smoothing and the required level of data fit are usually

arbitrarily determined by the user prior to the inversion. These quantities are related

to each other and define the formulation of the inverse problem; by definition they

affect the final solution. They are often manually ‘tuned’ by means of subjective

trial-and-error procedures, and this represents a recurring problem in geophysical

inversion.

In this thesis this issue is addressed by proposing an alternative inversion strat-

egy. Different methodologies recently developed in the area of Bayesian statistics

are combined to produce a general inversion algorithm, which lets the data themself

formulate the inverse problem. This is done by treating the tunable quantities as

unknowns to be constrained directly by the data.

A major focus is on situations where data constrain a 2D spatially varying field,

particularly seismic tomography. A variable parametrisation consisting of Voronoi

cells with mobile geometry, shape and number, is treated as a set unknowns in the

inversion. The reversible jump algorithm is used to sample the transdimensional

model space within a Bayesian framework which avoids global damping procedures

and the need to tune regularisation parameters.

The method developed in this thesis is an ensemble inference approach, where

many potential solutions are generated with variable numbers of cells. Information

is extracted from the ensemble as a whole by performing Monte Carlo integration to

obtain an expected Earth model. The inherent model averaging process naturally

smooths out unwarranted structure in the Earth model, but maintains local discon-

tinuities if well constrained by the data. As a by product, uncertainty estimates are

obtained for any point in the medium.

In a transdimensional approach, the level of data uncertainty directly determines

the model complexity needed to satisfy the data. Intriguingly, the Bayesian formu-

lation can be extended to the case where data uncertainty is also uncertain. It is

possible to estimate the level of data noise while at the same time controlling model

complexity in an automated fashion.

For 2D seismic tomography, this novel procedure gives promising results in sit-

uations where the ray coverage is far from ideal, as it performs better compared to

standard methods that use regular parameterisations. The method is also applied

to the inversion of three ambient noise datasets that span the Australian continent

at different scales. A multiscale tomographic image of Rayleigh wave group velocity
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for the Australian continent is constructed. Experiments show that the procedure

is particularly powerful when dealing with multiple data types that have different

unknown levels of noise. Here it is possible to adjust the fit to different datasets

and to provide a velocity map with a spatial resolution adapted to the quantity of

information present in the data.

Finally, two applications of 1D problems are considered. The first is an appli-

cation to a regression problem where the goal is to infer the position and number

of abrupt changes in noisy geochemical records. The second is an application to

receiver function waveform inversion, where both the magnitude and correlation of

data noise are inverted for. Other fields where the general methodology can be

applied are outlined.
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Chapter 1

Introduction

1.1 Geophysical inversion and the issue of model

parameterisation

A typical aim of geophysical inversion is to recover some internal physical properties

of the Earth (e.g. density, composition, temperature) from a set of surface measure-

ments. The Earth model one tries to infer is often a continuous function of space:

M(x). In practice, this model is usually approximated as m(x), which is a linear

combination of a finite number, N , of basis functions Bi:

M(x) ≈ m(x) =
N∑
i=1

aiBi(x) (1.1)

The definition of both N and the basis functions is called the model parameterisa-

tion. It is nearly always defined before carrying out the inversion. Thus the Earth

model we try to infer from the observed data is simply defined by the vector of

unknown model parameters m = (a1, ..., aN) which can be thought of as weights on

each basis function.

Obviously, the choice of the parameterisation has a major impact on the formu-

lation of the problem, especially in terms of the relation between the model m and

the observed data d:

d = g(m) (1.2)

Here we can see that, in mathematical terms, the data can be regarded as a pro-

jection (through the function g(..)) of the model. Moreover, linearity, resolution,

ill-posedness, and model uncertainty are concepts directly influenced by the param-

1
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Figure 1.1: The 2D function represented here shows the data misfit. Purple areas
have high misfit and orange areas have low misfit. X1 andX2 are physical parameters
but the model in the transformed space (Y1, Y2) might be easier to estimate.

eterisation. For example, Hartzell and Langer (1993) demonstrated the dramatic

effects of model parameterisation in the case of finite fault inversion where teleseis-

mic long period waveforms are inverted to obtain rupture histories. In practice,

the choice of the model parameterisation constitutes one form of prior information

about a function M(x) which we often do not know well. A good parameterisation

enables one to extract the maximum information from the data, without introducing

unjustified complexity to the model structure.

A simple example of an Earth model defined by two horizontal layers is shown

in Figure 1.1. The two parameters X1 and X2 represent physical properties (e.g.

temperature or electrical conductivity) that take a constant value within each layer.

For example, the surface measurements can be gravity data and the inverse problem

consists in estimating the two unknown density values X1 and X2. The data misfit

function ‖dobs − g(m)‖, i.e. the distance between observations and data predicted

by the model, is also shown as a function of the two model parameters. The aim

of the inversion is to approximate the data misfit function and eventually find the

best combination of parameters that will minimise this 2D function. Here, it is

obvious that a simple bijective transformation of parameters (X1, X2) ←→ (Y1, Y2)

can dramatically change the “shape” of the function. In the transformed space, the
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region where the data misfit takes low values is larger which may help the inversion

process. The idea of parameter transformation is to change the geometry of the

problem in order to make it easier to solve.

In linear problems, i.e. where Equation (1.2) can be expressed as a linear system

of equations, a very common technique that uses parameter transformations is SVD

decomposition (Aster et al., 2005). Parameter transformations are used in order to

have the model and data vectors expressed in a coordinate system such that each

transformed datum is only sensitive to one of the transformed model parameter. This

approach enables us to ignore the transformed data that are almost not sensitive to

the model (or changes in the model) and which can destabilise the inverse problem.

In SVD decomposition, the numerical stability can be improved by truncating the

SVD representation by removing the terms equating to small eigenvalues. The

threshold for truncation is specified by the user. If too many transformed parameters

(i.e. combinations of physical parameters) are estimated, the problem will still be

numerically unstable; if too few parameters are estimated, the model fit may be

unnecessarily poor and data misfit may be larger than an optimally parameterised

model. This is the well known trade off between model resolution and data fit.

Previous authors have recognised the potential of using adaptive parameterisa-

tion in inverse problems. Dynamic parameterisation methods enable the parameter-

isation to be adjusted during the model building procedure. Nolte and Fraser (1994)

constructed a Genetic Algorithm where the problem was reparameterised after each

run, so that the new unknown parameters were more independent than the old ones.

The inversion technique was applied to a vertical seismic profile (VSP) inversion

problem where the goal is to recover slowness and impedance profiles. We can also

simplify or even linearise a problem by changing its parameterisation. Vasco (1995)

used a set of coordinate transformations to linearise a non-linear inverse problem.

Statistical and analytical techniques were employed to estimate the parameters of

such linearisation transformations. In the transformed space, techniques for linear

inverse theory were used.

In this thesis, we develop a general self-parameterising inversion method for

the tomographic problem. The overall philosophy is to let the data decide of the

parameterisation and thus avoid arbitrary choices that have to be made before the

inversion and which influence the form of the solution. This work is carried out in the

context of a probabilistic sampling framework where the solution is a large ensemble

of Earth models that fully quantify the degree of knowledge we have about seismic

structure (i.e. constraints, resolution, a trade-offs). Many interesting and useful
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features emerge when a sampling based framework is applied to seismic tomography.

These include transdimensionality (letting the number of degrees of freedom in the

model vary), data driven regularization (letting the data determine the complexity

of the model during the inversion) and super-resolution (where fine scale detail

in an image is achieved by combining an ensemble of more crudely parameterised

models). In addition the trade-off between data fit and model complexity is handled

in a consistent manner driven by the data itself rather than by potentially subjective

decisions. We also show that the methodology is general and can be applied to other

geophysical inverse problems such as non-linear regression of geochemical time series

or receiver function inversions.

1.2 Tomographic imaging

The word tomography literally means slice picture (from the Greek word tomos

meaning slice). Tomographic imaging deals with reconstructing an image from its

projections where the data are projections of a physical property of the body we

want to image. It is widely used in a large number of different fields from diagnos-

tic medicine to materials science. The projections can represent, for example, the

attenuation of x-rays through an object, as in conventional x-ray tomography, or

the refractive index variations as in ultrasonic tomography (Natterer, 2001). The

technique consists in gathering these projection data from multiple directions and

feeding the data into a tomographic reconstruction algorithm. Algorithms differ

according to the number and the distribution of projections available, as well as in

the nature of the relationship between the model and the data.

A common feature of many tomography problems is that the number and the dis-

tribution of projections is limited due to the irregular spatial distribution of sources

and logistical constraints which control position of receivers. In seismology, for ex-

ample, the sources are natural earthquakes, and the receivers (seismic recording

stations) are typically restricted to continental regions. However, the problem of

having incomplete data and uneven spatial distribution of the information is also

common in other fields. Electron microscopy is a typical example. In Transmis-

sion electron microscopy an electron beam passes through a planar specimen under

several incidence angles. Since the beam has to traverse the specimen more or less

transversally, the incidence angle is restricted to an interval less than 180 ◦, typically

120 ◦ (Hoppe and Hegerl, 1980). In other applications the radiating sources are in-

side the object and it is the distribution of sources that is sought. An example is
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proton emission computed tomography in nuclear medicine (Budinger et al., 1979).

1.3 Seismic tomography

Tomography has been an active domain of research in seismology for 30 years (for

a recent review, see Rawlinson et al., 2009) and consists of using data from seismo-

grams to infer a map of seismic wave velocity. The speed of the seismic waves is

directly linked to physical properties of the earth. Thus, a seismic wave propagating

from a source to a receiver contains information about the earth structure within

its volume of influence.

In most cases Earth models are parameterised with basis functions of uniform

local cells in 2D or 3D whose size and shapes are fixed in advance. As is well

known, the choice of cell size is a compromise between model resolution and model

uncertainty (Nolet, 2008). If the cells are large, independent information can be

integrated to give a mean velocity value that is not biased by the noise in the

data. The uncertainty on the estimated velocity will be small at the expense of the

resolution, which in turn is directly linked to the size of the cells. As the cells become

smaller, the noise in the data maps into large uncertainty in the model parameters

and quickly, the solution will become non-unique. Some form of model smoothing

or regularisation is often imposed to obtain a single model, which biases linearised

uncertainty estimates.

As mentioned earlier, the information obtained in seismic tomography strongly

depends on the location of the sources (mostly at plate boundaries) and the positions

of the receivers, which are not evenly distributed on the Earth surface. This leads

to having some regions traversed by a lot of seismic rays whereas other regions are

left with poor ray coverage. It is self evident that uneven ray path sampling leads to

limited resolution in regions of poor data coverage. The usual way of dealing with

ill-constrained parts of a model is to apply some spatial smoothing, norm damping,

or simply to coarsen the parameterisation, e.g., increase cell sizes. Traditionally

these forms of ‘regularisation’ have been applied uniformly across the entire model,

which raises the possibility that, while the ill-constrained regions are being damped,

the well-constrained regions are being over-smoothed and hence information may be

lost.

In order to deal with the irregular distribution of information, some seismolo-

gists have used irregular meshes and allowed for their refinement during the inversion

process (See Sambridge and Rawlinson, 2005, for a review). The use of irregular
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meshes in seismic tomography introduces many different implementation problems.

A range of approaches have been proposed and applied to various problems. Abers

and Roecker (1991) introduced a scheme where fine scale regular 3D blocks are joined

to form larger irregular cells, and applied the techniques to image P-wave velocity

structure beneath Papua New Guinea. Michelini (1995) adjusted the velocity and

position of cubic B-spline vertices in 2D cross-hole tomography. Â Fukao et al. (1992)

and Spakman and Bijwaard (1998) used non-uniform sized rectangular 3D blocks to

account for uneven ray path sampling in regional models. Curtis and Snieder (1997)

set up the inversion mesh adaptively to minimise the condition number of the result-

ing tomographic system of equations for the cross borehole tomographic problem by

means of a genetic algorithm. Bijwaard et al. (1998), Bijwaard and Spakman (2000)

and Spakman and Bijwaard (2001) performed global P-wave traveltime tomography

using an approach similar to Abers and Roecker (1991) in which the 3D mesh is

matched to the ray path density prior to inversion.

1.4 Voronoi cells

In this work, we propose to parameterise the velocity field for seismic tomography

by a variable number of non-overlapping regions defined by Voronoi cells (see Figure

1.2) (Voronoi, 1908; Okabe et al., 1992). These are completely unstructured meshes,

e.g. not based on a cubic or other regular grid, and have the advantage of adapting to

the spatial variability of the information provided by the data. The parameterisation

is defined by a discrete set of points (or Voronoi nuclei) and each region (or Voronoi

cell) encloses all the points of the space that are closer to its nucleus than to any other

Voronoi nucleus. See Aurenhammer (1991) for more details on Voronoi diagrams,

and see Du and Foulger (1999) for a broad review of applications such as image

compression, finite difference methods, quadrature, distribution of resources, cellular

biology or territorial behaviour of animals.

Sambridge et al. (1995) and Sambridge and Gudmundsson (1998) were the first

to propose the use of Voronoi polyhedra for tomographic problems. In 3D reflection

tomography, Vesnaver et al. (2000) and Bohm et al. (2000) used Voronoi cells and

adapted the local resolution iteratively, by means of a singular value analysis of the

tomographic matrix. Sambridge and Faletic (2003) and Zhang and Thurber (2005)

developed adaptive mesh seismic tomography methods based on tetrahedral and

Voronoi diagrams to automatically match the inversion mesh to the data distribu-

tion. Nolet and Montelli (2005) optimised the spacing of interpolation support to
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Figure 1.2: Voronoi cells about 30 pseudo random points on the plane. The cell
nuclei (black dots) have been drawn from a 2D uniform distribution over the spatial
domain delimited by the red rectangle. Each cell contains the part of the plane clos-
est to its nucleus and so the shape of the parameterisation is entirely defined by the
location of the nuclei. The boundaries of each cell are defined by the perpendicular
bisector of each pair of points.

fit local resolution by connecting natural neighbours with springs of length equal to

the local resolving length and minimising the potential energy of the system. In our

case, we shall show that the Voronoi mesh self-adapts to the information contained

in the data in a manner quite different to the methods described above.

1.5 Transdimensional models and Bayesian infer-

ence

Most of the studies that use irregular meshes have a fixed number of unknowns

decided before hand, e.g. the number of layers or cells. Since the data fit can always

be improved by adding more unknowns into the problem, there is a clear trade-

off between explicative and predictive models or between complexity and accuracy.

Our approach to problem solving can be considered as finding a solution that is,

as Albert Einstein observed “as simple as possible but not simpler”. Although this

philosophy appears to be a solid principle, it is still not clear to geophysicists how

it should be applied. A range of statistical techniques have been developed for
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judging whether the choice of the model dimension is warranted by the data, for

example, the Bayesian information criterion (Schwarz, 1978), the Akaike information

criterion (Akaike, 1974) or F-tests (Aster et al., 2005). To date, however, the idea of

determining the model dimension during the inversion, that is treating the number

of parameters as a parameter itself, has received relatively little attention.

In the work presented here, we propose to invert simultaneously for the number

of Voronoi cells, for their geometries and for the seismic velocities. That is, the

parameterisation will be directly determined by the data and treated as an actual

unknown to be inverted for by the tomographic algorithm. At first glance this may

sound like an unrealistic prospect, as within an optimisation framework (where we

seek best fit models) there would seem to be little to prevent an algorithm introduc-

ing ever more detail into a model. As will be shown in this study, however, this is

not the case within a Bayesian sampling framework. It turns out that high dimen-

sional (many cell) models are naturally discouraged. This results from a substantial

property of Bayesian inference referred to as ‘natural parsimony’, i.e. preference for

the least complex explanation for an observation. In general, mathematical models

with the smallest number of parameters are preferred as each parameter introduced

into the model adds some uncertainty to it. Excessively complex models suffer from

overfitting and have poor predictive power. Therefore, given a choice between a

simple and complex model that provide similar fits to data, the simpler one will be

favoured (See MacKay, 2003, for a discussion).

In a Bayesian formulation all information is represented in probabilistic terms

(i.e. degrees of belief). Each individual model is given a probability of existence

given the data. This probability distribution is taken as the complete solution

of the inverse problem and allows assessment of trade-offs, constraints and reso-

lution. Bayesian inference combines prior information on the model with the ob-

served data to produce the posterior probability density function (standard refer-

ences are Box and Tiao, 1973; Smith, 1991; Gelman et al., 1995). Geophysical

applications of Bayesian inference are described in Tarantola and Valette (1982),

Duijndam (1988a,b) and Mosegaard and Tarantola (1995).

In the approach we propose here, the number and positions of the Voronoi nuclei

are unknown in the problem and treated as model parameters. This makes the

function g in Equation (1.2) highly non-linear, i.e. the posterior distribution is

far from being a simple multidimensional Gaussian and may have a large number of

maxima. Therefore there is no simple analytical formulation for the solution and the

only practical way to determine the posterior probability distribution is to evaluate
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it at different positions in the model space by mean of Monte Carlo algorithms.

Monte Carlo sampling and integration of multidimensional distributions is an

active area of research in computational statistics. For summaries see Flournay

and Tsutakawa (1989) and Smith and Roberts (1993). Over the past 15 years,

geophysicists have begun to use Markov chain Monte Carlo (McMC) methods, which

directly simulate the posterior distribution, that is, draw random samples distributed

according to the posterior distribution (see Koren et al., 1991; Gallagher et al.,

1997; Gouveia and Scales, 1998) and see Gallagher et al. (2009) for a recent review.

McMC algorithms produce a chain of random models (Monte Carlo) where each

new model only depends on the model previously generated (Markov chain). It

can be shown that the distribution of samples produced by an McMC random walk

will converge towards the posterior probability distribution when the number of

iterations goes to infinity (Tierney, 1994). An application of McMC to a seismic

inverse problem is given by Malinverno (2002). Note here that McMC is not the

only way to sample the posterior distribution and algorithms such as particle filters

can be used alternatively. See van Leeuwen (2009) for a recent review on particle

filtering within a geophysical context.

Bayesian statisticians have considered the problem of a variable number of un-

knowns, for more than 10 years. As a consequence McMC methods that admit tran-

sitions between states of differing dimension have been actively developed. This new

family of sampling algorithms have recently been termed transdimensional Markov

chains (For a recent review, see Sisson, 2005). At present, the reversible jump algo-

rithm (rj-McMC) of Green (1995)(see also Green and Mira, 2001; Sambridge et al.,

2006; Gallagher et al., 2009) is the most common McMC tool for exploring variable

dimension statistical models. To date, the majority of areas in which transdimen-

sional Markov chain have been applied tend to be computationally or biologically

related. Overall, one in every five citations of Green (1995) can be broadly clas-

sified as genetics-based research. The reversible jump algorithm was first applied

in the geophysical literature by Malinverno and Leaney (2000) to the inversion of

zero-offset vertical seismic profiles. (For a more complete treatment see Malinverno

and Leaney (2005)). Subsequent work was by Malinverno (2002) who applied it

to electrical resistivity sounding, and Piana Agostinetti and Malinverno (2010) re-

cently inverted teleseismic receiver functions to infer a 1D Earth model with variable

number of layers.

In this study, we develop an entirely new approach to the tomography problem

based on the reversible jump algorithm. The scheme we propose here is closely re-
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lated to a process known as partition modelling (e.g. Denison et al., 2002) which is

a statistical analysis tool for non-linear classification and regression. Partition mod-

elling has been applied successfully in disease mapping (e.g. Denison and Holmes,

2001) and more recently, introduced into the Earth sciences for applications in geo-

statistics (Stephenson et al., 2004), thermochronology (e.g. Stephenson et al., 2006)

and palaeoclimate inference (e.g. Hopcroft et al., 2007, 2009).

1.6 Importance of data noise

As mentioned before, there is a trade-off between model simplicity and data fit. If

too many unknown parameters are used in an inverse problem, the distance between

estimated and observed data may become smaller than the actual data noise. In this

case, the measurements are overfitted and the solution model may show spurious

features due to the noise in the data. We shall show that in a transdimensional

Bayesian formulation, the model dimension is directly adjusted in order to fit the

data to the degree required by the estimated noise. Hence, the solution model

depends on the data but also on the assumed level of noise. While this property

can be seen as an advantage, the posterior solution given by the reversible jump

scheme strongly depends on the estimated data uncertainty, and hence this can be

a problem if the user knows little about the measurements errors.

Fortunately, an expanded Bayesian formulation called Hierarchical Bayes (Gel-

man et al., 1995) can take into account the lack of knowledge we have about data

errors. Instead of being fixed, the variance of the measurement errors can have a

broad prior uncertainty and posterior inference can be performed. In geophysics,

Malinverno and Briggs (2004) and Malinverno and Parker (2006) were the first to

use a Hierarchical Bayes formulation and simultaneously invert for the data noise

and model complexity. They demonstrated the practical application of this ap-

proach to a simple linear inverse problem: using seismic travel times measured by a

receiver in a well to infer compressional wave slowness in a 1D Earth model. In their

work, the posterior distribution was Gaussian, and its mean and covariance could

be easily computed analytically. In the work presented here, we propose to apply

Hierarchical Bayes to the fully non-linear tomographic problem, where the posterior

is numerically estimated with the reversible jump McMC algorithm.



1.7 Organisation of the thesis 11

1.7 Organisation of the thesis

This thesis is structured such that the reader follows chronologically the work I

have carried out during my PhD program. Chapter 2 presents the general inversion

methodology and each new chapter proposes an improvement and/or an application

of the same class of algorithms.

Chapter 2: A self-adaptive parameterising approach to to-

mographic inverse problems

After a detailed introduction to Bayesian methods and McMC sampling, our novel

inversion methodology is presented in the case of a fixed number of Voronoi cells and

in the general context of straight ray (i.e. linear) tomography. We present results of

synthetic experiments in a situation where the ray coverage is far from ideal in order

to compare our approach to standard methods that use regular parameterisations.

We use data contaminated with random noise in order to test the ability of the

method recover a synthetic model and to infer model uncertainty.

Chapter 3: Seismic tomography with the reversible jump

algorithm

Here the method is extended to transdimensionality (i.e. variable number of Voronoi

cells) by using the reversible jump algorithm. We also show how the method can be

used iteratively to perform non-linear tomography including ray bending. Computa-

tional cost issues are treated and it is shown how the algorithm can be parallelised.

After having illustrated the improved version on synthetic experiments, the method

is used to invert ambient noise data to infer a tomographic image of Rayleigh wave

group velocity for the Australian continent.

Chapter 4: Accounting for data Noise Uncertainty – Theory

and Application to Palaeoclimate data

In this chapter we treat the issue of data noise and its relation to model complexity.

The Bayesian formulation of the problem is extended, to treat as an unknown and

estimate the uncertainty on the level of data noise. The purpose of this chapter

is to introduce the Hierarchical Bayes methodology, and hence all ideas are simply

illustrated on 1D regression problems that are either linear or nonlinear. Hence, the
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reader can visually appreciate on a single figure the data vector, the data noise, the

true and estimated model, the data fit, etc. An application to palaeoclimatology is

presented where the goal is to infer the position and number of abrupt changes in

noisy geochemical records.

Chapter 5: Multiscale seismic tomography with an Hierar-

chical Bayes formulation

In this chapter the Hierarchical Bayes methodology is applied to seismic tomography

in the case of a multiscale problem. Three ambient noise datasets that span the

Australian continent at different scales are simultaneously inverted. We show that

the extended Bayesian formulation turns out to be particularly useful when dealing

with multiple data types that have different unknown levels of noise. With scant

prior knowledge on data errors, the algorithm is able to naturally adjust the fit to

different datasets and to provide a velocity map with a spatial resolution adapted

to the quantity of information present in the data.

Chapter 6: Transdimensional inversion of receiver functions

with the Hierarchical Bayes algorithm

The purpose of this chapter is to show that the class of algorithm presented in this

thesis is not restricted to seismic tomography but is rather a general approach to

inverse problems. Here we propose to apply our methodology to invert receiver

function waveforms (RF), which is a well known highly non linear problem. The

particularity of receiver functions is that they are time series, and hence the data

noise is correlated. We show how to ‘parameterise’ the data covariance matrix and

invert for both the magnitude and correlation of noise. The algorithm is first tested

on synthetic data contaminated by correlated synthetic noise, and then applied to

data collected by a broadband station located on the Haiman island in China.

Chapter 7: Conclusions and future work

The results of each chapter are listed briefly. We summarise the main results, and

outline directions for further study.
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1.8 Publication Schedule

Some of the chapters in this thesis have already been published or submitted for

publication. A summary of manuscripts is included here to ensure that adequate

acknowledgment is given to co-authors. Note however, that I took the lead on

developing theory as well as performing all numerical calculations and data analysis,

excepted for the last paper submitted where the research carried out in chapter 4

was combined to other calculations.

• Chapter 2 Bodin, T., Sambridge, M., and Gallagher, K. (2009), A self-

parametrizing partition model approach to tomographic inverse problems, In-

verse Problems, 25, 055009.

• Chapter 3 Bodin, T and Sambridge,M., (2009), Seismic tomography with the

reversible jump algorithm, Geophys. J. Int, 178, 1411-1436.

• Chapter 4 Gallagher, K., Bodin, T., Sambridge, M., Weiss, D., Kylander, M.,

Large, D. (2010), Inference of abrupt changes in noisy geochemical records us-

ing Bayesian Transdimensional changepoint models. Submitted to Geochimica

Cosmochimica Acta.





Chapter 2

A Self-parameterising Approach to

Tomographic Inverse Problems

The aim of this first chapter is to introduce the partition modelling formulation of

the tomographic problem, and hence we place ourselves in a common and simple

situation, where the problem is to recover a 2D velocity field from a dataset made

of travel times of seismic waves propagating from sources to receivers as straight

rays. Here the number of Voronoi cells defining the velocity field is fixed, although

in chapter 3 we treat the number of cells as a parameter itself in the inversion.

This chapter is divided into 2 main sections. We first give a complete description of

the Bayesian (seismic) tomography algorithm based on partition modelling. Then,

we present results of synthetic experiments in a case where the ray coverage is not

uniform in order to compare our approach to standard methods. We use both perfect

synthetic data and data contaminated with random noise in order to test the ability

of the method to infer model uncertainty in 2D problems.

2.1 Method

2.1.1 The model parameterisation

The seismic velocity field is discretised by a set of Voronoi polygons as shown in

Figure 2.1. Given a set c of n nuclei in the 2D plane (c = {c1, .., cn} where ci ε

<2 ), the Voronoi tessellation defines n non-overlapping regions R1, R2, ... , Rn such

that the points within Ri are closer to ci than any of the other cj (j 6= i). To make

notation clear we have marked three nuclei {c1, c2, c3} together with corresponding

Voronoi partitions R1, R2 and R3 in Figure 2.1. Note that the cell nuclei are not

15



16 2.1 Method

n = 7 n = 20 n = 80 

c
1

c
3

c
2

R
1

R
2

R
3

Figure 2.1: Examples of Voronoi diagram (black) which form a set of irregular cells
that partition the plane. Each cell contains the part of the plane Ri closest to its
nucleus ci (red dot), and so the shape of the parameterisation is entirely defined by
the location of the nuclei.

necessarily in the geometric centre, rather the cell boundaries are perpendicular

bisectors of each pair of neighbouring nuclei. Each cell is therefore characterised by

the two coordinates of its nucleus ci and for the seismic tomography problem, by

a constant velocity value vi. Therefore, the model parameters are encapsulated by

m = (c,v) where v is the vector of the velocity values assigned to each partition (v =

(v1, .., vn) where vi ε <). Here we use only the simplest possible representation of

velocity within each partition, i.e. a constant. Higher order polynomials are possible,

e.g. a linear gradient or quadratic, which would require additional unknowns for each

cell.

The number of unknowns, i.e. the dimension of the model, is therefore 3n.

During the inversion, we fix the dimension of the problem so that the Voronoi cells

always partition the plane into n non overlapping regions. However, the position of

the nuclei is variable so the cells can take different sizes and shapes, and the velocity

in each cell is allowed to vary. The cell geometry and the grid resolution will then

be directly determined by the data. We will show that in the partition modelling

approach, this dynamic parameterisation will adapt to the spatial variability in the

resolving power of the data and so maximise the information extracted.
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Figure 2.2: A seismic ray (dashed red line) joins a source to a receiver with a straight
line. The travel time tj is simply computed by integrating the inverse of the cell
velocity vi along the ray path. That is, using the length Lij of the ray across each
cell

2.1.2 The forward model

The physical theory of seismic wave propagation allows us to make predictions:

given a complete description of a velocity field, we can calculate travel times of

direct phases and compare them to actual measurements. In the high frequency

approximation case considered here we use ray theory (Cerveny et al., 1977; Cerveny

and Brown, 2003). One can simulate the propagation of a wave from a point source

to a receiver and predict the travel time taken. The computation of the travel times

is made by integrating the slowness field, i.e. the inverse of the velocity, along the

ray paths. In this work, we assume straight rays between pairs of points, although

the basic methodology we present is applicable to more complex ray geometries.
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The travel time of the jth ray is then simply given by:

tj =
n∑
i=1

Lij

vi
(2.1)

where Lij is the length of ray j across cell i (see Figure 2.2) and vi is the velocity

value assigned to cell i . If the ray j does not pass through cell i, then Lij = 0.

Equation (2.1) will be recognised by the reader as a standard linear tomographic

system of equations in slownesses (i.e. 1/vi).

In the examples we subsequently consider, the rays remain straight and do not

depend on the velocity field. This assumption is reasonable for many seismic prob-

lems and is also relevant in some practical cases as in x-ray tomography, ultrasonic

computed tomography (Natterer, 2001) or in teleseismic tomography (e.g. Aki et al.,

1977; Graeber et al., 2002).

2.1.3 The data

In our problem, the observations, or data, are the first arrival travel times of seismic

waves propagating across a 2D velocity field between source-receiver pairs. We use

the forward model described above to generate synthetic arrival times. The time

of the source is known a priori and the data then consists of measuring the time

taken by the wave front to travel from the source to the receiver. The inversion of

arrival time data is a general tomographic problem and has been addressed in a large

number of different problems, like seismic surface wave tomography (e.g. Nolet and

Panza, 1976; Friederich, 1998; Prindle and Tanimoto, 2006) or cross-hole seismic

body wave tomography (e.g. Ivansson, 1986). In examples we develop in subsequent

sections, we first consider noise free synthetic data and later add noise to see how

it propagates into model uncertainty.

2.1.4 Bayesian formulation

Having parameterised the velocity field and formulated the forward model to make

predictions for any particular model, we now describe the inversion approach based

on a Bayesian framework using partition modelling.

In a Bayesian approach all information is represented in probabilistic terms.

Standard references for Bayesian inference are by Box and Tiao (1973) and useful

books are by Smith (1991) and Gelman et al. (1995). Summaries within a geo-

physical context are given by Tarantola and Valette (1982), Duijndam (1988a), and
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Mosegaard and Tarantola (1995). The aim is to recover the posterior distribution:

that is, the model probability density given the observed data (Smith, 1991). Each

individual model has an associated probability, conditional on the data. The pos-

terior distribution is therefore a function of the unknown parameters defining the

model. If the model is defined by 3n unknowns, the posterior will be of dimension

3n (where n is the number of Voronoi nuclei). This multidimensional probability

distribution is taken as the complete solution of the inverse problem.

Bayes’ rule Bayes (1763) is used to combine prior information on the model with

the observed data to give the posterior probability density function:

p(m | dobs) =
p(dobs |m)p(m)

p(dobs)
(2.2)

where x|y means x given, or conditional on, y, i.e. the probability of having x when

for a given value of y. dobs is a vector defined by the set of observed data and m

is the vector of the model parameters. p(dobs | m) is the likelihood of observing

the data given a particular model m. p(m) is a priori probability density of m,

that is, what we know about the model m before measuring the data dobs. The

term, p(dobs) is often referred to as the Evidence (e.g. Sambridge et al., 2006) and

is equivalent to the numerator on the right-hand side integrated over all possible

models. In our context, this can be regarded as constant since it is not a function

of any particular model m. Note however that in the next chapters the number

of Voronoi cells n wil be concidered as an unknown, and the conditional evidence

p(dobs|n) will play a central role. It will be estimated indirectly with the number of

samples generated by the algorithm in each state space. The total evidence p(dobs)

term will be disregarded throughout this study, and we therefore write (2.2) as a

proportionality relationship:

p(m | dobs) ∝ p(dobs |m)p(m) (2.3)

Thus, the posterior distribution can be considered to represent how our prior knowl-

edge of the model parameters is updated once we have some observed data. Clearly,

if the prior and the posterior distributions are the same, then we have learnt nothing

new from the data.

Once we have a reliable estimate of the posterior probability density function (in

terms of an ensemble of samples), then it is straightforward to extract individual

models (e.g. the best or expected average model), to construct marginal probability

distributions for individual model parameters and infer credible regions or ranges
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on parameters. Correlations between parameters can also be examined directly

(Gelman et al., 1995).

2.1.5 The likelihood

The likelihood p(dobs |m) is a quantitative measure of how well a given model with

a particular set of parameter values can reproduce the observed data. Using a given

physical theory, in our case the propagation of seismic rays, the forward problem

is solved for a particular model, providing an estimate of the data that would be

measured for that model. In our problem, the likelihood is based on a least squares

misfit function, which quantifies the agreement between simulated and observed

data. If the estimated data are close to the observed data, the model tested is close

to the true model and the misfit is small

Φ(m) =

∥∥∥∥g(m)− dobs
σ2
d

∥∥∥∥2

(2.4)

where g(m) is the estimated data and σ2
d is the estimated variance of the data noise

(assumed uncorrelated).

As is well known, minimising the least squares misfit function is equivalent to

maximising the probability for a Gaussian likelihood function, i.e.

p(dobs |m) ∝ exp

(
−Φ(m)

2

)
(2.5)

2.1.6 The prior

The Bayesian formulation enables one to account for prior knowledge, provided

that this information can be expressed as a probability distribution p(m) (Scales

and Snieder, 1997; Gouveia and Scales, 1998). It represents information on the

model. A weakness of the Bayesian formulation is that only information that can be

expressed as a probability distribution can be made use of. All inferences from the

data are then relative to this prior. In the seismic tomography problem this prior

information is what we think is reasonable for the velocity field we want to map,

according to previous studies. In practice many authors simply choose a convenient

probability density function, somewhat contrary to strict Bayesian principles.

In this work, we assume minimal prior knowledge and use a ‘nearly’ uninforma-

tive uniform priors. Note we used the phrase ‘nearly’ to acknowledge that all priors

contain information and it is not possible to have a completely uniformative prior.
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Although uniform distributions are very informative about their bounds, in this

study we use “wide” prior distributions, i.e. the likelihood distribution is virtually

null at bounds defining the prior, and hence the values of bounds do not affect the

posterior distribution. In this sense, we pretend to use uninformative priors.

In this thesis we only consider priors that are separable and hence can be written

as a product of independent 1-D priors on each variable. In some cases one might

want to introduce joint priors on a subset of the variables, for example by making

the prior variance of velocity in each Voronoi cell dependent on the size of the cell.

In principle this could be done with additional calculations to determine each prior

(e.g. to calculate Voronoi areas), but the algorithm would then be more difficult

to implement and more computationally expensive. Hence, the prior probability

distributions for the 3n parameters, 2D Voronoi centres and velocities in each cell,

are independent from each other, and so can written in separate form:

p(m) = p(c)p(v). (2.6)

For velocity, the prior is specified a constant value over a defined velocity interval

∆V = (Vmax − Vmin). Hence we have

p(vi) =

{
1/(∆V ) if Vmin < vi < Vmax

0 otherwise
(2.7)

and since the velocity in each cell is independent,

p(v) =
n∏
i=1

p(vi). (2.8)

For the position of the cell nuclei, we also use a uniform distribution, and so

define a rectangular area A of the 2D seismic field where the nuclei of all the cells

must lie with equal probability. This rectangle is represented in red in Figure 2.1

and borders the area to map, i.e. the zone covered by seismic rays. Hence we have

p(ci) =

{
1/(∆x∆y) if ci ∈ A
0 otherwise

(2.9)

where ∆x and ∆y are the dimensions of the spatial domain A. Since the position
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of each nucleus is independent, we also have

p(c) =
n∏
i=1

p(ci). (2.10)

Clearly, the probability of any parameter lying outside the range of the relevant

prior is zero.

2.1.7 Principles of Markov chain Monte Carlo

In the absence of convenient analytical solutions, the only practical way to determine

the posterior is to evaluate it at different positions in the model space (which is the

essence of Bayesian sampling). As the dimension of the model space increases, the

number of models to test becomes huge due to the curse of dimensionality, and a

uniform sampling or complete enumeration of the posterior is not practical.

The Markov chain Monte Carlo (McMC) method is an iterative stochastic ap-

proach whose aim is to generate samples from the posterior probability density.

Useful introductions to this methodology are given by Gilks et al. (1996) and Sivia

(1996). The starting model is selected randomly, and the choice of the next model of

the ‘chain’ is based on a proposal probability distribution and only depends on the

current state of the model. After generating a number of samples, called burn-in

period, the random walk starts to produce an importance sampling of the model

space. That is, the models sampled by the chain are asymptotically distributed

according to the posterior probability distribution (Tierney, 1994), a state referred

to as the chain being stationary. Given the posterior distribution, (or at least a

discrete approximation to it), it is straightforward to determine the mean and the

standard deviation from the distribution of the post burn-in samples.

In this work we use the well-known Metropolis-Hastings algorithm (Metropolis

et al., 1953; Hastings, 1970), which consists of a two stage process of proposing a

model probabilistically and then accepting or rejecting it. The proposal is made by

drawing the new model, m′, as a random deviate from a probability distribution

q(m′ | m) conditional only on the current model m. As before terms to the right

of the bar are fixed and to the left are variable. In all expressions below we use a

prime to denote the state after the particular model step.

A simple example of a proposal distribution would be a Gaussian distribution
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with zero mean and diagonal covariance matrix C = diag[σ2
1, σ

2
2, . . . ]

q(m′ |m) ∝ exp

(
−1

2
(m−m′)TC−1(m−m′)

)
. (2.11)

In practice to generate the new model m′ from the existing model m, one could

perturb the ith component of m by drawing a random variable, u from a normal

distribution N(0, 1) and set

m′ = m + uσiei (2.12)

where ei is the unit vector in the ith direction and σi the variance of the proposal.

This type of proposal distribution is common in applications of the Metropolis-

Hasting algorithm. One usually cycles through the parameters perturbing each one

at a time. Note in this example the proposal distribution is symmetric, because

the forward proposal distribution, i.e. probability of generating a perturbed model

at m′ when starting from m is the same as the reverse proposal distribution, i.e.

probability of starting from m′ and generating a sample at m. Hence we have

q(m′ |m) = q(m |m′).
Once a proposed model has been drawn from the distribution q(m′ |m), the new

model is then accepted with a probability α(m′ |m), i.e. a uniform random deviate,

U , is generated between 0 and 1. If U ≤ α, the move is accepted, the current model

m is replaced with m′ and the chain moves to the next step. If U > α, the move is

rejected and the current model is retained for the next step of the chain where the

process is repeated. The acceptance probability, α(m′ | m), is the key to ensuring

that the samples will be generated according to the target density. Gilks et al. (1996)

showed that the chain will converge to the posterior distribution, p(m | dobs), if

α(m′ |m) = min

(
1,
p(m′ | dobs)
p(m | dobs)

.
q(m |m′)
q(m′ |m)

)
. (2.13)

It is important to note that an McMC simulation of r iterations does not produce

r independent samples from the posterior distribution. The samples are correlated

due to the nature of the Markov chain sampling. Given that we want to generate

a number of independent samples from the given distribution, it is often necessary

to ‘thin’ the chain. This involves collecting models only every t iterations of the

chain where t is the relaxation time of the random walk, i.e. the number of steps

before we can expect to get a model that is roughly independent of the last model

collected. The parameter t depends on the length scales of the model space and of

the probability distributions used. Theoretical and practical details can be found
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in MacKay (2003) and Neal et al. (1993). Another way to produce independent

samples is to parallelise the algorithm. Different independent chains can be run at

the same time and simultaneously sample the posterior. This is also advantageous

in terms of computational time (see chapter 3).

2.1.8 Implementation of the algorithm

Our implementation of the algorithm is as follow. Having randomly initialised the

model parameters by drawing values from the prior distribution of each parameter,

the algorithm proceeds iteratively. At each iteration of the chain, we choose one

Voronoi cell at random and either updates its position ci or its seismic velocity

value vi. Each step is divided in three stages:

1. Randomly pick one cell (from a uniform distribution) and propose a new model

by drawing from a probability distribution q(m′ | m) such that the new pro-

posed model m′ is conditional only on the current model m.

• At every even iteration : Randomly change the velocity value of the cell

according to a Gaussian proposal probability density q(v′i | vi) centred at

the current value vi. The variance of the Gaussian function is a parameter

to be chosen.

• At every odd iteration : Randomly change the position of the cell nucleus

according to a 2D Gaussian proposal probability density q(c′i | ci) centred

on the current position ci (See Figure 2.3). The covariance matrix for

the 2D Gaussian function is proportional to the identity matrix, with the

constant of proportionality a parameter to be chosen.

2. Solve the forward problem : Sort the rays passing through the cells, whose

geometry or velocity has been modified, and with (2.1) update the estimated

travel times for only the rays affected. The new estimated travel times are

compared with the observations to build the misfit (2.4), the likelihood (2.5)

and the posterior value of the proposed model p(m′ | dobs).

3. Randomly decide whether or not to replace and update the current model

according to the acceptance probability distribution α(m′ |m) given in (2.13).

Since proposal distributions are symmetric (i.e. q(m′ | m) = q(m | m′)), we

have

α(m′ |m) = min

(
1,
p(m′ | dobs)
p(m | dobs)

)
. (2.14)
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Figure 2.3: Move of a Voronoi nucleus. The two panels represent the Voronoi
tessellation before and after the move. The new position (red circle) is drawn from
a 2D Gaussian probability distribution centred on the old position of the nucleus.
Note that only the cells in grey are affected by the move.

If the proposed model has a higher posterior value, it is always accepted and

becomes the current model. If the proposed model has a lower posterior value,

it is accepted with probability equal to the ratio of the posteriors. If the

priors are always the same, the acceptance condition is based on the ratio of

the likelihoods. When the proposed model is rejected, the current model is

retained for the next iteration and also added again to the samples collected.

Note that the proposed model can fall outside the range defined by the uniform

prior distribution. In this case, the prior (and hence the posterior) of the

proposed model is null, and the model is rejected. In this way the proposal

distributions are seen as true Gaussians rather than truncated versions.

The move of a cell nucleus can be efficiently implemented by adding and removing

points from the existing Voronoi diagram without having to recalculate the entire

structure. This can be done with the local Voronoi update algorithm described in

Sambridge et al. (1995).

A burn-in period is needed to ensure that the chain has converged before sam-

ples start to be collected ( Cowles and Carlin (1996), Brooks and Roberts (1998),

and Brooks and Roberts (1999) presented practical tools to detect convergence in

a running simulation). After many post burn-in iterations, this procedure asymp-

totically converges to an ensemble of models whose density is proportional to the
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posterior distribution (see Cowles and Carlin (1996) and Brooks and Roberts (1998)

for detailed proofs of convergence). Then, models can be collected every t steps of

the walk. This thinning of the chain is to ensure the independence of the samples

collected. The value for t is a parameter to be chosen according to the length scale

ratio of the posterior to the proposal densities (MacKay, 2003).

The great advantage of this method is that we do not need to know the nor-

malising constant in (2.3) to sample the posterior (as the constant cancels in the

acceptance ratio). Depending on the nature of the priors and proposal distributions,

the sampler will generally accept better data-fitting (i.e. higher likelihood) models.

However, it can also accept what are considered ‘worse’ models (in that the data

fit is lower than the previous model in the chain). This is required to obtain a

distribution of samples that converges to the posterior and achieve a representative

approximation of the probability distribution of the model parameters, i.e. we need

to sample the tails as well as the modes.

Although the choice of proposal distributions is essentially arbitrary, poor choices

lead to very slow movement around the model space, such that convergence of

the chain can take a very long time. It is therefore, desirable to choose proposal

distributions carefully such that the model space search is as efficient as possible

(e.g. Hopcroft et al., 2007). This is a central issue in the development of McMC

algorithms and the subject of much research (Brooks et al., 2003; Al-Awadhi et al.,

2004; Raggi, 2005). Monitoring the acceptance rate of the chain is useful to tune the

variance of the proposal probability functions. Practically, it is advisable to choose

the largest possible variance that maintains a high acceptance rate (Mosegaard,

1998). Experience has also shown that a frequency of accepted models (after the

burn-in period) of 25%-50% indicates that the algorithm is performing well (Gelman

et al., 1996). In practice, the population of samples for a model parameter plotted

as a function of iteration should resemble for example a white noise process, with

no trends or obvious structure.

The definition of the prior also has a direct impact on the efficiency of the

inverse scheme. Overly precise prior information (e.g. a Gaussian distribution with

a relatively narrow variance), if incorrect, can bias the inversion process such that

the full range of possible solutions may not be properly sampled and the chain may

not converge at all. Otherwise, if the prior is too loose or uninformative (e.g. a wide

uniform distribution on the model space), the chain may sample many models far

from the mode(s) of the distribution and never effectively converge.
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2.1.9 The solution model and its error estimation

Once the posterior has been sampled from, the question that remains is how to

interpret it, i.e. how do we extract an appropriate solution model? A very easy

way would be to take the model sampled that best fits the data, i.e. the model that

provides a maximum posterior value. However, a Bayesian framework encourages

one to think in terms of an ensemble solution, i.e. to look at properties of an

ensemble instead of a single model. Importance sampling provides the possibility

to get any statistical information about the posterior. Indeed, one can evaluate the

posterior expectation of any function f(m) of the model such as the mean or the

covariance (Gilks et al. 1996). The expected value is given by the expression :

E[f(m)] =

∫
f(m)p(m | dobs)dm (2.15)

where p(m | dobs) is the posterior distribution and f(m) is some function of interest.

The samples generated by the (post burn-in) Markov chain are distributed according

to the posterior and can be used to calculate this expectation value (Gilks et al.,

1996):

E[f(m)] =
1

S

S∑
s=1

f(ms) (2.16)

where S is the number of models collected in the post burn-in period (one model

collected every t steps of the chain).

In the case that f(m) is the velocity model itself (f(m) = m), the expectation E

is just the mean of the samples collected. This is equivalent to integrating across all

models weighted by their posterior probability (as the collected models are sampled

with frequency proportional to their posterior probability density). All the models

sampled have particular parameterisation defined by their cell geometry. When a

large number of models with different parameterisations are stacked, the Voronoi

polyhedra overlap so the average model is effectively a continuous function of the

plane. As can be seen in the examples to follow, this continuous map preserves

features common to a family of models and provides a higher spatial resolution than

any single sampled model. We take the average velocity field as a representative ‘so-

lution’ to our inverse problem, although having quantified the posterior distribution

we clearly have more information on the model space.

In the case that f(m) =
(
m−E[m]

)2
, where E(m) is the average velocity field

(or posterior mean), the expectation E[f(m)] is then the variance of the posterior.

It is directly obtained by taking the variance of all the models sampled. Here we
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take the continuous map of the posterior standard deviation
√
E[f(m)] as an ‘error’

map about the expected mean solution.

It is important to collect enough independent samples so that the solution maps

are stationary and represent well the posterior mean and variance. Integrating

the information coming from different models with different parameterisation can

be seen as a self-smoothing process that automatically removes unwarranted high

frequency features of the models. In this way, the approach to be described here

has an inherent smoothing character without the need to define an explicit external

smoothing function. We will show that the method does not need a predefined

damping procedure and can be viewed in a sense as an example of a self-regularising

inversion algorithm.

2.2 Synthetic data examples

2.2.1 Experimental setup

To illustrate the new algorithm in the case of an uneven distribution of information,

we present results for a 2D problem where the ray coverage is irregular. This situa-

tion is common in seismic tomography where the sources (earthquakes) occur mostly

at plate boundaries. The ray geometry is shown in Figure 2.4. The upper-left part

of the model is covered by many ray paths, whereas the lower-right part is left with

relatively few.

One sees here the difficulty of choosing an appropriate cell size for a regular mesh.

The problem may become overdetermined in the upper left part (large number of

rays crossing each cell) and underdetermined in the lower right part (not enough

rays crossing the cells). Note also that in the lower right quarter, all the rays are

in similar directions indicating that resolution in this direction will be poor. In

this area, a small error in the data will likely map into a large error in the velocity

estimation of the cells, a property known as ill-posedness. Figure 2.5 shows the true

velocity field that we try to recover. The areas in red have a velocity of 5 km/s and

the velocity in the blue areas are of 4 km/s. The velocity field contains high contrast

discontinuities. It will be shown that the dynamic parameterisation can recover these

interfaces and adapt to the geometry of the underlying seismic earth model. The

small blue heterogeneity represents a velocity anomaly of -20% of the red background

and the red heterogeneity is +25% of the blue background. Here we consider only

a linear problem, where it is assumed that the ray paths are independent of the



2.2.2 Noise free experiment: Tikhonov regularisation vs partition modelling 29

Figure 2.4: Geometry of rays. 340
rays join 17 sources (red squares) to
20 receivers (green triangles).
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Figure 2.5: True velocity field (km/s).

velocity structure. While this is only a first order approximation for the seismic

problem, it serves well to demonstrate the approach we are advocating.

We compare our Monte Carlo sampler to some widely used regularisation tech-

niques for linear inversion. We first consider an ideal noise-free case and later add

random noise to the synthetic data. In this way we investigate the potential of

partition modelling to deal with a large variability in the range of possible solutions

and to predict model uncertainty.

2.2.2 Noise free experiment: Tikhonov regularisation vs par-

tition modelling

2.2.2.1 The regularisation process in linear inversion

Most of the methods using a predefined fixed parameterisation formulate the tomog-

raphy problem with a linear system of algebraic equations represented by a matrix

G. In the example considered here, the ray coverage is quite sparse and with a

uniform grid of sufficiently small cell sizes, the problem becomes non-unique. Reg-

ularisation procedures must be used to choose a solution among all the acceptable

possibilities. This resulting solution will have properties reflecting the particular

choice of regularisation. A common choice of regularisation is to use the norm of

the first or second derivative of the model (Aster et al., 2005). The inversion scheme

consists then in minimising a linear combination of two criteria, and takes the form

:

min

[
‖Gm− d‖2 + α2‖Dm‖2

]
(2.17)

where the first term is the data misfit and Dm is a finite difference approximation
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Figure 2.6: Noise free experiment. Linear inversion after linear interploation over a
regular grid : second order Tikhonov regularisation with General Cross Validation.
(a) GCV function, minimum at α = 2.6. (b) Results for a grid of 20×20 = 400 cells
(km/s)). (c) Solution Model after Linear Interpolation (km/s). The colour scale are
the same as for the true model.

that is proportional to the first or second derivative of m. By minimising the semi-

norm ‖Dm‖2, the regularisation techniques will favour models that are relatively flat

(first order regularisation) or smooth (second order regularisation). The parameter

α gives relative weight to the two terms and is called the regularisation factor (note

here α is different from the acceptance probability used in a Bayesian inversion and

defined in (2.13)). Determining a solution through solving the problem (2.17) is

known as a Tikhonov regularisation. For any given value of α, the solution to (2.17)

is unique and can be easily found with least square optimisation techniques. The

issue is then to find an appropriate α. If α is too large, the solution is too damped:

the model is smooth but the fit to the data is poor. If α is too small, the fit to

the data is good but there are strong instabilities due to the non-uniqueness of the

solution. Different methods can be used to choose the regularisation factor. Here
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(d) α = 40

Figure 2.7: Linear Inversion with a regular grid (20 × 20 cells). Noise-free experi-
ment. Results for different values of the regularisation parameter (km/s).

we adopt the General Cross Validation (GCV) method (See Aster et al. (2005) for

details).

The GCV function obtained with a second order Tikhonov regularisation for a

uniform grid of 400 cells is plotted in Figure 2.6(a). The red dashed line shows the

minimum of the GCV function which correspond to an α of 2.6. The corresponding

solution model after solving (2.17) with this value of α is shown in Figure 2.6(b). In

order to examine details and show the result, a (triangle-based) linear interpolation

has been performed. The interpolated model is shown in Figure 2.6(c).

The cells in the upper left part are well determined and give velocities close to

the true value. The upper-left slow velocity anomaly is well imaged given the grid

resolution. The lower-right fast velocity anomaly is poorly recovered, as we expect

given the low ray path density in this region.

In an attempt to improve the method, we tried to manually adjust the regulari-
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Figure 2.8: Partition modelling with 45 mobile Voronoi cells. Results for the noise-
free experiment. (a) Best model sampled: posterior maximum (km/s). (b) Average
solution model: posterior mean (km/s).

sation parameter α. We observed the classic trade-off between smooth models with

poor spatial resolution and instability (Menke, 1989) (see Figure 2.7). We have also

experimented with changing the number of cells in the grid. When the number of

cells is decreased, the instabilities are removed but the resolution is not good enough

to map the heterogeneities. Figures 2.6 and 2.7 represent the best results obtained

from a range of experiments within a regularisation framework.

2.2.2.2 Tomography with partition modelling

As mentioned above, our Monte Carlo sampler does not need explicit regularisation

to produce a single smooth velocity field. We select a representative ‘solution’ as

the average of an ensemble of models. Note that each individual model consists of

a different configuration of a finite number of Voronoi cells (see Figure 2.8(a)), but

the average solution taken pointwise is smooth without need to impose an explicit

interpolation procedure. The McMC sampling has been carried out with 45 Voronoi

cells. It took 300 s on a standard desktop computer (Intel core 2 duo with CPU

running at 2.1 GHz) to collect and store 50 000 samples (2000 of which are burn-in

samples). The best model obtained in terms of data misfit (which is an estimate of

the maximum posterior model) is shown in Figure 2.8(a). The average of the post

burn-in samples collected (i.e. the posterior mean) is shown in Figure 2.8(b). The

scales are the same as previous figures.

Clearly, the average model is closer to the true solution than the models obtained

with a fixed grid. The instabilities are not present and the heterogeneities have been
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recovered with improved accuracy. Note that this inversion only uses 45 Voronoi

cells, whereas the the Tikhonov inversion scheme uses 400 fixed cells. Therefore, the

Monte Carlo sampler achieves a better resolution with fewer cells which results, as

expected, from averaging many overlapping Voronoi Cells in different configurations.

The best solution in the regularisation framework (Figure 2.7(c)) is obtained with

α = 10, and this represents a compromise across the entire model. In the partition

modelling approach there is no global damping parameter, but instead the algorithm

has smoothed the model locally in response to the data.

The averaging process removes unwarranted discontinuities in individual models

due to the parameterisation but constructively reinforces the well constrained ones.

That is, real discontinuities in the velocity field are preserved because the dynamic

parameterisation has been able to adapt to the structural features of the unknown

model (i.e. many models approximate the significant features well).

2.2.3 Noise propagation and model uncertainty

The error on the model depends on data errors. In order to test the ability of

the sampler to predict model uncertainty, random Gaussian noise has been added

to the data. Our 2D velocity field is defined on a square of 100 km by 100 km.

For our true model and geometry of rays, the average observed travel time is 10

s. For a homogeneous initial model with velocities equal to 4.5 km/s, if no noise

is added to the observed data, the average difference between observed travel times

and estimated travel times will be around 0.4 s. The standard deviation of the added

noise is 1.2 s (i.e. 12% of the average observed travel time), which is quite large in

practice.

2.2.3.1 Linear inversion with noise

As we have seen, the regular grid and the uneven distribution of rays make the

problem ill-posed. A small amount of noise in the data will imply a large variability

in the solution. When noise is added, it becomes more difficult to find a satisfactory

regularisation scheme. As in the noise-free case, we tried to use the first and second

order Tikhonov regularisation with a damping factor given by either the GCV or

the L-curve method (Aster et al., 2005). In both cases, a satisfactory solution was

not obtained. The solution is either too damped and the anomalies are not resolved

or there are unrealistic instabilities in the solution. The damping factor had to be

tuned manually and Figure 2.9 shows the results obtained with different values of α
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for a semi-norm defined by the second derivative of the model. Note that the values

of α here are higher than those in the noise-free experiment. The panel 2.9(d) shows

two cross sections of the solution map for α = 40 : one at y=70 km and a second at

y=30 km. The black line is the amplitude of the true velocity model, the red line is

the solution model, and the dashed green lines are the solution model plus and minus

one standard deviation. The standard deviation of the estimated model is given by

the diagonal elements of the posterior covariance matrix which are interpolated over

the 2D field (Aster et al., 2005). It is well known that in a regularisation or damping

approach, error estimation procedures often lead to unrealistically small errors in

the model (i.e. if noise is added to data, the variability estimated in the model

can be much less than the true errors). This is because regularisation stabilises the

model construction process at the cost of biasing the solution in a statistical sense

(Aster et al., 2005). This effect can be seen in Figure 2.9(d). The errors on the

solution model are clearly underestimated.

2.2.3.2 Partition modelling with noise

In contrast to regularisation procedures, McMC allows us to perform ensemble in-

ference, that is to capture the variability in the range of possible solutions consistent

with the data. The standard deviation of the family of models provides a map of

the posterior standard deviation which can be taken as a measure of the error for

the velocity model.

The results obtained are shown in Figure 2.10. The map 2.10(a) shows the

posterior mean with the same scale as in previous figures. It is clear that the het-

erogeneities have been recovered here with improved accuracy than in the linear

inversion results. The map 2.10(c) shows the map of the posterior standard devia-

tion, i.e. the estimated error. The map 2.10(d) shows the true error for the average

solution (i.e. the absolute value of the difference between the true model (Fig. 2.5)

and the average solution (2.10(a))). The panel 2.10(b) shows the cross sections of

the map as in Figure 2.9.

The model uncertainty map obtained in this way (2.10(c)) appears to be strik-

ingly similar to the actual error (2.10(d)). Note that these two maps are at the same

scale. The true error map has lower amplitudes than the variance map. Indeed, one

sees on panel 2.10(b) that the error for the solution model is actually smaller than

the estimated error. That is, the true error is virtually always within the interval

defined by plus and minus one standard deviation.

In these experiments, the Monte Carlo sampler provides a reliable estimation of
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Figure 2.9: Results with 12 % random Gaussian noise. Linear inversion (after
interpolation) with a regular grid of 400 cells (km/s). (d) cross section for y=30 km
and y=70 km (km/s). Black: true model, red: solution model. The dashed green
lines are the average model plus and minus one value of the interpolated standard
deviation.

the model uncertainty both in terms of amplitudes and lateral variations. This is a

considerable advantage over the linear methods using a fixed grid.

Since the cells are able to adapt their position, size and shape, one might expect

that the size of the cells would adapt to the density of rays, i.e. small cells would

gather in the areas of maximum information, leaving the zones with less ray density

covered with large cells. Surprisingly, this is not the case. The Markov sampler does

not tend to change the size of cells significantly, but instead it automatically adapts

the acceptance rate during the Monte Carlo Markov chain. The acceptance rate is

higher for cells located in low ray density areas. In other words, the proposed moves

(both in velocity and nuclei location) are more often accepted when the cells are in

a poor ray density area, i.e. in regions where a lot of different models fit equally the
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Figure 2.10: Results with 12 % random Gaussian Noise. Partition modelling with
45 mobile Voronoi cells. (a) Average model: posterior mean (km/s). (b) cross
section for y=30 km and y=70 km (km/s). The black line is the amplitude of the
true model, the red line is the estimated average model.The dashed green lines are
the average model plus and minus one value of the local standard deviation. (c)
Estimated error: posterior standard deviation (km/s). (d) True error. Absolute
difference between the true and the estimated model (km/s).

data. This can easily be seen on the map of the estimated error on Figure 2.10(c).

The upper-left part shows a lower variance than the lower-right part.

The size of the error estimation interval obtained from the Monte Carlo method

(i.e. the posterior standard deviation) increases in areas were the problem is ill-

posed. In a situation where a lot of models almost equally satisfy the data, regular-

isation chooses one model according to particular criteria and discards the others.

In contrast, Bayesian inference takes into account the variability in the models and

therefore looks to have a considerable advantage over choosing a single ’best’ model

obtained by optimisation methods.
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2.3 Conclusion

The methodology we have presented here is a general tomographic inversion strategy.

The problem is formulated in a probabilistic framework and is able to both exploit

and infer the spatial variability of the information provided by data. We have utilised

partition modelling which allows efficient exploration of the model space by sampling

models of varying parameterisation. Although the numerical experiments reported

in here are in relatively simple test problems, some notable features emerge.

First, the advantages of this approach are that the inverse problem can be treated

with a fully nonlinear parameter search method and that explicit regularisation of

the model parameters is not required, thus avoiding global damping procedures and

the often subjective process of finding an optimal regularisation value.

Second, the McMC approach lets us consider the issue of model parameterisation

(e.g. the way of discretising the velocity field) as part of the modelling process. The

velocity field has been parameterised by Voronoi polyhedra with mobile geometry

throughout the inversion process. A posterior probability distribution for the veloc-

ity field has been defined. When the posterior expectations (mean and variance) are

computed, models with different cell geometry overlap providing a smooth solution

map that has a resolution better than any single model. This dynamic parame-

terisation enables automatic self smoothing and thus avoids the need to impose a

global level of spatial smoothing, e.g. through a damping procedure. Furthermore,

the model parameterisation involves fewer parameters to achieve better resolution

than a fixed grid.

Another advantage is that the average over all models in the ensemble seems to

better capture the variability in the range of possible solutions than a single (e.g.

best data fitting) model (e.g. Hopcroft et al., 2007). The discontinuities of individual

models are smoothed out in the ensemble solution but the discontinuities required

by the data are constructively reinforced. We view the construction of a continuous

smooth map giving accurate estimation of the velocity uncertainty as a novel result

from this study.

The cell shapes and sizes themselves do not adapt to structure but rather the

acceptance rate of the Metropolis simulation does. The adaptive approach to param-

eterisation used here is highly novel in geophysical applications and would appear

to have considerable potential for similar problems elsewhere. Moreover, the opti-

misation of the McMC sampler has proved to be efficient in terms of computational

costs and our preliminary results are encouraging for applications to larger datasets.

Here the method has been tested for straight ray linear tomography, but we show in
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next chapter that, if used iteratively, it can be extended to non-linear tomography

with bent rays at increased computational cost.

One can argue that with McMC used in a Bayesian framework, the solution is

influenced by subjective choices, such as the form of the prior distributions, or the

proposal probability densities. In the examples shown here the final models are

clearly dominated by the data rather than by prior information and so we do not

consider this to be a major criticism.



Chapter 3

Seismic Tomography With the

Reversible Jump Algorithm

In this chapter we improve and refine the partition modelling tomography algorithm

presented previously. A first improvement involves the forward calculation. Instead

of assuming straight rays, here ray theory is used to compute ray geometries from

a reference velocity field. We show how the algorithm can be used iteratively to

perform a non-linear tomography including ray bending. A second improvement

is the extension to transdimensionality, that is the number of model parameters

becomes an unknown in the problem. In this way, the number of Voronoi nuclei is

variable during the inversion so the level of detail in the solution is directly dictated

by the data (see Figure 3.1). We introduce the reversible jump algorithm (rj-McMC)

(Green, 1995), and show how it can be used to add or remove cells in the partition

models. Therefore the parameterisation becomes fully adaptive, since the user does

not need to specify model complexity before hand. The number of unknowns is

not fixed in the problem, and hence the posterior probability distribution is defined

in a number of spaces with different dimensions. If the model is defined by 3n

unknowns (2D coordinates of each nuclei + 1 velocity value for each cell, where n is

the number of Voronoi nuclei), the posterior will be a function of 3n variables. This

transdimensional probability distribution is taken as the complete solution of the

inverse problem. We show how the rj-McMC algorithm is implemented to generate

an ensemble of vectors m[= (c,v)] with variable length, whose density reflects that

of the posterior distribution. Finally, the algorithm has been optimised by direct

parallelisation, and also by implementing the delayed rejection scheme which allows

for adaptive proposal distributions.

This chapter is constructed in a similar manner as chapter 2. In a first section,

39
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n = 7 n = 20 n = 80 
c1

c3

c2

R1

R2

R3

Figure 3.1: Examples of Voronoi diagrams (black) which form a set of irregular cells
that partition the plane. The three panels show 7, 20 and 80 randomly distributed
nuclei respectively. As the number and position of the nuclei change the Voronoi
diagram corresponds to a multi-scale parameterisation of the velocity field.

we give a detailed presentation of the reversible jump tomography. Then, we show

how the algorithm has been optimised, give some measure of computational cost,

and show how the sampling efficiency is largely improved when multiple Markov

chains simultaneously sample the model independently of each other . In section

3.3, we present results of synthetic experiments in a similar situation as chapter 2 ,

i.e. where the ray coverage is far from ideal, and compare our approach to standard

methods that use regular (ideal) parameterisations. We use data contaminated with

random noise in order to test the ability of the method to infer model uncertainty. In

section 3.4, the method has been used with ambient noise data to infer a tomographic

image of Rayleigh wave group velocity for the Australian continent.

3.1 Method

3.1.1 An iterative linearised approach

Given a complete description of a velocity field, the theory of seismic wave prop-

agation allows us to predict travel times of direct phases from a point source to a

receiver and compare them to observations. Here we consider the high frequency

approximation case and use ray theory (Cerveny et al., 1977; Cerveny and Brown,

2003). We employ the Fast Marching Method (FMM) (Sethian and Popovici, 1999;

Rawlinson and Sambridge, 2004) to calculate travel times and raypaths in a laterally

heterogeneous 2D medium.

Since the ray paths are dependent on the velocity model, the tomographic prob-
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Figure 3.2: The transdimensional McMC sampler is used in conjunction with the
Fast Marching eikonal solver to build an iterative linearised solution method. The
inputs are an initial continuous reference velocity model, the stations and sources
locations and the observed travel times. At each iteration, the Markov chain in the
‘inner loop’ (dashed red arrows) produces an ensemble of potential solutions which
are spatially averaged to produce a reference model for the next iteration of the
outer loop (black arrows). Only in the outer loop are raypaths updated.

lem is nonlinear. The development proposed here takes into account non-linearity

by iteratively updating raypaths (e.g. Gorbatov et al., 2001). Our scheme can be

described using two loops as depicted in Figure 3.2. The outer loop (solid black

arrows in Figure 3.2) is similar to many previous tomographic schemes. At each

iteration ray paths and travel times are determined in the current velocity model

using Fast Marching. (Prior to the first iteration this is a laterally homogeneous

reference model.) At each successive iteration the outer loop reference model is

updated by spatially averaging the entire ensemble of models produced in the inner

loop. Each inner loop model is constructed from Voronoi cells (as in Figure 3.1)

and will have discontinuities throughout the velocity field, but the ensemble average

tends to be spatially smooth with continuously varying gradients.

The outer loop is no different from any linearised tomographic inversion scheme.

The difference lies in the model update procedure within the inner loop. Rather than

using a matrix inversion approach to perturb a single model, we use a reversible
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jump Markov chain Monte Carlo algorithm (Green, 1995) to produce a chain of

partitioned velocity models. The term ‘chain’ is used because each model generated

is not independent but part of a Markov chain. With a sufficiently large number of

models and possibly after some thinning of the chain, i.e. retaining only every 10th

or 100th model, we obtain an ensemble of solutions. For the next iteration of the

outer loop a continuous reference model is required which is a simple spatial average

of each model in the ensemble. (Details of the spatially averaging procedure appear

in sections 2.1.9 and 3.1.7)

The Markov chain algorithm within the inner loop (dashed red arrows in Figure

3.2) requires calculation of travel times for a large number of partitioned velocity

models of the type in Figure 3.1. Rather than actually calculating rays in each par-

tition model (which would increase computation considerably) we simply integrate

along the current reference ray paths using the expression

t =

∫
R0

1

v(x)
dr (3.1)

where R0 is the ray path corresponding to the continuous reference model (deter-

mined in the outer loop) and v(x) is the velocity field given by the partition model

(with constant velocity values in cells). Note that since this step does not involve

solution of a linear system of equations there is no need to explicitely linearise the

travel time expression in (3.1) in terms of velocity, instead we can integrate the re-

ciprocal of the velocity field along the reference ray. The reader will be able to verify,

with some simple algebra, that since raypaths are kept fixed (3.1) is equivalent to

the linearisation in slowness commonly used in tomographic algorithms, i.e. travel

times given by (3.1) are the same as those obtained by evaluating

t =

∫
R0

so(x)dr +

∫
R0

δs(x)dr, (3.2)

where vo(x) is the reference velocity field and so(x) = 1/vo(x). Hence travel times

given by (3.1), are equivalent to a first order accurate slowness perturbation. For

fixed velocities in Voronoi cells, the travel time of the jth ray is then given by

tj =
n∑
i=1

Lij
vi

(3.3)

where Lij is the length of ray j across cell i (see Figure 3.3) and vi is the velocity value

assigned to cell i . If the ray j does not pass through cell i, then Lij = 0. The ray
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Figure 3.3: A seismic ray (thick black line) is bent according to a reference velocity
model. For a given partition model, the estimated travel time tj for the jth ray is
simply computed by integrating the inverse of the cell velocity vi along the ray path.
That is, using the length Lij of the ray across each cell.

lengths in the cells are calculated by sampling along rays at a predetermined step

length (red points in Figure 3.3) and by finding the cell containing the midpoint

of the current ray segment. Point location within 2D Voronoi cells is efficiently

implemented with the scheme described in Sambridge and Gudmundsson (1998).

Note, the curvature of the ray in Figure 3.3 is due to gradients in the continuous

reference model. Overall the outer loop of the algorithm is quite standard. The novel

features lie in the inner loop (i.e the inversion step) where both wave speeds and

parameterisation are updated with the reversible jump algorithm within a Bayesian

framework. In the next section we briefly introduce this approach and describe the

Markov chain algorithm in detail.

3.1.2 The prior

As in chapter 2, here we use a simple uniform prior distribution between a fixed

range. Since we have independent parameters of different physical dimension the
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prior can be separated into two terms,

p(m, n) = p(m | n)p(n). (3.4)

Where p(n) is the prior on the number of partitions. Here we use a uniform distri-

bution over the interval I = {n ε N | nmin < n ≤ nmax}. Hence,

p(n) =

{
1/(∆n) if n ε I

0 otherwise
(3.5)

where ∆n = (nmax − nmin).

Given a number of cells n, the prior probability distributions for the 3n parame-

ters, 2D Voronoi nuclei and velocities in each cell, are independent from each other,

and so can be written in separable form

p(m | n) = p(c | n)p(v | n). (3.6)

Even though in the prior the parameterisation variables c are independent of the

velocity variables v, this will not be the case once the data are introduced, and

hence we expect significant correlation in the posterior distribution.

For velocity, the prior is specified by a constant value over a defined velocity

interval J = {vi ε < | Vmin < vi < Vmax}. Hence we have

p(vi | n) =

{
1/(∆v) if vi ε J

0 otherwise
(3.7)

where ∆v = (Vmax − Vmin). Since the velocity in each cell is independent,

p(v | n) =
n∏
i=1

p(vi | n). (3.8)

For mathematical convenience, let us assume (temporarily) that the Voronoi

nuclei can only be positioned on an underlying finite grid of nodes defined by N =

nx × ny possible positions. For n Voronoi nuclei, there are then

(
N !

n!(N − n)!

)
possible configurations on the N possible points of the underlying grid. We give

equal probability to each of these configurations, and hence the prior for the nodal
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positions is given by

p(c | n) =

[
N !

n!(N − n)!

]−1

. (3.9)

Combining together (3.5), (3.7), (3.8), and (3.9), the full prior probability density

function can be written as

p(m) =


n!(N − n)!

N !(∆v)n∆n
if (n ε I and ∀i ε [1, n], vi ε J)

0 otherwise
(3.10)

By multiplying (3.10) by the likelihood, the posterior distribution can be eval-

uated for any given model m. The task is then to generate samples whose density

follows the posterior distribution.

3.1.3 Principle of the reversible jump Markov chain Monte

Carlo

In the transdimensional case, the dimension of the model space is itself a variable

(3n) and the posterior becomes a transdimensional function. This can be sam-

pled with a generalisation of McMC (see chapter 2) called reversible jump (Green,

1995) which allows inference on both model parameters and model dimensional-

ity. rj-McMC is an extension of the afore-presented Metropolis-Hasting algorithm

(Metropolis et al., 1953; Hastings, 1970), and similarly consists of a two stage pro-

cess of proposing a model probabilistically and then accepting or rejecting it. As

in the fixed dimension case, the proposal is made by drawing the new model, m′,

as a random deviate from a probability distribution q(m′ | m) conditional only on

the current model m. However, here the proposed model, m′, may be a vector of

different length than the current model m, corresponding to partition models with

differing number of Voronoi cells.

Once a proposed model has been drawn from the distribution q(m′ | m), the

new model is then accepted with a probability α(m′ |m). It can be shown (Green,

1995, 2003) that the chain of sampled models will converge to the transdimensional

posterior distribution, p(m | dobs), if

α(m′ |m) = min
[
1, prior ratio × likelihood ratio × proposal ratio × |J|

]
(3.11)

= min

[
1,
p(m′)

p(m)
× p(dobs |m′)
p(dobs |m)

× q(m |m′)
q(m′ |m)

× |J|

]
(3.12)
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where the matrix J is the Jacobian of the transformation from m to m′ and is

needed to account for the scale changes involved when the transformation involves

a jump between dimensions (Green, 2003). That is, the Jacobian term ‘normalises’

the difference in volume between two spaces of different dimension. In section 3.1.5,

we show that |J| = 1 for the problem considered here and so can conveniently

be ignored. For a more detailed discussion on the reversible jump algorithm and

calculation of the Jacobian, the reader is referred to Denison et al. (2002) and

Green (2003). The likelihood function p(dobs|m) is not changed from the fixed

dimension algorithm and is given by (2.5). The difference is that here, travel times

are computed by integration along bend rays calculated in the reference model.

The expression for α(m′ | m) involves the ratio of the posterior distribution

evaluated at the proposed model, m′ to the current model m multiplied by the

ratio of the proposal distribution for the reverse step, q(m | m′), to the forward

step, q(m′ | m). For symmetric proposal distributions this ratio is one and drops

out of the calculation. The likelihood function and the prior only enter into the

algorithm through the acceptance probability term (3.12). The process of accepting

or rejecting moves in this way controls the sampling of the Markov chain so that

it preferentially samples regions of parameter space with high values of the target

density, p(m | d). More precisely the density of the chain will asymptotically

converge to that of the target density. The rate of convergence is controlled by the

form of the proposal distribution. There is considerable freedom in design of the

proposals. Ideally one would use a simple distribution (from which random samples

could be drawn) that in some sense matches the shape of the local target density

(posterior distribution) about the current model m. It is important to note that the

choice of proposal distributions only affects the convergence rate of the algorithm

and not the distribution to which the algorithm will converge. From an inversion

viewpoint then these choices do not affect the result of the inversion, ‘merely’ the

practicality of the algorithm. Of course, the sampling distributions need to be

chosen sensibly. If we always choose the proposed model to have velocity equal to

the previous model then we could never converge to the posterior solution. In the

next section we describe the proposal distributions used for each type of variable in

the tomographic problem.

3.1.4 Proposal distributions

Here we use four different types of perturbation to the model m. One is a ‘birth’

step which adds a Voronoi cell to the existing parameterisation. Another is a ‘death’
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(a) (b)

Figure 3.4: An example of a Birth and Death of a Voronoi cell. The birth step is
represented by (a)→(b), where the red node is added to the cells in (a) and the
resulting partition is shown in (b). Note that only the neighboring cells (light grey)
of the new born cell (dark grey) have their geometry changed during the birth. All
other cells are unchanged. A death step is the reverse procedure, i.e. (b)→(a).
When the red node is removed, the dark grey cell disappears and the light grey cells
expand to fill the gap. Two seismic rays are shown (thick black lines) corresponding
to a reference velocity model. In both cases local changes in cell geometry result
and only the travel times of rays passing through these cells need updating.

step which removes one of the Voronoi cells. The third is a ‘move’ step which is

a perturbation to the position of a randomly chosen nucleus, ci, and the fourth

is a velocity step involving a Gaussian perturbation to a velocity parameter, vi.

Note that three of the four perturbation types change the parameterisation and one

changes the velocity values. Together they form a randomised perturbation which

is able to generate a wide range of velocity models from few to many degrees of

freedom with multiple spatial scalelengths (See Figure 3.4).

3.1.4.1 Generating new models along the Markov chain

To make the proposal distributions explicit, consider the algorithm at some point

m in parameter space. It then proceeds as follows:

• At every even step of the chain : randomly pick one velocity parameter, say vi
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and perturb its value using a Gaussian probability density qv1(v′i | vi)

qv1(v′i | vi) =
1

σ1

√
2π

exp

{
−(v′i − vi)2

2σ2
1

}
. (3.13)

Hence we have

v′i = vi + u× σ1 (3.14)

where u is a random deviate from a normal distribution N(0, 1) and σ1 is the

standard deviation of the proposal. All the other model parameters are kept

constant, and hence this proposal does not involve a change in dimension.

• At every odd step of the chain : perturb the cellular parameterisation. This

involves three possible types of change (birth, death and move) randomly

selected with probability 1/3 each.

1. BIRTH : for a birth we create a new cell with the position c′n+1 by ran-

domly selecting a point from the underlying grid that is not already oc-

cupied. For N grid points and n current cells there are (N − n) discrete

points to choose from. Once chosen, this becomes the nucleus of a new

Voronoi cell in the parameterisation (See Figure 3.4). A velocity value

v′n+1 needs to be assigned to the new cell. This is drawn from Gaussian

proposal probability density qv2(v′n+1 | vi) with the same form as (3.13),

centred at vi, where vi is the current velocity value at the location c′n+1

where the birth takes place. The variance of the Gaussian function, σ2
2 is

a parameter to be chosen.

2. DEATH : delete a Voronoi centre chosen randomly from the current set

of n cells. The death jump is the exact reverse of the birth jump (See

Figure 3.4).

3. MOVE : randomly pick a cell and perturb the position of its nucleus

ci according to a 2D Gaussian proposal probability density qc(c
′
i | ci)

centred on the current position ci.

qc(c
′
i | ci) =

1

2πσ2
c

exp

(
− 1

2σ2
c

(c′i − ci)
T (c′i − ci)

)
, (3.15)

The covariance matrix for the 2D Gaussian function is proportional to

the identity matrix, with the constant of proportionality, σ2
c . For this

type of perturbation, the velocity parameter moves with the cell and so

the velocity vector and the dimension of the model remains unchanged.
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The geometrical calculations required to update the Voronoi diagram after the

addition, removal or movement of a nucleus do not involve recalculation of the entire

Voronoi diagram, only a local change. This can be efficiently implemented with the

local Voronoi update algorithm described in Sambridge et al. (1995).

3.1.4.2 Proposal ratios

Having described the four types of model perturbation, we now need to evaluate the

proposal ratio of forward and reverse moves so that the acceptance probability in

(3.12) can be calculated in each case. For the proposal types that do not involve a

change of dimension (i.e. a velocity update and a nucleus move) the distributions are

symmetrical. That is, the probability to go from m to m′ is equal to the probability

to go from m′ to m. Hence

qv1(v′i | vi) = qv1(vi | v′i)
qc(c

′
i | ci) = qc(ci | c′i)

(3.16)

and so in both cases the proposal ratio is one

q(m |m′)
q(m′ |m)

= 1, (3.17)

which simplifies the acceptance probability expression (3.12). The situation is dif-

ferent for the birth and death proposal steps. Here the dimension of the model does

change and the proposals are not symmetric. In these cases we must determine

expressions for the proposal ratios to be inserted into (3.12). For a birth step, the

algorithm jumps between a model m with n cells to a model m′ with (n+ 1) cells.

Since the new nucleus c′n+1 is generated independently from the velocity value v′n+1

then proposal distributions can be separated and we write

q(m |m′)
q(m′ |m)

=
q(c | m′)

q(c′ |m)
.
q(v |m′)
q(v′ |m)

. (3.18)

where each term on the right hand side follow from the definitions above. Specifically

we have the probability of a birth at position c′n+1 which is given by

q(c′ |m) = 1/(N − n), (3.19)
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the probability of generating a new velocity value at v′n+1

q(v′ |m) =
1

σ2

√
2π

exp

{
−

(v′n+1 − vi)2

2σ2
2

}
, (3.20)

the probability of deleting the cell at position c′n+1 (reverse step)

q(c |m′) = 1/(n+ 1) (3.21)

and the probability of removing a velocity when cell is deleted (reverse step)

q(v |m′) = 1. (3.22)

Substituting these expressions in (3.18) we obtain(
q(m |m′)
q(m′ |m)

)
birth

=

√
2π(N − n)

(n+ 1)
σ2 exp

{
(v′n+1 − vi)2

2σ2
2

}
. (3.23)

We see then that as a new cell is created, the probability distribution increases ex-

ponentially as the new cell’s velocity, v′n+1, departs from the velocity that was in

the same position in the unperturbed model, vi. Hence the birth process encour-

ages changes in velocity as well as parameterisation. This exponentially increasing

probability density is ultimately restrained when combined with the likelihood ratio

term in (3.12) which would penalise large velocity perturbations that did not lead

to an improvement in data fit.

For the death of a randomly chosen nucleus, we move from n to (n − 1) cells

(Figure 3.4). Suppose that nucleus, ci with velocity vi is removed. In this case, a

similar reasoning to the birth case above leads us to a proposal ratio (reverse to

forward) of (
q(m |m′)
q(m′ |m)

)
death

=
n

σ2

√
2π(N − n+ 1)

exp

{
−

(v′j − vi)2

2σ2
2

}
(3.24)

where v′j is the velocity at the point ci in the new tessellation, c′, after removal of

the ith cell.

We see then that for all four types of step we are able to 1) generate new samples

easily and 2) determine the proposal ratio for insertion into the acceptance proba-

bility expression (3.12). To complete the evaluation of the acceptance probability

α(m′ | m) we need the Likelihood ratio (2.5) and prior ratio (3.10).The likelihood

evaluation involves calculation of travel times in the proposed model m′. In the
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linearised formulation used here, we simply integrate along rays calculated in the

current reference model although in a fully nonlinear approach we would update the

rays as well.

The Markov chain will converge for a wide range of proposal distributions, and

hence there is freedom in choosing the parameters (σ1, σ2, σc). In practice, poor

choices of variance lead to slow movement around the model space, such that conver-

gence of the chain can depend exponentially on the number of steps, an undesirable

situation. For example as perturbations in velocity variables become larger (σ1 is

increased) then more velocity steps would tend to be rejected because the data fit

(and likelihood ratio) would tend to decrease. Hence the chain would sample the

space less. Conversely, as the velocity perturbations decrease (σ1 is decreased) the

acceptance ratio would increase but the Markov chain would take much smaller steps

around model space. At both extremes convergence would be inhibited (Hopcroft

et al., 2007). Ideally the proposal distribution should be similar in shape to the

local posterior probability function about the current model. In the ideal case, the

proposal and posterior distribution were the same then α(m′ |m) = 1 and all steps

would be accepted, but this could not happen as the proposal distribution must be

one where we can generate samples using some simple method, such as those for

a Gaussian. Design of suitable proposal distributions that adapt to the shape of

the posterior distribution is a central issue in the development of transdimensional

McMC algorithms and the subject of much research (Stephens, 2000; Green, 2003;

Brooks et al., 2003; Al-Awadhi et al., 2004).

One sign of inefficiency easily detected in experiments is a high rejection rate

for the proposed changes. In fixed dimensions, small changes usually have higher

acceptance rates than large ones, and proposal mechanisms can be scaled to achieve

a desired acceptance rate (e.g. Gelman et al., 1996; Mosegaard, 1998; Tierney and

Mira, 1999). Brooks et al. (2003) point out that this option is not always available

for moves between dimensions as there may be no natural distance measure between

states of different dimensions. Therefore, failure to achieve acceptable performance

can be considered merely a result of poorly constructed between-dimension transi-

tions (See Sisson, 2005, for a discussion). A problem that arises in our partition

model is that the ‘size’ of a jump between two dimensions varies with the dimension

itself. Adding a new cell to a 3-cell model will represent a larger change compared

to adding one cell to a 100-cell model (Although in principle this could be corrected

by having our Gaussian proposal function qv2 dependent on the dimension).

In an attempt to locally scale the variance of our Gaussian proposal distributions
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for the fixed dimension moves, we have implemented the Delayed Rejection scheme

proposed by Tierney and Mira (1999). The basic idea is that, upon rejection, in-

stead of advancing time and retaining the same position, a second move with lower

variance is proposed. The acceptance probability of the second stage candidate is

computed so the convergence of the chain toward the posterior distribution is pre-

served. Details are given in section 3.2.1. In this work, Delayed Rejection was only

used for moves that do not jump between dimensions although Green and Mira

(2001) showed that the method can be extended to transdimensional moves. The

Delayed Rejection scheme is particularly useful in increasing convergence rate and

robustness of the Markov chain, in effect removing the need to carefully tune the

proposal distributions.

3.1.5 The Jacobian

By definition the Jacobian |J| in (3.12) only needs to be calculated when there is

a jump between two models of different dimensions, i.e. when a birth or death is

proposed. If the current and proposed model have the same dimension, the Jacobian

term is 1, and can be ignored.

For a birth step, the bijective transformation h used to go from m to m’ writes

(c,v,uc,uv)←→ (c,v, c′n+1, v
′
n+1) = m′. (3.25)

The random variable uc used to propose a new nucleus cn+1 is drawn from a discrete

distribution defined on the integers [0, 1, ..., N−n]. The random number uv is drawn

from a Gaussian distribution centred at 0 and the velocity assigned to the new cell

is given by

v′n+1 = vi + uv (3.26)

where vi is the current velocity value where the birth takes place.

Note that the model space is divided into a discrete space (nuclei position) and

a continuous space (velocities). uc is a discrete variable used for the transformation

between discrete spaces and uv is a continuous variable used for the transformation

between continuous spaces. (Denison et al., 2002) showed that the Jacobian term

is always unity for discrete transformations. Therefore, the Jacobian term only

accounts for the change in variables from

(v,uv)←→ (v, v′n+1) = v′. (3.27)
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Hence, we have

|J|birth =

∣∣∣∣ δ(v′)

δ(v,uv)

∣∣∣∣ =

∣∣∣∣δ(v, v′n+1)

δ(v,uv)

∣∣∣∣ =

∣∣∣∣δ(vi, v′n+1)

δ(vi,uv)

∣∣∣∣ =

∣∣∣∣ 1 0

1 1

∣∣∣∣ = 1 (3.28)

So it turns out that for this style of birth proposal the Jacobian is also unity.

Since the Jacobian for a death move is |J|death = |J−1|birth, this is also equal to one.

Conveniently, then the Jacobian is unity for each case and can be ignored.

3.1.6 The acceptance probability

To complete our description of the algorithm, we now substitute expressions for each

proposal ratio into (3.12) to get final expressions for the acceptance probability in

each case. For the velocity update and nucleus move steps, we have seen that

the proposal ratio and Jacobian terms become unity. Hence for both cases the

acceptance term is simply given by the ratio of the posteriors

α(m′ |m) = min

[
1,
p(m′)

p(m)
.
p(dobs |m′)
p(dobs |m)

]
. (3.29)

Since the dimension of the model does not change, according to (3.10), the prior

ratio is either null or unity and we have

α(m′,m) =

{
min

[
1, p(dobs|m′)

p(dobs|m)

]
if ∀i ε [1, n], vi ε J)

0 otherwise
(3.30)

For both the move and velocity update steps, this only requires the ratio of the

Likelihoods and hence calculation of travel times at the proposed model. We see

then that perturbations that improve data fit are always accepted and those which

decrease it are accepted with probability equal to the ratios of the Likelihoods.

As mentioned above, we use a delayed rejection scheme for fixed dimension

moves. If the candidate m′ is rejected, a second try m′′ is made by drawing from

a similar proposal distribution but with smaller variance. The acceptance term for

the second candidate α2(m′′ | m) is more complicated to determine, an expression

is given in section 3.2.1. Note that by reducing the variance of the second proposal,

we attempt a less ambitious move which is more likely to be accepted. In principal

this process can be repeated every time a rejection occurs thereby increasing the

overall acceptance rate and hence efficiency of the algorithm.
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For a birth step, according to (3.10), the prior ratio takes the form

(
p(m′)
p(m)

)
birth

=


[

(n+ 1)!(N − n− 1)!
N !(∆v)n+1∆n

] [
n!(N − n)!
N !(∆v)n∆n

]−1

if
(
(n+ 1) ε I and v′n+1 ε J

)
0 otherwise

(3.31)(
p(m′)
p(m)

)
birth

=


n+ 1

(N − n)∆v
if

(
(n+ 1) ε I and v′n+1 ε J

)
0 otherwise.

(3.32)

After substituting (2.5), (3.23), and (3.32) into (3.12), the acceptance term reduces

to

α(m′,m) =

 min
[
1, σ2

√
2π

∆v . exp
{

(v′
n+1−vi)

2

2σ2
2

− φ(m′)−φ(m)
2

}]
if
(
(n+ 1) ε I and v′n+1 ε J

)
0 otherwise

(3.33)

where i is the cell in the current tessellation c that contains the point c′n+1 where

the birth takes place. For the birth step then we see the acceptance probability is

a balance between the proposal probability (which encourages velocities to change)

and the difference in data misfit which penalises velocities if they change so much

that they degrade fit to data.

For the death step, the prior ratio in (3.32) must be inverted. After substituting

this with (2.5) and (3.24) into (3.12), and after simplification we get the acceptance

probability

α(m′,m) =

 min
[
1,

∆v
σ2

√
2π
. exp

{
− (v′

j−vi)
2

2σ2
2
− (φ(m′)−φ(m))

2

}]
if (n− 1) ε I

0 otherwise
(3.34)

where i indicates the cell that we remove from the current tessellation c and j

indicates the cell in the proposed tessellation c′ that contains the deleted point

ci. Unsurprisingly the death acceptance probability has a similar form to that of

the birth, with proposal and data terms opposing each other. We see from these

expressions that the variable N , i.e. the number of candidate positions for the

nuclei, cancels out. This mean that there is no need to use an actual discrete grid

in generating nuclei positions. In fact it was only ever a mathematical convenience

which ensures that the acceptance expressions have the correct analytic form. In

practice we are at liberty to generate the nuclei using a continuous distribution over

the region of the model (which is tantamount to N →∞).

Given that the choice of adding in more unknowns to the problem is left to the
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algorithm itself, one might ask whether there will be a tendency to simply improve

data fit by continually adding in more cells. It turns out that this is not the case. In

proposing an increase in the number of cells (a birth step), the likelihood function

will tend to encourage acceptance when fit is improved, however the prior ratio

will tend to discourage acceptance due to the increased dimensionality of the space.

Loosely speaking, the algorithm always prefers a large cell rather than two small cells

with similar velocity values. This is an example of a property of Bayesian inference

referred to as ‘natural parsimony’, which means that given a choice between a simple

and complex model that provide similar fits to data, the simpler one will be favoured

(See MacKay, 2003, for a discussion).

A simple way to check that the form of the acceptance term is correct is to set

the likelihood to a uniform distribution (i.e. remove the data). In this case, the

posterior is directly proportional to the prior and the Markov chain should sample

the known prior distribution. We verified that this was the case by performing

numerical experiments with the likelihood set to unity. We recovered a uniform

distribution of the number of cells in the resulting ensemble, which is what was

specified for the prior p(n) in (3.5). (This experiment was also repeated for other

choices of p(n) and in each case, histograms of the number of cells for models in the

posterior ensemble closely resembled those of the assigned prior.)

3.1.7 Extracting a reference solution and error map from

the ensemble

After employing the reversible jump algorithm to sample the transdimensional pos-

terior, we end up with an ensemble of velocity models with varying numbers of cells.

If convergence has been achieved then these will reflect the posterior density. In our

linearised scheme described by Figure 3.2, we need to extract a reference model for

use in the outer loop of the algorithm. A single model is also a useful aid for inter-

pretation. One possibility is to take the velocity model with the maximum posterior

value (often called the MAP in Bayesian terminology). However this is not of much

use in our case as it often corresponds to a single partitioned model with relatively

crude parameterisation (an example is seen in section 3.3).

Instead, and as done in the fixed dimension case, we look at the spatially averaged

model defined by taking the mean of the distribution of velocity values at each

point across the 2D region. That is, we project the partition models into the spatial

domain and then average all the sampled images at a fine grid of positions across



56 3.1 Method

the model. The underlying grid structure can be as fine as needed for visualising

the reference model. At each iteration of the outer loop in Figure (3.2) we take this

pointwise average velocity field as the continuous reference model extracted from

the ensemble of solutions, and use it to update ray geometries in the next iteration

of the outer loop.

An estimated error map can be obtained in a similar manner, i.e. by calculating

the standard deviation of velocities as a function of position. In this way a large

number of models with different parameterisations are stacked together. As can

be seen in the examples to follow, the continuous reference model contains features

common to the entire family of models and considerably more information than any

single Voronoi partition.

3.1.8 Convergence assessment

It is important to collect enough samples so that the solution maps are stationary and

represent well the posterior mean and variance. The issue for assessing convergence

of the algorithm, i.e. when to start collecting the sample of models and how many

to collect, is the subject of current research in Bayesian statistics. (e.g. Brooks

and Giudici, 1999; Brooks et al., 2003). To date there have been relatively few

convergence diagnostics designed specifically for transdimensional samplers. Current

technology seems to be insufficiently advanced to permit a rigorous assessment of

stationarity. Although the potential benefits of transdimensional Markov chains

seem to be large, the practical importance of ensuring chain convergence is often

overlooked by practitioners (see Sisson, 2005, for a discussion).

Conventional convergence diagnostics for a Markov chain, (see, for example,

Cowles and Carlin, 1996; Gelman and Rubin, 1992; Robert, 1995) rely on showing

that deviations from stationarity are not present in individual parameters through-

out the run of the sampler (i.e. these are not ‘drifting’ in any direction ). In

practice, the population of samples for a model parameter plotted as a function

of iteration should resemble for example a white noise process, with no trends or

obvious structure.

However, for transdimensional posterior distributions, the most widely used con-

vergence diagnostics are not applicable. Parameters for models that change dimen-

sion have little interpretation from one model to the next. For example, the location

of the ‘tenth’ nucleus, c10, does not have the same meaning across all the models.

When there are less than ten cells, it is not even present in the model. This makes

tracking the position of this particular nuclei along the chain meaningless. Therefore,
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in this work we assess convergence (or non convergence) without using parameters

(c,v) defining the partitioned models. Instead, we look for convergence in terms

of numbers like the velocity value at a given point in the 2D field or the model

dimension. In the case of a parallelised algorithm, we shall show that the average

dimension of the model space over the ensemble of independent chains plotted as a

function of iterations is a good tool to diagnostic convergence (see Figure 3.6).

3.2 Optimising the algorithm

Markov chains are conceptually simple, easy to implement and often appear to be

ideally suited for Bayesian analysis. However, some major issues and drawbacks can

make them impractical. A first weakness of McMC schemes is that they rapidly

can become computationally expensive. For example, in our tomography problem,

as a large amount of data are used, the number of cells needed to describe the

velocity field with adequate resolution increases. And if the model is defined by too

many parameters, the number of samples needed to explore the whole model space

becomes huge (Tarantola, 2005). The predicted data have to be computed each time

a model is proposed, and if too many models need to be generated, all algorithms

become computationally prohibitive. This is a reason why Monte Carlo methods

have not been habitually used in tomographic imaging.

Another issue is that the samples produced by a Markov chain are correlated.

Each model generated in the chain is ‘close’ to the previous model. Hence, a sequence

of samples produced by a Markov chain, if too small, will only describe the posterior

distribution in a given region of the model space. The size of cells becomes smaller as

we increase the dimension. Changing the velocity value in one cell in a 3-cell model

represents changing the velocity value of approximatively one third of the velocity

field. This is a much larger step compared to changing the wavespeed in one cell

belonging to a 100-cell models. Therefore as we increase the model dimension the

sizes of ’steps’ in the random walk become smaller and sampled models become

more correlated. When a large number of data are used, the random walk advances

very slowly around the model space, a situation known as ‘poor mixing’. When

this is the case, the sequence of samples needed to properly describe the posterior

distribution becomes very long, and the algorithm runs for a longer time.

The reversible jump tomography algorithm encounters the two problems afore-

mentioned, and hence is much more computationally expensive than standard to-

mography optimisation schemes. Nevertheless, several features of the proposed
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methodology make the algorithm feasible. The first, as mentioned above, is that

we only compute the ray geometries in the outer loop of the algorithm, thereby

saving considerable computation. The second is that each time a new partitioned

velocity model is tested in the inner loop, only a part of the travel times are recom-

puted in the evaluation of (3.3). For example, Figure 3.4 shows the geometry of the

problem before and after a Voronoi nucleus is added. Only the cells in grey change

during this birth jump. Therefore, only the travel times of the rays crossing the

grey cells need to be updated to compute the data misfit of the new model. This

also turns out to be a significant saving of compute time and allows the number

of unknowns to be larger than for a standard MC approach. Two other features

used to improve the sampling efficiency are the use of a delayed rejection scheme

(Tierney and Mira, 1999) as well as parallelising the algorithm. These are detailed

in the next subsections.

3.2.1 Delayed rejection

In a Metropolis-Hastings algorithm, rejection of proposed moves is an intrinsic part

of ensuring that the chain converges to the intended target distribution. However,

persistent rejection, perhaps in particular parts of the model space, may indicate

that locally the proposal distribution is badly calibrated to the target posterior

(Green and Mira, 2001). Tierney and Mira (1999) and Mira (2001) showed that the

basic algorithm can be modified so that, on rejection, a second attempt to move is

made. A different proposal can be generated from a new distribution that is allowed

to depend on the previously rejected proposal.

For example, let us consider the 1D target distribution π(x) shown in Figure 3.5.

The shape of this distribution is such that the ‘optimal’ spread of the proposal (e.g.

the variance of a Gaussian proposal distribution) depends on the current position

of the chain. When x takes low values, the spread should be quite small, otherwise

proposals are likely to be rejected. On the other hand, using the same small spread

when x is large will give high acceptance rate, but the chain is going to explore

this portion very slowly. Every time we find ourselves in such situations, and this

happens quite often for multidimensional target distributions, the delayed rejection

algorithm can be of great help (Green and Mira, 2001).

When at x, we propose a new state y1 with density q1(y1 | x). As in Hastings
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(1970), this is accepted with probability

α1(y1 | x) = min

[
1,
π(y1)

π(x)

q1(x | y1)

q1(y1 | x)

]
. (3.35)

Tierney and Mira (1999) propose that, if the move to y1 is rejected, a second proposal

y2, say, is made, with density q2(y2 | x, y1) . The acceptance probability of the new

candidate has to be determined in order to preserve the stationary distribution.

Tierney and Mira (1999) use

α2(y2 | x, y1) = min

[
1,
π(y2)

π(x)

q1(y1 | y2)

q1(y1 | x)

q2(x | y2, y1)

q2(y2 | x, y1)

{1− α1(y1 | y2)}
{1− α1(y1 | x)}

]
(3.36)

If the candidate at the second stage is also rejected we could either stay in the

current state x or move on to a third stage, and so on. Since detailed balance is

imposed on each stage separately, it is valid to make any fixed or random number

of attempts. If qi denotes the proposal at the i-th stage, the acceptance probability

at that stage is , following Mira (2001),

αi(yi | x, y1, . . . , yi−1) = min

[
1,
π(yi)
π(x)

q1(yi−1 | yi)q2(yi−2 | yi, yi−1) . . . qi(x | yi, yi−1, . . . y1)
q1(y1 | x)q2(y2 | x, y1) . . . qi(yi | x, y1, . . . , yi)

{1− α1(yi−1 | yi)}{1− α2(yi−2 | yi, yi−1)} . . . {1− αi−1(y1 | yi, yi−1, . . . , y2)}
{1− α1(y1 | x)}{1− α2(y2 | x, y1)} . . . {1− αi−1(yi−1 | x, y1, . . . , yi−2)}

]
. (3.37)

The implementation of a general delayed rejection algorithm using (3.37) appears

to be non trivial due to its recursive nature.

In the reversible-jump tomography, we have used delayed rejection for the fixed

dimension moves (i.e. for a velocity value update or for a nucleus move). We start

with a first-stage Gaussian proposal q1(m′ | m) with large variance. The proposed

model is accepted with probability

α1(m′ |m) = min

[
1,
p(m′ | dobs)
p(m | dobs)

]
. (3.38)

If the model m′ is rejected, instead of going back to m and counting it twice in the

chain, we propose a second model m′′ drawn form a second-stage Gaussian proposal

q2(m′′ | m) centred at m but with a reduced variance. Note that here, the second

proposal does not depend on the rejected model m′ and the acceptance term for the



60 3.2 Optimising the algorithm

Figure 3.5: An example of a 1D probability density function with variable ‘length
scale’.

second try in (3.36) is simplified

α2(m′′ |m) = min

[
1,
p(m′′ | dobs)
p(m | dobs)

q1(m′ |m′′)
q1(m′ |m)

{1− α1(m′ |m′′)}
{1− α1(m′ |m)}

]
. (3.39)

The advantage of this strategy is apparent in our problem. Due to the irregular

distribution of the information, the optimal variances of the proposals are not con-

stant throughout the velocity field. Proposed moves that imply Voronoi cells in well

constrained regions need to be smaller compare to moves that take pace in low ray

density areas where model uncertainty is higher.

3.2.2 Parallelisation of the algorithm

Another computational consideration is that the algorithm is straightforward to

parallelise in the sense that multiple chains (i.e. inner loops) can sample the model

space independently of each other. For example, each chain may be conveniently

placed on an independent processor of a parallel computer system (Rosenthal, 2000).

Figure 3.6 shows an example of 5 chains independently sampling the same transdi-

mensional distribution. The number of Voronoi cells for each chain is plotted against

iterations. Each chain starts from a different state (with a number of cells drawn

randomly from the uniform prior between 2 and 100), and after 105 iterations, one
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Figure 3.6: Convergence of chains. The number of cells is plotted against iterations
for 5 chains running in parallel. For each chain, the initial number of cells is drawn
randomly form the prior distribution n = [2, 100]. The red line is the average over
all the parallel chains, and it is used as a measure of convergence to determine the
length of the burn-in period (red dashed line).

can see that they have all converged towards the target distribution and only sample

models having around 22 cells. The curve in red shows the average over 100 inde-

pendent chains, and is a good measure of convergence that can be used to determine

the length of the burn-in period (red dashed line).

Our Monte Carlo algorithm proceeds by averaging large numbers of computed

values. It is therefore straightforward to have different processors compute different

values, and then use a simple average of these values to produce a final answer (see

Bradford and Thomas, 1996, for an example of parallel McMC). At each point of

the velocity field, we wish to compute the unknown seismic wave velocity value V .

We have a computer program which is capable of producing some large number n

of samples, v1, ..., vn, and then to estimate V by the estimator

E =
1

n

n∑
i=1

vi. (3.40)

This estimate has a variance proportional to 1/n (Press et al., 1992). Now let us

suppose we have N computers available to us. We wish to use all of these computers

to better estimate V . The simplest idea is to run our same program on each of the
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N computers (with the seed of the random number generator different on each

computer). Each independent chain j then produces n samples vj1, ..., v
j
n, computes

their average Ej, and reports the result back to a master program. The master

program then averages these N results to obtain a master result

Ē =
1

N

N∑
j=1

Ej. (3.41)

Therefore, the variance of the estimate is reduced by a factor of N . In this way,

the communication between processors is minimised, so that parallel processing is

easily facilitated. This kind of Monte Carlo algorithm is so ideally suited to parallel

computation that it would be labeled ‘embarrassingly parallelisable’ by computer

scientists (Rosenthal, 2000). Clearly, once a burn-in period has been walked, the

algorithm will go 10 times faster if it is run on 10 processors that if it is run in a

single processor.

It would appear that, in this way, we have obtained linear speed-up, that is

the program runs N time faster as on a single computer. Unfortunately, this is not

rigorously the case. Within each independent chain, an initial given number of steps

b needs to be discarded before samples start to be collected. It is only after this

burn-in period that the McMC procedure asymptotically converges to an ensemble

of models whose density is proportional to the posterior distribution. Hence, if n

now represents the number of post burn-in samples needed to describe the posterior,

each chain of the parallel program need to be run for b + n/N steps. The ‘speed-

up’, i.e. the ratio of time taken by a sequential algorithm to the time taken by a

parallelised algorithm to collect n post burn-in samples, is therefore given by

Speedup(N) =
b+ n

b+ n/N
(3.42)

To illustrate the benefits of parallelisation, we compare the sequential and parallel

algorithms on a simple experiment (here the rays are considered straight). Figure

3.7 shows the true velocity model and the geometry of rays that have been used.

The sources and receivers are clustered in regions that could represent seismogenic

areas and arrays of seismic stations. As a result, the ray coverage is irregular and

rays often lay in the same direction. Those are features often encountered in seismic

tomography.
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Figure 3.7: Left: True velocity field (km/s). Right: Geometry of rays. 110 rays join
11 sources (red stars) to 10 receivers (green triangles).

3.2.2.1 Advantage in computational time

Let us suppose that we only have 1000 s (approximatively 15 minutes) of computa-

tional time available to solve the 2D problem described above. Figure 3.8 compares

the results obtained with a single computer against a cluster of 256 computers. In

both cases, a burn-in period was set to 50000 samples, after which the chains pro-

duced 5000 samples used for Bayesian inference. In 15 minutes, a single computer

is only able to collect 5000 samples to estimate the velocity at each point (Fig-

ure 3.8(a)) whereas the parallel algorithm can generate 256× 5000 = 1.28.106 post

burn-in samples (note that if we had wanted to produce the same number of samples

with a single computer, that would have taken around 6.5 hours). As can be seen

in Figure 3.8(a), the sequential algorithm has not produced enough samples, and

hence the average solution map still contains the Voronoi discontinuities present in

individual models. Clearly, the velocity estimates given by the parallel tomography

in Figure 3.8(b) are closer to the true velocities in Figure 3.7(a).

3.2.2.2 Advantage in performance

Another benefit of parallel Markov chains is that they naturally produce indepen-

dent samples. Figure 3.9(a) shows the image obtained when running the parallel

algorithm for N = 376 and b = n = 50000. The result is not equivalent to the image
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Figure 3.8: Average solution map obtained with a sequential (a) and parallel (b)
algorithm for the same amount of computational time.
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Figure 3.9: Average solution map obtained with a sequential (a) and parallel (b)
algorithm for the same number of post burn-in samples.

3.9(b) we obtain upon running our program on a single computer and collecting

exactly the same number n of post burn-in samples. The samples produced by a

Markov chain are correlated, i.e. they follow a path in the model space. There-

fore, information on the target distribution is restricted to that path and regions

of interest can be left out. This is why estimation of the posterior is improved if

a large number of chains independently explore the model space. In simple words,
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the map produced by an explorer allowed to walk for 100 km will be less accurate

than the map produced by the common work of 10 men, each walking for 10 km,

and starting at different locations. From a visual inspection, it is evident that the

parallel algorithm gives more accurate and unbiased velocities 3.9(b) than the single

processor scheme in 3.9(a)

Here, the number of post burn-in samples n needed to estimate the posterior is

equal to the length b of the burn-in period. The estimation of 3.9(a) took about 15

minutes against 30 minutes for 3.9(b). Thus, the parallelisation upon 376 processors

is not efficient in terms of computational time (according to (3.42), the speed-up

is indeed bounded by 2). However, Figure 3.9 clearly shows that parallelisation is

worthwhile in terms of performance of the algorithm.

3.2.3 Computational time

It is difficult to give a general idea of computational time for the reversible jump

tomography. As showed in Figure 3.10, it basically depends on two factors (green

boxes): the required length of the Markov chain and the time taken to solve the

forward problem each time a model is tested. These two factors depend on 5 ele-

ments that are specific to each problem (blue boxes): the number of data, the level

of data noise, the complexity of the true model, and the form of prior and proposal

probability distributions. Note that the level of data noise given by the user prior to

the inversion plays an important role in determining the number of model parame-

ters. This is a major feature of the algorithm and will be studied in detail in next

chapters. The prior distribution on the model defines the volume of the model space

and hence the time needed by the chain to converge (i.e. the length of the burn-in

period). For example, if the prior on the number of cells in Figure 3.6 would have

been a uniform distribution over the range 15-25, the convergence would have taken

less iterations, since the number of cells of initial models would have been closer to

their expected posterior value.

To give some measure of computational cost, the synthetic examples presented

in Section 3.3 can all be performed without parallelisation on a standard desktop

workstation (Intel core 2 duo with CPU running at 2.1 GHz) using about 150 min-

utes CPU time. However, these are simple examples and as we invert for more

travel times, the required number of cells increases and parallelisation becomes nec-

essary. The ambient noise tomography performed in section 3.4 was carried out on

98 parallel processors and took around 6 hours.

The relation between the number of cells in a model and the computational cost



66 3.3 Synthetic data examples

Proposal distribution

Prior distribution

Complexity of 
the true model

Level of data noise

Number of data

Number of 
Voronoi cells

size of the 
model space

Convergence 
(length of the chain)

Solve forward problem for 
one model

Computational time

Figure 3.10: Scheme showing the elements determining the computational cost of
the algorithm. The relation represented by the red arrow is examined in Figure 3.11.

of the forward calculation needed at each iteration of the inner-loop is shown in

Figure 3.11. This corresponds to the arrow in red in Figure 3.10. For each rj-McMC

inversion that has been carried out in this thesis, we estimate the average time

taken to solve the forward model (the time to compute travel times for rays passing

through the perturbed cells), and plot it against the average number of cells in the

ensemble. One can clearly see that the computational cost increase as we add more

unknowns in the problem.

3.3 Synthetic data examples

3.3.1 Experimental setup

A synthetic data set is constructed by using the Fast Marching Method (FMM)

to compute traveltime for seismic energy propagating across a spherical surface be-

tween 17 sources and 20 receivers in the presence of severe velocity heterogeneity.

This simplistic set up is similar to the one used in chapter 2 to illustrate the fixed di-

mension algorithm. It contains highly irregular distribution of rays and is motivated

by surface wave experiments in regions of limited data coverage.

The synthetic velocity field is shown in Figure 3.12. The areas in red have a

velocity of 5 km/s and the blue areas are of 4 km/s. The velocity field presents

high contrast discontinuities. The blue heterogeneity represents a velocity anomaly

of -20% of the red background and the red heterogeneity is +25% of the blue back-

ground. Hence this ‘simple’ problem is reasonably nonlinear and serves to illustrate
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Figure 3.11: The speed of the forward calculation (i.e. overall time taken by the
algorithm divided by the number of samples in each chain) is plotted against the
average number of Voronoi cells in the ensemble. This corresponds to the red arrow
in Figure 3.10. It is clear that the forward calculation takes longer as we add
unknowns in the problem.

the algorithm.

The ray geometry associated with the synthetic velocity field is shown in Figure

3.13. All the calculations are performed in 2D spherical coordinates (Hence, straight

rays become great circles on a sphere). As expected, the rays avoid the red low

velocity heterogeneity in the lower-right part of the velocity field and are attracted

towards the blue high velocity heterogeneity in the upper-left part. Overall, the

lower-left part of the model is covered by many ray paths, whereas the upper-left

part is barely sampled.

Here we see the difficulty of choosing an appropriate cell size for a regular mesh.

A constant cell size across the entire model will most likely result in the problem

becoming underdetermined in the upper-left part (not enough rays crossing the

cells) and overdetermined in the lower-right part (large number of rays crossing each

cell). A second problem is that in the upper-left quarter, all the rays are in similar

directions (i.e. NW to SE), indicating that the resolution in this direction will be

poor. This effect is typically associated with smearing in tomographic reconstruction

algorithms.

We choose to compare the reversible jump tomography to a Subspace method

(e.g. Kennett et al., 1988) which is a convenient inversion scheme based on a fixed
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Figure 3.12: True velocity field
(km/s).
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Figure 3.13: True ray paths. 340 rays
join 17 sources (red stars) to 20 re-
ceivers (blue triangles). Due to the
principle of least time, the rays seem
to avoid the low velocity anomaly and
to be attracted towards the high ve-
locity anomaly.

regular parameterisation. Both approaches are linearised methods and use the same

forward modelling to update the geometry of rays. The Subspace scheme uses a

matrix inversion approach including implicit regularisation to solve the linearised

tomographic equations at each iteration.

We observe and compare the propagation of data error into model uncertainty.

For the true model and geometry of rays, the average observed travel time is 473

s. For a homogeneous initial model with velocities equal to 4.5 km/s, without noise

in the observed data, the average difference between observed and estimated travel

times is about 35 s. Some random Gaussian noise has been added to the observed

travel times with a standard deviation of 9.5 s (i.e. 2% of the average observed

travel time).

3.3.2 Fixed parameterisation tomography with the Subspace

method

3.3.2.1 The regularisation process

Most of the methods using a predefined fixed parameterisation formulate the tomog-

raphy problem with a linear system of algebraic equations represented by a matrix
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G. In the example considered here, the ray coverage is quite sparse and with a

uniform grid of sufficiently small cell sizes, the problem becomes non-unique. Reg-

ularisation procedures must be used to choose a solution among all the acceptable

possibilities. This resulting solution will have properties reflecting the particular

choice of regularisation.

In order to discard the models that are unrealistic and make the solution unique,

criteria other than the misfit can be minimised such as the distance to a reference

model or the norm of the first or second spatial derivative of the velocity field. The

inversion scheme consists then in minimising an objective function which is a linear

combination of different criteria

Φ(m) =

∥∥∥∥∥Gm− d

σd

∥∥∥∥∥
2

+ ε‖m−m0‖2 + η‖Dm‖2 (3.43)

where the first term is the data misfit, the second quantifies the distance to a refer-

ence model m0, and in the third, the vector Dm is a finite difference approximation

proportional to either the first or second derivative of the model. By minimising

the semi-norm ‖Dm‖2, the regularisation techniques favour models that are rela-

tively flat (first order regularisation) or smooth (second order regularisation). The

damping factor ε effectively prevents the solution model from staying too far from

the reference model m0, while the smoothing factor η constrains the smoothness of

the solution model.

3.3.2.2 Fixed parameterisation and B-spline interpolation

Here, the velocity field is defined by a uniform grid of nodes with bi-cubic B-spline

interpolation (Virieux and Farra, 1991). Once a velocity value has been assigned

to each node, the grid is interpolated with spline patches to produce a continuous,

smooth and locally controlled velocity field. These nodes constitute the inversion

grid, i.e. the velocity values of these nodes are adjusted by the inversion scheme in

order to satisfy the data. The nodes are evenly distributed and do not move during

the inversion process. This way of parameterising the velocity field is common in

surface wave tomographic studies (e.g. Yoshizawa, K. and Kennett, B. L. N, 2004;

Fishwick et al., 2005). However, note that the choice of a B-spline interpolation

is purely arbitrary. One could equally well have chosen a triangle based linear

interpolation or any other type of 2D interpolation.
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3.3.2.3 The Subspace method

Here, the unknown which is sought for during the inversion step is a perturbation

of the reference field (which causes only a perturbation to the geometry of rays).

The problem is then locally linearised around the reference model. The perturbed

solution becomes the reference model for the next iteration. The process is stopped

when, for example, the data are satisfied, that is when the normalised χ2 misfit

measure (corresponding to the first term in (3.43) divided by the number of data)

equals one (Rawlinson et al., 2006).

The method is a Subspace inversion because at each iteration, it projects the

full linearised inverse problem onto a smaller m-dimensional model space to reduce

computational effort. Details of the Subspace method are given in Kennett et al.

(1988), Rawlinson and Sambridge (2003) and Rawlinson et al. (2006). The advan-

tage of this approach is that the optimisation of (3.43) can proceed with only the

inversion of an m ×m matrix at each iteration. The set of vectors which span the

m-dimensional subspace are computed based on the gradient vector and Hessian

matrix in model space. In our experiments, we set m to 15, which results in having

the m vectors strongly linearly dependent. Singular Value Decomposition is used to

orthogonalise subspace vectors, and remove those directions which are redundant.

In obtaining the results presented in the next section we have experimented with

the number of subspace vectors and found that the velocity models obtained are not

strongly dependent on the choice of subspace dimension.

3.3.2.4 Results

Figure 3.14 shows the results obtained after 6 iterations for a grid of 20× 20 nodes

for different values of ε and η with a semi-norm defined by the second derivative

of the model. When we changed the two regularisation parameters, we observed

the classic trade-off between smooth models with poor spatial resolution (3.14(d))

and instability (3.14(a)) (Menke, 1989). The solution shown in 3.14(a) has been

obtained with relatively small values of ε and η. It has strong amplitudes and shows

features not present in the true model. The map in 3.14(b) is damped and 3.14(c)

is a smoothed solution. The solution model in 3.14(d) has been produced with

relatively large values for both regularisation parameters.

Here, the user has to choose the number of nodes in the grid, and we experienced

the difficulty of manually finding an optimal value. When the number of nodes is

decreased, the instabilities are removed but the spatial resolution is not good enough
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(a) ε = 0.6 η = 0
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(b) ε = 10 η = 0
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(c) ε = 0 η = 3
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(d) ε = 10 η = 3

Figure 3.14: Subspace Inversion with a regular grid (20 × 20 nodes) and B-spline
interpolation. Results after 6 iterations for different values of damping and smooth-
ing (km/s). A random gaussian noise has been added to the data with a standard
deviation equal to 2% of the average observed travel time.The colour scales are the
same as for the true model.

to map the heterogeneities. Figure 3.14 represents the best results we have been

able to obtain with the regularisation framework. Of course, automated procedures

methods also exist for selecting optimal values of the regularisation parameters like

L-curve, cross-validation, or the discrepancy principle (Aster et al., 2005). Each has

their limitations. In this synthetic problem we know the true solution and are able
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to judge the performance of each pair of regularisation parameters by comparing the

result to the known true model. Of course this is not possible in a real data case but

in our synthetic problem we are more interested in obtaining the best possible pair

(ε, η) for comparison with the reversible jump tomography. The model in 3.14(c)

seems to be the closest to the true model and hence will be used as the best solution

from the subspace inversion for comparison.

3.3.3 Reversible jump tomography

3.3.3.1 The average model: a naturally smooth solution

Posterior inference was made using an ensemble of 5000 models. We ran the rj-

McMC algorithm for 560000 steps in total. The first 60000 steps were discarded as

burn-in steps, only after which the sampling algorithm was judged to have converged.

Then, every 100th model visited in the last 500000 steps was taken in the ensemble.

The prior on the number of cells p(n) was set uniform with nmin = 0 and nmax = 500.

Four passes were made around the outer loop of the algorithm (Figure 3.2) with an

update of the ray geometry for each pass. The results presented here are obtained

from the ensemble of samples collected during the last iteration only.

The best partitioned velocity model obtained in terms of posterior value is shown

in Figure 3.15(a). It would appear to be a rather poor recovery of the true model

in Figure 3.12. However, the spatial average of the post burn-in samples collected

shown in Figure 3.15(b) seems to recover much closer the features of the true velocity

field. Each individual partitioned model consists of a different configuration of a

finite number of Voronoi cells as in Figure 3.15(a), but the average solution taken

pointwise is smooth, except across the true discontinuities, where a rapid change

is seen. Since the variability of the individual models in the ensemble represents

the posterior distribution then by averaging them spatially we have a form of ‘data-

driven’ smoothing, i.e. without the need to impose an explicit smoothing function,

choose regularisation parameters or interpolation procedure. Average velocity maps

like Figure 3.15(b) are in a sense self-regularised solutions.

The average solution is clearly quite different from the models obtained with a

fixed grid. The artifacts of the later are not present and the discontinuities have

been recovered with better accuracy. Furthermore, the ficticious gradients which are

evident in Figure 3.14 are removed in Figure 3.15(b) giving a more faithful recovery

of the true model in Figure 3.12. The normalised χ2 misfit measure for the average

solution model is 0.86 which is of the same order as for the solution in 3.14(c) (0.92).
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Figure 3.15: Reversible jump tomography. Results after 4 iterations (km/s). Left:
best model sampled (i.e posterior maximum). Middle: Average solution map. The
scales are the same as for previous figures. Right : Information on the number of
cells in the Voronoi tessellation. Posterior probability density for the parameter n,
p(n,dobs)

In this transdimensional approach, the number of cells n needed to construct the

model becomes a parameter itself in the inversion and it is possible to make posterior

inference on it. Figure 3.15(c) shows p(n,dobs), i.e a histogram of the number of

cells in the output ensemble of velocity models. No models with more than 30 cells
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have been sampled, which suggest that the choice of an upper limit of 500 on the

prior for the number of cells p(n) was rather large. This choice in the prior therefore

does not affect the solution.

It must be remembered that the parameter n is not a ‘physical’ parameter, it

does not have any geological interpretation as a wavespeed, or a layer thickness.

This may seem somewhat awkward to interpret. However, we see that it is an

unknown in the problem that can be constrained by data. From a Bayesian point of

view, the distribution p(n,dobs) gives information on the complexity of the problem,

that is on the level of support in the data for the number of degrees of freedom in

the model. Model dimension parameters such as this are used extensively in the

Bayesian computation literature (Sisson, 2005).

Figure 3.15(c) shows that this inversion only uses an average of about 13 mobile

cells whereas the subspace inversion scheme uses 400 fixed cells. Hence the reversible

jump approach achieves a finer representation of the velocity field with fewer model

parameters which results, as expected, from averaging many overlapping Voronoi

cells in different configurations. The solution in the regularisation framework is

obtained with chosen values for ε and η , and inevitably this represents a compromise

across the entire model. In the transdimensional approach there is no global damping

parameter, but instead the algorithm has smoothed the model locally in response

to the data.

It appears that the averaging process has removed unwarranted discontinuities

in individual models (i.e. the large number of velocity discontinuities at every cell

boundary) but constructively reinforced the well constrained ones about the anoma-

lies and the diagonal step. The dynamic parameterisation looks to have adapted to

the structural features of the underlying model.

3.3.3.2 The variance map: an estimate of model uncertainty

A well known problem with regularised inversion algorithms which construct a single

optimal model is that it is impossible to assess the distance between the estimated

and true model. Regularisation or damping helps to stabilise the inversion of linear

systems equations and suppresses propagation of data noise into the solution, but

this is at the cost of biasing the solution in a statistical sense (Aster et al., 2005). In

practice if noise is added to data, the random variability estimated in the model can

be much less than the true errors. Technically the distance between the estimated

and true model can only be constrained if additional information is available on

the regularity of the true solution. Although recently alternate ways around this
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Figure 3.16: Top left: estimated error map (km/s). The two dashed lines show the
cross sections presented on 3.16(b). Top right: cross sections showing the true model
(black), the solution model (red) and +/- one standard deviation (dashed green).
Bottom left: actual error for the reversible jump tomography. Absolute difference
between the true model in 3.12 and the estimated model in 3.15(b) (km/s). Bottom
right: actual error for best Subspace solution. Absolute difference between the true
model in 3.12 and the estimated model in Figure 3.14(c) (km/s).

problem have been suggested (Rawlinson et al., 2008).

In contrast to regularisation methods, the reversible jump algorithm enables one

to perform an ensemble inference, that is to capture the variability in the range

of possible solutions. The standard deviation of the family of models provides a
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smooth map that can be interpreted as an error map for the velocity model. Figure

3.16 shows the results. The model uncertainty map obtained in this way (Figure

3.16(a)) appears to be similar to the actual error in 3.16(c), but with higher ampli-

tude. Indeed, as can be seen in 3.16(b), the one standard deviation estimated error

(green dashed lines) includes the true model (black solid line) for more than 90%

of the profiles. In these experiments, the Monte Carlo sampler seems to provide a

reliable estimation of the model uncertainty both in terms of amplitudes and lateral

variations. We are unaware of any alternative approaches that can reproduce this

kind of error estimation.

The true error map in 3.16(c) can be also compared to the true error map for the

Subspace solution in 3.16(d). Values are clearly smaller in 3.16(c), and hence the

average solution obtained with the RJ-McMC approach is closer to the true model

than the Subspace solution in 3.14(c). This can be quantified with the ‘norm’ for

3.16(c) being almost half of the ‘norm’ for 3.16(d).

It has been shown that the reversible jump tomography is particularly suited for

recovering earth models with sharp features. It might be argued that this comparison

suits the McMC approach as it is often difficult for a uniform grid scheme to recover

sharp gradients. To further examine these issues, we present a second synthetic

example without discontinuities and a more complex spatial pattern of anomalies.

3.3.4 Example with a Gaussian random model

3.3.4.1 Synthetic model

In this example, the model is constructed from a uniform grid (14 × 14 nodes). The

velocity value assigned to each node is drawn from a Gaussian distribution. The

true synthetic model on Figure 3.17 is obtained with a cubic B-spline interpolation

between the nodes. Hence, the basis functions used to construct the model are

the same as the basis functions used by the Subspace inversion. The sources and

receivers locations (Figure 3.18) are the same as in the previous example. Some

random Gaussian noise has been added to the observed travel times with a standard

deviation of 5 s (i.e. about 1% of the average observed travel time).

3.3.4.2 Comparing regularised and reversible jump solutions

In the previous example, results with the Subspace inversion were shown for the

optimal grid size and different solutions corresponded to different values of regular-

isation parameters. Here we show solutions obtained for different grid sizes (Figure
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Figure 3.17: True velocity field
(km/s). Grid of 14 × 14 nodes which
is B-spline interpolated
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Figure 3.18: Geometry of rays. The
sources (red stars) and receivers (blue
squares) are located as in previous ex-
ample. However, rays take different
path due to the different velocity het-
erogeneities.

3.19) and for each case, the regularisation parameters are chosen with an “L-curve”

technique (Aster et al., 2005).

For each grid size, the complete inversion process was run a number of times

with different values of ε and η. This was done systematically by first setting the

damping parameter to ε = 1 and varying η. The upper panel of Figure 3.19(d)

shows a plot of the resultant trade-off between the fit to data and roughness of the

solution model for a 35 × 35 nodes grid. The lower panel shows the curvature for

this curve which is maximised at the corner of the ‘L-curve’. The corner obtained

at η = 5 offers a compromise between minimising the data misfit and producing the

smoothest model. In the next step, the smoothing parameter was set to η = 5 and

ε was varied providing a new ‘L-curve’. As in Rawlinson et al. (2006), the process

was iterated one more time (with ε fixed and varying η) yielding an ‘optimum’ value

for η and ε. This scheme was used to produce an optimal regularised solution for

different gird sizes and results are shown in Figure (3.19).

Results clearly shows that solutions are acutely dependent on the grid size. Some

features are missed if the grid is too coarse as in 3.19(a) whereas gradients not

present in the true model may appear with a too fine grid as in 3.19(c). Note that

the solution in 3.19(b) has been produced with the ‘perfect’ grid size, as it is the

same node spacing used to construct the true model in 3.17

In general the average solution obtained with the Reversible jump tomography
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Figure 3.19: Results with the Subspace inversion for different grid sizes. Each
solution is obtained after finding the regularisation parameters with an L-curve
technique. (a) Grid size = 7 × 7 nodes. (b) Grid size = 14 × 14 nodes. Grid size
used to produce the synthetic model. (c) Grid size = 35 × 35 nodes. (d) Upper
panel: “L-curve” for the 35 × 35 nodes grid. ε is kept constant and η is changed.
Lower panel: curvature of the “L-curve”. The maximum curvature gives the corner
of the L-curve and provides the optimum η.

in Figure 3.20(a) seems to recover the velocity anomalies with a better amplitude

than any of the solutions obtained with the regularised method in Figure 3.19.

Interestingly the recovered velocity map seems to be an improvement over the case

where the regularised scheme uses the actual parameterisation of the true model
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Figure 3.20: Reversible jump tomography. Results after 3 iterations (km/s). Left:
Solution map obtained by averaging 10.000 post burn-in samples. The scales are
the same as for previous figures. Right: Information on the number of cells in the
Voronoi tessellation. Posterior probability density for the parameter n, p(n,dobs)

(Figure 3.19(b)). We speculate that this may be due to the beneficial effect of

sampling and averaging many solutions in the ensemble. As in the discontinuity

example the Bayesian scheme looks to have detected and adapted to the local scale

of the velocity anomalies without any imposed information about the cell sizes.

Figure 3.20(b) shows the posterior histogram for the number of cells recovered by

the variable dimension sampler. Here the amount of detail required is much larger

than the previous example. There appears to be support in the data for up to

120 cells with the mode near 70 cells. This would be consistent with the increased

complexity of the true model.

3.4 Ambient noise data example

The use of ambient seismic noise to recover the travel times of surface waves between

pairs of stations is rapidly becoming popular (Shapiro and Campillo, 2004). There

are various causes of seismic noise. The most energetic component is the oceanic

microseism which is a result of the interaction of atmosphere, ocean, and coast.

Perturbations in the atmosphere due to strong storms impact on the ocean to set up

standing wave patterns which create continuous pressure on the sea bottom, with

variable intensity. The disturbance of the sea bottom results in the emergence of
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Figure 3.21: Map of connecting raypaths between couples of stations for 0.2 Hz.
Red circles show the locations of the stations.

the elastic waves as for an earthquake (Saygin, 2007). Using noise for exploration is

not new. Aki (1957) and Toksöz (1964) proposed using noise records on an array to

evaluate the phase velocity of the predominant surface waves. For a complete review,

see Larose et al. (2006). Recent developments in acoustics (e.g. Derode et al., 2003)

and seismology (Campillo and Paul, 2003) showed that it is possible to perform the

cross correlation between signals recorded at two stations and extract the Green’s

function (the signal that would be recorded at one station if an impulsive force was

applied at another station). A simple demonstation of this property is based on

a modal representation of a diffuse wavefield inside an elastic body (the Earth in

our case) (Lobkis and Weaver, 2001). Shapiro and Campillo (2004) showed that

coherent Rayleigh waves can be extracted from the ambient seismic noise and that

their dispersion characteristics can be measured in a broad range of periods.

This new idea created an opportunity to use an important part of the recorded

wavefield of the dense networks on the Earth that is normally neglected. New mea-

surements can be obtained for paths that could not be sampled with the ballistic

waves and therefore, can significantly improve the resolution of seismic images. Say-

gin (2007) compiled all the seismic broadband data from temporary and permanent
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stations across the Australian continent from 1992 to 2006. The data was used to

calculate the Green’s functions between each possible station pairs which resulted

in a coverage of the continent as in earthquake tomography studies with over 1000

individual ray paths. All of the available data was used for the calculation scheme

from a lower duration limit of 15 days up to several years. Due to the inter-station

distance and spectrum characteristics of the noise field, the extracted signal was

mainly the Green’s function of Rayleigh type surface wave for vertical components.

For each frequency, the rayleigh wave arrival time could be picked on the envelope

of the band-pass filtered seismogram. The extracted travel times were used to build

a tomographic image of the group velocity for the Australian crust with frequency

dependency.

We propose here to use the same set of measured travel times for a period of

5 s (0.2 Hz) and test the reversible jump tomography. Apart from dealing with

observational data, this example differs from the synthetic problem in the sense

that all the receivers are considered as virtual sources. The 208 stations used in

the experiment are represented by red circles in Figure 3.21. The station plays

both the role of source and receiver. Despite the very large number of couples of

stations (21,632), the actual number of measured travel time is only 1158, due to

only a relatively small proportion of the total number of receivers being deployed at

once. The 1158 ray paths are shown in Figure 3.21. They have been computed on a

homogeneous velocity model so they follow great circles joining couples of stations

that were deployed at the same time.

3.4.1 Results

Figures 3.22(a) and 3.22(b) show the results obtained after 3 iterations with the new

scheme. The prior on the number of cells p(n) was set uniform with nmin = 0 and

nmax = 500. Bounds for the uniform prior distribution for velocities were determined

on the basis of the overall statistics of surface wave velocities in Australia, i.e. 1.9-

3.5 km/s. Posterior inference was made using an ensemble of 6600 models. The

rj-McMC algorithm was run for 1.2× 106 steps in total. The first 200000 steps were

discarded as burn-in. Then, every 150th model visited was taken in the ensemble.

There is no data in the ocean areas and according to Bayesian principles, we recover

the mean and the variance of the prior probability density function. Figure 3.23

shows the results of the posterior on the number of cells, p(n,dobs). Here there

are more rays and hence more information than in the synthetic example. As a

consequence, the algorithm has automatically chosen to parameterise the model
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Figure 3.22: Reversible jump tomography. Results after 1 iterations of 4.105 Markov
samples.
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Figure 3.23: Posterior probability density for the parameter n

with many more Voronoi cells in order to fit the data.

From the modelling of the Rayleigh wave derivatives at a period of 5 s, the travel

time used here are mostly sensitive to the structure in the first 3 km of the crust

(Saygin, 2007). The Average model in Figure 3.22(a) reveals some features that can

be correlated with the surface geology of the Australian continent in Figure 3.24.

The zones of elevated wave speed in western Australia correspond with the Pilbara

and Yilgarn cratons which are fragments of ancient Archean lithosphere (Betts et al.,

2002; Fishwick et al., 2005). The main Proterozoic units of the continent (i.e Kim-

berley craton, Mt Isa block and George town Inler) are also visible. They represent

a basement layer at the surface with no overlying soft sediment and give fast group

velocities around 3.2 km/s (Betts et al., 2002; Clitheroe et al., 2000b). Along the

east coast and in Victoria, the phanerozoic orogens also show a signature on the

tomographic image and give elevated wave speeds. In Central Australia, the north

to south pattern of slow-fast-slow anomalies correlates closely with the presence

of the Officer Basin, Musgrave Block (preserved Proterozoic orogen) and Amadeus

Basin. However, it should be noted that this sector of the model is not very well

constrained by the data set as can be seen in the error map (3.22(b)). The short

period tomographic image shows multiple low velocity zones with velocities lower

than 2.4 km/s, which have a clear correspondence to regions of thick sedimentary

cover. There is a general agreement on these reduced wave speed regions and for

the sediment thickness map given by Clitheroe et al. (2000a).
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Figure 3.24: Surface geology of Australia

Although our analysis of the geological implications of Figure 3.22(a) is rather

limited, the aim here is to argue that the average solution model produced by the

transdimensional approach is able to recover the main geological features of the

Australian continent.

Saygin (2007) inverted the same data set with the Subspace method described

above and obtained results consistent with ours. The results shown here are also

supported by Rawlinson et al. (2008) where the same data were inverted with a

dynamic objective function technique. The appeal of the variable dimension scheme

used here is that there is no need to choose any explicit parameterisation or any

regularisation procedure. The standard deviation map in Figure 3.22(b), appears

to indicate that the average solution model is optimally constrained in southeast

Australia and the western half of Western Australia. This result is verified by the

synthetic checkerboard resolution test given in Rawlinson et al. (2008) where the

same source and receiver geometry was used.
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3.5 Discussion

In this chapter we have improved the partition modelling tomography methodology

presented in chapter 2. First, the Bayesian formulation has been extended to trans-

dimensionality by means of the rj-McMC algorithm (Green, 1995, 2003). The model

space is explored by sampling models of varying dimension. Second, the sampling

efficiency has been improved by using the delayed rejection scheme (Tierney and

Mira, 1999) which allows for proposal distributions that adapt to the shape of the

posterior distribution. Third, The algorithm has been parallelised.

Application to ambient noise data from Australia shows that we are able to

recover the map for Rayleigh wave group velocities without the need to impose an

explicit regularisation or fixed grid parameterisation. Moreover, the optimisation

of the McMC sampler has proved to be efficient in terms of computational costs

and these preliminary results are encouraging for applications to larger datasets,

different problems and extension to 3D.

A drawback is that the design of ways to perform probabilistic transitions be-

tween models (within and between dimensions) in the Markov chain has to be im-

plemented with the some care in order to avoid inefficiency of the algorithm. This

is a common complaint with Markov chain Monte Carlo algorithms. (See Han and

Carlin (2001) for an argument to suggest that transdimensional sampling may have

a detrimental effect on efficiency). Traditionally, the user has to choose a priori

the proposal probability density that will remain fixed during the sampling process.

The task of manually tuning transition variables via repeated pilot runs of the chain

can become laborious and quickly prohibitive. For the fixed dimension moves, we

have implemented the Delayed Rejection scheme proposed by Tierney and Mira

(1999) which helps to locally scale the proposal distributions and make the overall

efficiency much less dependent on the choice of proposal distributions. An issue for

future work would be to extend this scheme to transdimensional moves as shown

in Green and Mira (2001) or to use recent development of assisted or automated

proposal generation for transdimensional sampling scheme (e.g. Tierney and Mira,

1999; Haario et al., 2001; Al-Awadhi et al., 2004; Haario et al., 2006).

It can also be difficult to rigorously assess convergence of the transdimensional

Markov chain and hence to decide when to start collecting the sample of models

and how many to collect. In our work this was not a major factor but within the

Bayesian statistics literature it is an active area of research. Our results show that

the reversible jump tomography represents a new and potentially powerful alter-

native to optimisation based approaches with fixed grids and globally constrained
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regularisation schemes.



Chapter 4

Accounting for Data Noise

Uncertainty – Theory and

Application to Palaeoclimate Data

4.1 Motivation

Applying the reversible jump algorithm to real data from the seismic ambient noise

problem highlighted new difficulties that would not have appeared with synthetic

examples. These practical problems have eventually been beneficial as, by trying

to solve them, our theoretical understanding had to be pushed further and the

algorithm improved. In this chapter, we present one of these issues and show how

it has been solved.

One characteristic of ambient noise cross-corelation travel times is that little

is known on the measurements errors (Bensen et al., 2007). These techniques are

rapidly becoming popular and widely used but no clear method has been presented

to date to quantify the uncertainty on the measured travel times (although Yao

et al. (2006), Weaver et al. (2009) and Hubans et al. (2010) recently analysed phase

and group velocity biases in ambient noise tomography). This lack of information

on data errors does not represent an issue in linear (or linearised) tomography and

has been disregarded. As shown below, this is because in an optimisation based

inversion, the estimated model is independent of the scale of the data covariance

matrix.

However, an important feature of transdimensional Bayesian inversion is that

the level of data uncertainty estimated by the user prior to inversion (i.e. the

data covariance matrix) directly determines the complexity of the solution (i.e. the

87
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number of model parameters). We shall show that our transdimensional Bayesian

procedure naturally adapts the complexity of the solution in order to fit the data

up to the level of noise determined by the user. Certainly, a better fit can always

be obtained by adding more unknowns, but the algorithm naturally prevents the

data to be fitted more than the given level of data noise. Therefore it becomes clear

that a major issue of transdimensional inversion is the quantification of data noise,

which is often difficult.

In this chapter we propose to address the issue of noise estimation by extending

the Bayesian formulation to hierarchical models which are able to take account of

the lack of information the user has on the data errors. We use a Hierarchical

Bayes formulation (Gelman et al., 1995; Malinverno and Briggs, 2004; Malinverno

and Parker, 2006) where the level of data noise is treated as an unknown in the

inversion. In this way we let the data infer the appropriate level of data fit, and

hence the approach fully takes into account the combination of effects contributing

to the misfit.

The purpose of this chapter is to introduce the Hierarchical Bayes methodology.

All ideas are illustrated on 1D regression problems that are either linear or nonlin-

ear. Hence, the reader can visually appreciate on a single figure the data vector, the

data noise, the true and estimated model, the data fit, etc... An advantage is that

algorithms are simple to write and tests are quickly run. Furthermore, nonlinear

regression methods have a wide range of potential applications in geosciences. How-

ever, the key idea presented here (i.e. data noise estimation as part of the inversion

process) is not restricted to 1D regression model and a more general applicability

will be presented in further chapters.

This chapter is divided into two sections. In the first part we present the issues

related to data noise and its relation to model complexity both in the case of opti-

misation and Bayesian inversion. We introduce hierarchical models and show how

they overcome the lack of direct information about data uncertainty. The second

section shows a direct application of the method in palaeoclimatology.

4.2 Model dimension and data uncertainty: to-

wards an expanded Bayesian formulation

In an inverse problem, it is well known that the data fit is improved as more un-

knowns are added into the problem. Therefore, if too many parameters are used,

the distance between estimated and observed data may become smaller than the
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actual data noise. In this case, the measurements are overfitted and the solution

model may show spurious features due to the noise in the data.

4.2.1 Linear regression and chi-square statistical test

This effect can be easily observed on a simple linear regression problem. In Figure

4.1, we have fitted a synthetic dataset with 3 polynomials of different degrees. The

true model (grey line) is a 3rd order polynomial function and the data have been

generated from the true model plus a random Gaussian noise. The left panels

in Figure 4.1 clearly show that the data points are fit better as the order of the

polynomial model is increased. The general least square solution used in linear

regression is given by

mL2 = (GTC−1
d G)−1GTC−1

d dobs (4.1)

where Cd is the data covariance matrix. It is worth noting that mL2 does not depend

on the absolute value of the data noise. Indeed, mL2 does not change when Cd is

multiplied by a constant factor. In most cases, Cd is considered proportional to the

identity matrix and is therefore removed from (4.1). In other words, the shape of the

fitted polynomials in Figure 4.1 do not change as we multiply the error bar of each

data point by a constant factor. In fact, only the estimated error on the model (i.e.

the posterior model covariance matrix) depends on the data noise. Note that when

the problem is not full rank (e.g. in seismic tomography) and requires regularization

a common solution would look like

mL2 = (GTC−1
d G+ µC−1

m )−1(GTC−1
d dobs + µC−1

m m0) (4.2)

where m0 is a reference model, Cm is the a priori model covariance matrix and µ

a regularization parameter. In this case, a scaling factor in Cd simply absorbs into

the regularization parameter.

In optimisation methods, the aim is to find the model that minimises the data

fit. Assuming that the data have random independent errors that are normally

distributed with expected value zero, the chi-square χ2
obs misfit measure is defined

by

χ2
obs =

∥∥∥∥GmL2 − dobs
σest

∥∥∥∥2

(4.3)

where mL2 is the least square solution and σ2
est is the estimated variance of measure-

ment errors in dobs. As can be seen on Figure 4.1, the χ2
obs misfit measure decreases

as the order of mL2 increases.
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Figure 4.1: The synthetic true model (Thick light grey line) is a 3rd order polynomial
function. The synthetic data (60 red circles) are defined by the true model plus a
random Gaussian noise with a standard deviation of 30. The data can be fit with
polynomial functions by mean of a simple least squares linear regression scheme and
left panels show the solutions (blue lines) for three polynomials models of different
degrees. Right panels show χ2 tests. For the three solutions, the χ2

obs misfit measures
(red line) have been computed with the correct data noise standard deviation (σest =
30). Therefore, the comparison between the χ2

obs measures and their theoretical
probability distributions are supposed to indicate the validity of the mathematical
assumptions, that is the degree of the fitted polynomial. The solution obtained with
the correct mathematical model (i.e. 3rd order polynomial) is shown in the middle
panels. However, the chi-square test does not give a clear preference to this model.
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In order to get a solution model that fits the data to the required level given by

the measurments errors, several statistical tests can be used to choose the number

of model parameters. For instance, the chi-square statistical test (Aster et al.,

2005) can be carried out. Since the χ2
obs misfit measure depends on σest which is

the variance of a random variable, χ2
obs is itself a random variable and has a χ2

distribution with ν = N − n degrees of freedom (with N the number of data and

n the number of model parameters). The probability density function for the χ2

distribution is

fχ2(x) =
x

1
2
ν−1e−x/2

2ν/2Γ(ν/2)
. (4.4)

The expected value for χ2
obs is ν.

In a chi-square statistical test, χ2
obs is computed and compared to its estimated

probability distribution. Hence, a χ2
obs value far from the mode of the distribution

means that some of the assumptions made are incorrect. For example, if χ2
obs is

much larger than its expected value, the data noise σest may have been underesti-

mated. Another possibility is that the mathematical model is too simple (e.g. to

smooth) and cannot produce a good data fit. In this case more unknowns should

be incorporated to the problem. Conversely, a too small χ2
obs value (relative to its

expected value) may either indicate a too complex model, or that σest has been

overestimated. For a discusion on chi-square statistical tests, see Aster et al. (2005).

In the example in Figure 4.1, we have used the correct value for σest when

computing χ2
obs, i.e. the value used to produce the synthetic data. Therefore, the

chi-square statistical test provides information about the complexity of the model.

The right panels of Figure 4.1 show the observed χ2
obs values and their probability

distribution p(χ2) given by (4.4) for the 3 different fitted models. Although the

2nd order polynomial function gives a relatively high p(χ2
obs) value, it is difficult to

discard any of the three models according to this test. Note that to quantitatively

compare the 3 solutions, we can scale the input error by dividing χ2
obs by E(χ2).

The numbers obtained are 0.96, 0.83 and 1.14 respectively which gives a preference

to the most complex solution in the upper panel as it has the closest observed χ2
obs

value to its expected value. This shows that, even given the correct level of data

noise σest, it is still difficult the recover the complexity of the true model.

Another test that can be invoked to estimate the complexity of the solution is

the Bayesian Information Criterion (BIC) (Schwarz, 1978). Under the assumption

that the model errors are normally distributed,

BIC = χ2
obs + nln(N). (4.5)
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Schwarz (1978) used a Bayesian argument to show that, given any two estimated

models, the model with the lower value of BIC is the one to be preferred. The BIC

is an increasing function of χ2
obs and an increasing function of n. Hence, lower BIC

implies either fewer model parameters, better fit, or both. In our example, Bayesian

Information criterion suggests that the second model (i.e. the 3rd order polynomial)

is to be prefered as the BIC values for the 3 proposed models are approximatively

120, 64, and 78 respectively.

In seismic tomography, some resolution tests (spike tests, checkboard tests) are

also used to choose the number of unknowns, although regularisation procedures

are used most of the time to smooth and damp over-dimensioned models. Hence,

seismologists are often more interested in smoothing parameters rather than in model

complexity. It is worth here emphasising the difference between the two approaches.

The model complexity is the size of the vector used to approximate the true model

whereas the smoothness is the first or second derivative of this vector. Thus the

smoothness represents a measure of complexity in terms of the physical structure

of the model. Tomographic models are often over-parameterised (i.e. they have too

many model parameters which makes the problems under-determined) but appear

simple due to the smoothing. Conversely, a regression model like a cosine with a

small period can appear to be very complex because of its fast variations whereas

it is described by only 3 model parameters (a period, a phase, and an amplitude).

Hence different measures of complexity result in different behaviours.

Note that in optimization methods all measures of complexity and data misfit

are ‘point’ measures in that they only depend on the best fit solution, i.e. a single

solution. This can be contrasted with a transdimensional Bayesian approach where

the solution is an ensemble of models with different complexities.

4.2.2 Non linear regression with the reversible jump algo-

rithm

Here we apply the reversible jump scheme described in chapter 3 to the regression

problem presented above. The fitted model is not a polynomial but a partition

model which is simply the 1D equivalent to Voronoi cells. The parameterization

is illustrated in Figure 4.2. As the position and number of nuclei defining the

partition model are variable, the regression becomes non-linear (although linear in

the coefficients for the model within a given partition).

The algorithm used here is virtually the same as in the reversible jump tomog-
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Figure 4.2: Figure establishing the parameterization of a 1D partition model. The
60-point data set (red dots) is the same as in Figure 4.1 which are simulated from
the true model (thick light grey line) with added independent normal errors. Here,
the regression model (dark blue line) is a 1D equivalent to the Voronoi cells partition
model. It is defined by a variable number of nuclei (blue squares) each of which is
associated a constant response value. The number, position, and response value of
the nuclei are the model parameters to be inverted for.

raphy. The parameterisation is fully adaptive so the Voronoi nuclei (blue squares

in Figure 4.2) can freely move horizontally and vertically during the procedure.

A Markov chain is used to sample a large number of partition models that are

distributed according to a target posterior probability distribution. This transdi-

mensional distribution is defined by a Bayesian formulation as proportional to the

likelihood distribution times a prior distribution. As in previous applications, the

Markov chain repeatedly proposes and then either accepts or rejects the proposed

models in the usual way. The final solution is given by the average over the ensem-

ble of sampled models. All the model sampled have a particular parameterisation

defined by the position of their nuclei. When a large number of models are stacked,

their cells overlap so the spatial average model is effectively a continuous line. For
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details on the algorithm, see chapter 3.

Here the prior on the number of cells is a uniform distribution over the range

[1, 50]. These bounds have been set to large values so the prior is as least informative

as possible. For each cell, the prior on the location of its nucleus is a uniform

distribution over the range [0, 10], and the prior on the constant response value

associated with it (i.e. the vertical position of the nucleus) is a uniform distribution

over the range [−100, 100]. We acknowledge that, even with a large width of prior

on the response variable, it still affects the acceptance rate in the birth/death jumps

and therefore it is impossible to use a completely non informative prior.

The likelihood is simply defined from a least square misfit function given by the

distance between observed and estimated data.

p(dobs |m) ∝ exp
{−‖g(m)− dobs‖2

2σ2
est

}
(4.6)

In contrast to optimization schemes, with the reversible jump approach the model

dimension is directly adjusted in order to fit the data to the degree required by the

estimated noise. Hence, the solution model depends on the data but also on the

estimated data noise. As can be seen in the form of the acceptance term (see

chapter 3), a proposed model is more likely to be accepted as the difference between

the current and proposed model decreases. As we increase the value of the data

noise, we decrease the difference between model misfits and the algorithm becomes

more ‘permissive’ and accepts more easily ‘worse’ models. Conversely, when the

estimated data noise is decreased, the required data fit is increased and the Markov

chain naturally adds more parameters to provide ‘better’ models.

In order to experience the effect of the estimated data noise on the average

solution, the algorithm was run three times with a different value for σest at each run.

The three solution curves obtained are shown in the left panels of Figure 4.3. Dashed

lines show the 95% credible intervals. Since the models in the ensemble solution

have a varying number of cells, the complexity of the average model cannot be

described with a single number n. However we plot on right panels the histogram of

n across the ensemble solution that is directly proportional to the marginal posterior

p(n|dobs). Note that the number of nuclei n scales linearly with total number of

unknowns.

In the top panels, the noise has been underestimated (σest = 15), and hence data

are over-fit. The middle panels show results obtained with the correct data noise

estimation (σest = 30). Lower panels have been obtained with σest = 80, which
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Figure 4.3: Non linear regression with the reversible jump algorithm. Left panels
show average solution models (green lines) obtained with different σest values. The
95% credible intervals on the predictions are shown with dashed green lines. The
right panels show the respective distributions for the number of cells. The two
middle panels show results obtained with the correct level of data noise (σest = 30).
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is clearly overestimated. The number of model parameter used, and therefore the

complexity of the average solution, clearly depends on the estimated data noise.

Intuitively, we can see that if we underestimate the data noise, then we will tend to

fit many cells (i.e. the model becomes too complex in the top panel). On the other

hand if we regard the data as more noisy than they really are, then we will tend to

fit a model that has too few cells (i.e. the model is too simple in the lower panel).

Hence the level of data noise effectively quantifies the usable information present in

the data (a very noisy dataset does not contain much retrievable information), and

thus it naturally controls the quantity of information that consequently should be

present in the model (i.e. the number of model parameters).

Contrary to optimisation schemes, here there is no need for statistical tests or

regularisation procedures to choose the adequate model complexity or smoothness

coresponding to a given degree of data uncertainty. Instead, the reversible jump

technique automatically adjusts the underlying parametrisation of the model to

produce an average solution with just enough complexity to fit the data.

We acknowledge that the average solution curves are further away form the true

model than the polynomial models obtained with linear fitting. This is because

the mathematical models used here (i.e. partition models with constant value in

each cell) are far from the true mathematical model (a polynomial function). Hence

we have a parameterization error due to mismatch between the polynomial used to

generate the data and the choice of model parameterisation used in the inversion.

Better solutions (i.e. closer to true solution) would be obtained by allowing the

partition models to follow a linear or quadratic function within each cell (see Denison

et al., 2002, for an example), or allowing the order of the polynomial to vary in each

cell.

The value of σest imposed at the outset has a direct effect on the solution of

the reversible jump algorithm and implicitely acts as a smoothing parameter. This

can be seen as an advantage over linear inversions where the level of data noise is

not accounted for and where the level of smoothing is chosen a priori. However, in

some experiments as to be seen in next chapters, assessment of measurements errors

can be difficult to achieve a priori. Without any reliable information about the data

uncertainty, it is impossible to give a preference between two solutions obtained with

different values of σest.
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4.2.3 Uncertainty quantification: Hierarchical Bayes.

Fortunately, an expanded Bayesian formulation can take into account the lack of

knowledge we have about data errors. Instead of being fixed, the variance of the

measurement errors can have a broad prior uncertainty and posterior inference can

be performed. Following current statistical terminology, σest becomes a ‘hyperpa-

rameter’, and the method used is known as Hierarchical Bayes (Gelman et al., 1995).

The value of the hyperparameter is determined by the data, and the final result is a

posterior distribution for both the hyperparameter and the Earth-model parameters.

Note that the number of Voronoi cells n is also a hyperparameter as it is not directly

related to Earth properties. By letting the number of cells being a unknown, we

were actually already using an ‘Hierarchical Bayes’ framework in chapter 3.

In geophysics, Malinverno and Briggs (2004) and Malinverno and Parker (2006)

were the first to use a Hierarchical Bayes formulation and invert for the data noise.

They applied this method to the linear Gaussian problem, where the relationship

between Earth-model parameters and measurements is linear and where the prior

distribution and the likelihood function are multivariate normal distributions. They

demonstrated the practical application of this approach to a simple linear inverse

problem: using seismic travel times measured by a receiver in a well to infer compres-

sional wave slowness in a 1D Earth model. In their work, the posterior distribution

was Gaussian, and its mean and variance could be easily computed analytically. In

the work presented here, we propose to apply Hierarchical Bayes to a fully non-linear

regression problem, where the posterior is numerically estimated with the reversible

jump McMC algorithm.

The model to be inverted for is defined by the combined set (m, σ) where m is

the vector containing the nuclei locations and values and σ is the unknown standard

deviation of data errors. Therefore, for the 1D regression problem, the dimension

of the model space is 2n + 1 with n the number of nuclei (itself a parameter to be

estimated). The Gaussian likelihood function is defined by

p(dobs |m, σ) ∝ 1

σN
exp
{−‖g(m)− dobs‖2

2σ2

}
(4.7)

where N is the size of the data vector dobs. Note here that in contrast to common

inversion treatment (e.g. Aster et al., 2005), a new variable to be solved for, σ,

appears in the front of the exponential term due to normalisation. In the usual case

where σ is assumed known this is a simple factor which may be neglected. However

here its presence contributes to the nonlinearity of the inverse problem.



98 4.2 Model dimension and data uncertainty

The hierarchical algorithm is implemented in the very same manner as the con-

ventional reversible jump, the only difference being that here we add an extra type

of model perturbation, i.e. a change in the hyperparameter σ. As for other model

parameters, each time σ is perturbed, a new value σ′ is randomly proposed from

a Gaussian proposal distribution q(σ′|σ) centred at the current value σ. The like-

lihood of the proposed model (m, σ′) is computed from (4.7), and the new value

of data noise is either accepted or rejected according to the ratio of likelihoods of

the proposed and current models (here the prior ratio and Jacobian are unity). As

described previously, the variance of the proposal function is tuned by ’trial and

error’ using the rate of acceptance.

When treating the data noise as a variable, one would intuitively expect the

algorithm to choose high values for σ as it would minimise the misfit (i.e. term

between brackets in (4.7)). However, the Gaussian likelihood function is normalized

by σN in (4.7) and a high σ also implies a low likelihood. Hence the value taken by

σ has two competing effects on the likelihood. It is not surprising to see that, for a

given partition model m0, the maximum of the likelihood function is obtained for

σ =

√
‖g(m0)− dobs‖2

N
(4.8)

which is the mean value of the residuals, commonly called ‘root mean square’.

Note that, instead of a single number, more parameters can be used to describe

the data uncertainty. For example, as shown in the application to palaeoclimate

data in section 4.3, if the measurements are collected with m different instruments,

we look for a value for the noise of each instrument, σest = [σ1, ..., σm], and therefore

the likelihood function takes a more complicated form. As will be seen in next

chapter, the data noise in seismic tomography can be modelled as a linear function

of ray length. In this case it is described by two parameters: the slope and intercept

of the linear function. In chapter 6, we invert a seismic waveform, and hence the

data noise is correlated. In this case we show how to invert for the noise correlation,

that is the off-diagonal elements in the data covariance matrix. Data uncertainty

could ultimately be described with N × N numbers, that is, the size of the data

covariance matrix. Then, an apposite question would be : how many parameters do

we need to describe the data noise, and can we use a transdimensional formulation

to let the data answer that question as well? For the moment, we assume the data

covariance matrix is proportional to the identity matrix and use a single value to

describe the variance of the noise.
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Figure 4.4: The synthetic true model (light grey line) is defined by 9 regions of
constant value. The synthetic data (100 red circles) are defined by the true model
plus a random Gaussian noise with a standard deviation of σtrue = 10. The blue
line shows a sample generated by the reversible jump algorithm.

The Hierarchical Bayes algorithm is applied to the regression problem. Here,

the synthetic true model is not a polynomial but a 1D partition model (Grey line in

Figure 4.4) defined by 9 regions of constant value. Therefore, the samples generated

along the Markov chain will be defined with the correct mathematical model. The

data set consist of N = 100 points (red dots in Figure 4.4) that are simulated

from the true model with added independent normal errors with standard deviation

σtrue = 10 (this value is unknown during the inversion).

We first show in Figure 4.5 results obtained with the conventional Bayesian ap-

proach where a fixed value is given to the data noise. We use the word ‘conventional’

to refer to the reversible jump algorithm where the level of noise is fixed and given

by the user at the outset. This experiment is in essence a repeat of that in Figure

4.3 only with the true model lying in the same partition model space. As previously,

different choices made for σest result in markedly different posterior distributions.
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Figure 4.5: Non linear regression with the conventional reversible jump algorithm.
Left panels show average solution models (green lines) obtained with different σest
values. The right panels show the respective distributions for the number of cells.
Red lines show the number of cells in the true model. The middle panels show
results obtained with the correct data noise (σest = 10). Note that in this case, the
posterior distribution on the number of cells is maximum at 9 which is the number
of cells in the true model.
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Hence, as in Figure 4.3, different solutions are obtained with different values of σest.

Again, this demonstrates the difficulties associated with the conventional Bayesian

approach when little is known about the data noise as many different results can be

obtained for different values of σest.

The results obtained with the Hierarchical Bayes procedure are shown in Figure

4.6. As the hyperparameters n and σ are poorly known a priori, a wide (i.e loose)

prior distribution has been assigned to them (uniform distribution over the range

[1, 40] for σ and over [1, 50] for n). The Markov chain has sampled a large ensemble

of models (m, σ) that represent the posterior distribution. The average solution

is shown in the top panel of Figure 4.6. The discontinuities present in the data

are well resolved. The posterior distribution on the number of cells is plotted in

the middle panel in Figure 4.6. The red bar shows the number of cells in the true

model. Similarly, in the third panel we construct the histogram on the value taken

by the hyperparameter σ across the ensemble of models. Here the red bar shows

the standard deviation σtrue of the random Gaussian noise present in the synthetic

data.

With scant prior knowledge on both the data noise and the complexity of the true

model, the algorithm is able to provide a solution model with the correct complexity,

and that fits the data to the required level. The posterior distribution for the number

of cells looks like a Gaussian distribution around 9, which is the number of cells in

the true model. Furthermore, the expected posterior value for the hyperparameter

σ is close to the true data noise which is 10.

By letting both n and σ being variable during the inversion, here it is clear

that the hierarchical formulation of the Bayesian problem overcomes the problem of

trade-off between data fit and model simplicity. The procedure effectively lets the

data determine the hyperparameter values that are most sensible a posteriori. As

opposed to optimization schemes where the aim is to find the best fitting model, here

the goal is to find the best compromise between data fit and number of unknowns.

This extanded Bayesian formulation is a form of global inference: before the

data are collected there is an initial state of uncertainty not only on the earth model

parameters m but also on the hyperparameters n and σ. Once the information

provided by the data is accounted for, we know more about earth properties, but

also about hyperparameters. By allowing a range of possible prior hypotheses on

the hyperparameters, this approach decreases the number of assumptions that need

to be made before the inversion.
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Figure 4.6: Results with Hierarchical Bayes. Top: Average solution model. Middle:
Posterior distribution on the number of cell (the true value is 9). Bottom: Posterior
distribution for hyperparameter σ (the true value of data error is 10)
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4.2.4 Forward model uncertainty

It is important to note that the measurement errors are not necessarily the principal

contributor to the data misfit. The error associated with the mathematical model

or the forward theory can also contribute to the data misfit. That is, the function

g(m) = d can be an inaccurate approximation far from the reality, and may not be

able to explain even perfect measurements adequately.

In the example shown in Figure 4.6, the partition models used by the Markov

chain are of the same ‘nature’ as the true synthetic model. As a result, the data

misfit is mainly due to the data random errors and the posterior p(σ|dobs) recovers

the standard deviation of data noise. However, if the true model is not a partition

model, but for instance a polynomial function as in the example in Figure 4.1 and

4.3, the samples proposed by the Markov chain will have more difficulty in fitting

the data. Hence, the error associated with the forward model will contribute to the

data misfit and this will be taken into account by the hyperparameter σ (see Figure

4.7).

In conventional Bayesian procedures, the number σest used to normalise the

misfit in the likelihood function (4.6) is often taken as the standard deviation of

measurements. This may be incorrect as errors due to assumptions made by the

geophysicist may also contribute to the misfit and should also be accounted in the

data covariance matrix (see Gouveia and Scales (1998) for a discussion). Scales

and Snieder (1998) showed that in the context of Bayesian inference, the data noise

should be defined as that part of the data that we do not wish/expect the model to

explain.

For example, when performing seismic tomography assuming straight rays in a

region with strong velocity anomalies (i.e. where rays are actually strongly curved),

even if one has perfect measurements, it will be incorrect to use a small value for σest

and try to fit the data too well. The problem is then to quantify the ability of the

forward theory to explain the data. This number will have to be expressed in the

same units as the data and added to the estimated data noise to get a correct value

for σest. In the case of reflection seismic waveform inversion, Gouveia and Scales

(1998) showed the necessity and the difficulty to account for all contribution to the

misfit, i.e. ambient noise, near surface heterogeneities, scaling factor between field

and synthetic data, and model discretisation errors.

In geophysical problems where assessment of data noise is problematic, a Hier-

archical Bayes formulation enables to express this initial state of uncertainty on the

different terms contributing to the data noise and to perform posterior inference on
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Figure 4.7: Same experiment as in Figure 4.6. The data points have been generated
with random Gaussian errors with standard deviation of 3. The posterior distribu-
tion on the hyperparameter σ is shown on left. The blue line shows the true value
of the level of data errors. Top: the true model is a partition model. Here, the
misfit is mainly due to data errors and the algorithm recovers the true value of data
errors. Bottom: the true model is a polynomial function. The samples proposed
by the Markov chain have an inaccurate mathematical model and data points are
harder to fit. In this case, the posterior distribution p(σ|dobs) shows both the data
errors and the error in the mathematical model.

them. This is done with the use of hyperparameters which are determined directly

from the data.

4.3 Application to change point modelling of palaeo-

climate data

At present there are not yet physical theories that confidently predict when and

how often the climate system experiences transitions or changes rapidly. Our infor-

mation is largely empirical and based on geochemical proxy data (Ruggieri et al.,

2009). Examples include an effort to characterise global temperatures over the past
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millennium from a variety of proxies (Briffa et al., 1995; Esper et al., 2002; Mann

et al., 1998; Jones and Mann, 2004), using borehole temperatures to inference past

temperature histories (Hopcroft et al., 2007, 2009), millennium long reconstructions

of equatorial Pacific surface oceanography using stable isotopes from corrals (Cole

et al., 1993; Cobb et al., 2003; Quinn et al., 1998), high-resolution stable isotope

and trace gas records from polar ice cores (Chappellaz et al., 1993; Dansgaard et al.,

1993; Mayewski et al., 1993; Petit et al., 1999), and records of glacial-interglacial cli-

mate cycles derived from ocean sediment cores (Bloemendal and de Menocal, 1989;

Imbrie et al., 1989; Herbert and Mayer, 1991; Joyce et al., 1990; Lisiecki and Raymo,

2005).

Although these studies use different tools to resolve various aspects of climate

change at different time scales, they basically all solve a regression problem. That

is, geochemical measurements are collected at different depths that are related to

time (time series) and the problem is to find the 1D model (a function of depth

or time) that predicts the data. Then, this model is used as a proxy to infer past

climate events.

The current research effort towards understanding climate change, and the rel-

ative roles of natural and anthropogenic influences, often focuses on the inference

of rapid or abrupt changes in the mean signal, over time. Thus one might idealise

paleoclimatic data as a succession of periods with internally homogeneous statistical

properties, bounded by abrupt shifts to subsequent or antecedent regimes (Kylander

et al., 2007). Therefore, the use of change point models turns out to be particularly

relevant. This enables the regression model to automatically detect the position

(and number) of climate shifts within data that are statistically significant.

Mudelsee (2000) proposed to quantify climate transitions by fitting a ramp to

observed data. The approach consists of finding two changepoints (in this case,

time points) between which the data are fit with a linear function. Outside these

two points, the data are fit with a constant value. These parameters are estimated

using standard least square criteria, with a brute search (global) approach to find

the values of the changepoints. While the approach allows for the data noise to be a

variable and indeed to vary between data points, the values are chosen subjectively

(by eye).

Tomé and Miranda (2004) presented a method to find discrete changes in linear

trends. Gradients between changepoints are fitted to a given time series, subject to

constraints on the minimum distance between changepoints, and on the magnitude

of the changes in each ‘cell’. The problem is set up such that a user specifies a range
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for number of changepoints, and finds the best fitting functions for each value of the

number of change points in turn. Although the authors state that they can examine

the data fit for each model (with different numbers of changepoints) to choose an

appropriate value, they do not explicity do this in the paper. Rather they seem to

favour visual inspection to select a preferred model, which also is required to have

a constant distance between the changepoints.

Recently, Ruggieri et al. (2009) described various palaeoclimatic studies based on

time series and developed a method to infer Milankovitch-type cycles from geochem-

ical δ18O data. They explicitly allow for changepoints between which the nature of

the signal (defined by superimposed sine functions) can change abruptly. They ap-

ply their model to 2 sets of benthic δ18O isotope data with time ranges going back

to 2500 and 5000 kiloyears. As these authors state, an important limitation of their

method is that they do not include the number of change points as a parameter to

be inferred directly. Instead they examine the variation of the data fit as a function

of the number of changepoints, and try to identify the upper limit such that adding

more changepoints makes little difference to the data fit. One additional limitation

of this approach is that the inference will depend on the errors inherent in the data,

although the data fit function adopted by Ruggieri et al. (2009) does not incorporate

a data error term explicitly.

These interesting approaches are oriented to finding a ‘best’ model, defined in the

least squares sense. Rather than an optimization based approach, here we apply the

hierachical Bayes regression algorithm presented above to a suite of geochemical and

geophysical measurements collected from a core in the Hongyuan peatland, eastern

Qinghai-Tibetan Plateau (Large et al., 2009). The aim is to identify the timing and

location of the distinct changes in peat deposits. In this problem it is important to

note that different types of data may respond differently to a given change. Thus

one may show a large increase, another a large decrease and a third a very small

increase. However, the timing of each change is the same, and identifying the timing

is the goal of the inference process.

4.3.1 The data

The Hongyuan peatland bog is located on the eastern Qinghai Tibetan plateau

and has therefore directly been influenced by the South East Asian and the Indian

Monsoon systems during the Holocene (see Figure 4.8). To understand the evolution

of this peatland and its potential to provide new insights into the Holocene evolution

of the East Asian monsoon, a 6 m peat core was collected from the undisturbed



4.3.1 The data 107

80˚

80˚

100˚

100˚

120˚

120˚

20˚ 20˚

40˚ 40˚

East Asian Winter Monsoon

Indian Summer Monsoon

East Asian Summer 
Monsoon

Hongyuan

Figure 4.8: Sketch map showing the location of the Hongyuan peat bog (star).
Arrows indicate the approximate wind directions associated with the summer and
winter monsoons.

central part of a peat deposit near Hongyuan (Large et al., 2009). The peat core

was analysed for a range of environmental variables including carbon, nitrogen and

hydrogen concentration, bulk density, and δ13C (see Figure 4.9).

The age-depth relationship of the recovered peat sequence covers the period from

9.6 to 0.3 kyr BP and is linear indicating that the conditions governing productivity

and decay varied little over the Holocene. Consequently the parameters measured

are assumed to be those of the near surface peat at time of deposition (Large et al.,

2009). In this work, we have kept the raw data expressed in depth.

The different depth series are of variable nature, i.e. they have been collected

with different instruments and record different responses to climate. The level of

data noise might be quite different between records but unfortunately, nothing is

known about the measurement uncertainties. The hierachical Bayes formulation is

therefore relevant here as it can account for this lack of critical information. The
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Figure 4.9: Variables measured in the peat core vs.depth.

observations can be expressed as a combined set of m data types:

dobs = {d1, ...,dm} (4.9)

Each record dj contains Mj data points so the total number of data points in the

experiment is N =
∑m

j=1Mj.
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Figure 4.10: In this figure are represented 2 datasets (pink squares and blue circles),
and a model m = (c,V,σ) that tries to fit them. Note that the number of data
points is different for each data set (more pink squares than blue circles). The model
is defined by two cells given by c = [c1, c2]. These are Voronoi cells and the centres
are not necessarily at the cell centres. For each cell i and data set j, the model gives
an estimated response value Vi j. From visual inspection, it can easily be seen that
blue data points are more ‘noisy’ than the pink ones. This is quantified by the two
noise hyperparameters σ = [σ1, σ2].

4.3.2 Model parameterisation

It is assumed that the underlying trends in the data between the changepoints are

constant with depth. As change points here reflect changes in source contribution,

all the different records are modelled simultaneously. In doing so, different reponse

values for each data type are allowed for within each partition, but require that the

changepoints be in the same location for each simulation considered.

The model is partitionned by a set of n Voronoi cells representing periods of

time where the airborne material deposited in the peat is derived from a constant

source. Each cell is defined by the location of its nucleus ci with i ∈ [1, n]. This set

of nuclei is defined by a vector c = [c1, ..., cn] of variable dimension. Each cell ci is
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assigned a set of response values Vi 1, ...,Vim, one for each data type (where m is

the number of data records). Therefore, the model response values are represented

in the n×m matrix V. Figure 4.10 shows an example of a model with 2 cells in a

problem having 2 datasets. In the Hierarchical Bayes formulation used here, the data

noise is a model parameter to be determined by the data. Therefore, an estimated

value of the data errors is associated with each recorded signal. We represent the

combined set of model parameter as m = (c,V,σ) where σ is the vector of the

estimated noise standard deviation for each data type (σ = [σ1, ..., σm]). Between

and within datasets, the data errors are supposed to be uncorrelated so the data

covariance matrix is diagonal and σ represents the square roots of its diagonal

elements. Therefore, the size of the model space is n+ (m× n) +m.

4.3.3 Hierarchical Bayes reversible jump algorithm

The Hierarchical Bayes algorithm is used to infer the change points location common

to all datasets, as well as a predictive regression function and a noise level for each

dataset being considered. Here we jointly invert different datasets, and thus the

model and noise parameterisations, as well as the form of the likelihood and proposal

distributions differ from the simple regression problem presented in the first section.

The implementation of the algorithm is more complex and here we summarise the

key points.

4.3.3.1 The likelihood function

The misfit function associated with each data type j takes the form

φj(m) =

∥∥∥∥gj(m)− dj

σj

∥∥∥∥2

(4.10)

where gj(m) a vector of the estimated data for dataset j. The total misfit function

is given by

φ(m) =
m∑
j=1

φj(m). (4.11)

Hence, the multidimensional Gaussian likelihood function takes the form

p(dobs |m) =
m∏
j=1

[
(2πσ2

j )
−Mj/2

]
× exp

{−φ(m)

2

}
. (4.12)
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4.3.3.2 Proposal distributions

At each iteration, one type of move is uniformly randomly selected from the 5

following possibilities :

1. Change a response value in a partition. Randomly select a cell i from a uniform

distribution over the range [1, n]. Randomly select a data set j from a uniform

distribution over the range [1,m]. Propose a new value Vi j using a Gaussian

probability density centred on the current value.

2. Change the estimated data noise. Randomly select a data set j from a uniform

distribution over the range [1,m]. Propose a new value for σj using a Gaussian

probability density centred on the current value.

3. BIRTH. Add a new Voronoi nucleus. Its location is drawn from the uniform

prior distribution for the nuclei location (see appendix A). Then, m new re-

sponse values need to be created for the new cell. For each data type, the

value is proposed according to a Gaussian probability density with mean and

variance equal to the mean and variance of the data points within the cell.

If there are no data points in the new cell, an intuitive choice would be to

simply reject the proposal. However, in the reverse step, the proposal ratio

would prevent a cell containing no data points to be deleted. To avoid this,

the reponse value is drawn according to the prior distribution when there are

no data points in the new cell.

4. DEATH. Remove at random one cell by drawing a number from a uniform

distribution over the range [1, n]. The response values of the neighbooring

cells remain unchanged.

5. MOVE. Randomly pick one cell and perturb the position of its nucleus accord-

ing to a Gaussian distribution centred on the current position. The response

values of the cells remain unchanged.

Note that in a birth step, the proposal for the response value is made according

to the distribution of data in the new cell. This has two advantages. First, it directly

drives the random walk towards the mode of the posterior distribution and hence

increases the chances of accepting the new model. Secondly, the proposal does not

depend on the current model, which simplifies greatly the form of the acceptance

term.
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Note also that the model parameters are changed almost one by one (i.e. the

proposal distributions are only 1D probability functions). When perturbing V, after

having chosen a cell, we could have changed all the response values at the same time

(i.e. to use a m-dimensional proposal probability function). Instead, only one of the

m values is changed. Similarly, for σ, only one component of the vector is changed

at the time. The advantage of perturbing one parameter at the time is that we

can separately monitor the acceptance rates for all the parameters, and ‘tune’ the

proposal distribution in a more efficient way. For example, when changing a response

value, the variance of the proposal might need to be different between data types.

The variance of the proposals are adjusted manually by mean of a ‘trial and error’

routine in such a way that the acceptance rate for each parameter is around 44%.

Indeed, Rosenthal (2008) showed that if all the parameters are perturbed at each

step, the optimal acceptance rate is 24%, whereas when only one model parameter

is perturbed at the time, it is 44%.

A detailed description of the form of the prior and proposal distribution, as well

as the Jacobian and the acceptance rate are given in Appendix A.

4.3.4 Synthetic experiment

This multiple datasets regression method is first tested on a simple problem con-

sisting of m = 4 datasets. A synthetic model mtrue = (ctrue,Vtrue,σtrue) has been

generated with n = 9 cells, with different response values in each cell (Figure 4.11).

Although the values of the true model in each of the 9 cells differs, they are tied

together with common change points. Each dataset has been generated with a

different value for the random noise. That is,

σtrue = [2 4 6 8]. (4.13)

The locations of data points are irregularly spaced and are different between datasets.

We use these data, assuming the noise levels are unknown, to infer the distributions

on the number and locations of changepoints, the regression functions and the noise.

We first invert each data set separately as in section 4.2.3 and then carry out the

joint inversion described above.

4.3.4.1 Individual Inversion of datasets

To demonstrate the influence of different datasets, we ran each data set indepen-

dently as in section 4.2.3. Results for individual inversions are showed in Figure
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Figure 4.11: Synthetic data experiment. Inversion of individual datasets. The 4
panels correspond to our 4 synthetic datasets. The true model (red lines) consists of
four partition models sharing the same Voronoi nuclei but with different responses
values. For each of the 4 partition models, 50 data points (blue circles) have been
generated. The position in x of each data points is drawn randomly from a uniform
distribution over the range [xmin = 0, xmax = 10]. The value y equals the response
value given by the synthetic model plus a random Gaussian error which value is
unknown in the inversion. Datasets have been inverted individually, i.e. a separate
reversible jump algorithm has been applied to each dataset. The blue line is the
average solution model and the dashed light blue lines represent the 95% credible
interval.The posterior distribution on location of change points for each dataset is
shown in Figure 4.12
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Figure 4.12: Synthetic data experiment. Inversion of individual datasets. Posterior
distribution for the location of change points. Red lines show the position of change
points in the true model mtrue. A separate reversible jump algorithm has been
applied to each dataset. The 4 panels correspond to our 4 synthetic datasets shown
in Figure 4.11.
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Figure 4.13: Synthetic data experiment. Joint inversion. The 4 panels correspond to
our 4 synthetic datasets. The red line is the true model, and blue dots are the data
points. The blue line is the average model and the dashed light blue lines represent
the 95% credible interval.
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Figure 4.14: Synthetic data experiment. Joint inversion. Posterior distribution for
the change points. Red lines represent the true change points in the synthetic model.

4.11. The dashed light blue line represent the 95% credible interval. That is, at

each location in x, 95% of sampled models take a value between the lower and the

upper bound. As expected, the credible interval increases where there are few or no

data. The average solution model is quite smooth and the change points (i.e. cell

boundaries) have not really been clearly identified. This can be seen by plotting a

histogram of the location of change points obtained for each data set (Figure 4.12).

Even if those are not direct model parameters, they give useful information about

the true model and are needed for interpretation in real data experiments. Some

change points are better constrained in some datasets than in others. For example,

the change point at x = 3 is well constrained by the first dataset but invisible in the

fourth dataset. Conversely, the changepoint at x = 2.5 has been identified by the

second data set but is missing after inversion of the first dataset. By inverting the 4

datasets together, we expect to get a more precise estimation of change points and

therefore of the true model.

4.3.4.2 Joint Inversion

The 4 datasets have been inverted together as described in section 4.3.3 and results

are shown in Figure 4.13. Although the values of the regression function for each of

the 4 signals differs, they are tied together with common changepoints Clearly, the

expected model is closer to the true model than in Figure 4.11 where each dataset

has been considered separately. The 95% credible interval shows a smaller range,

meaning that the solution model is much more constrained here. This is because

when inverted jointly, the data put higher constraints on the common change points

which improves the estimation of the function value within each cell.
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Figure 4.15: Synthetic data experiment. Joint inversion. Marginal posterior dis-
tributions for the number of nuclei (upper panel) and for the values of data noise
corresponding to each data set (lower panels). Red line correspond to the values of
the true model.

Figure 4.14 shows the expected changepoint structure which is also dramatically

better resolved here. The joint inversion is able to take advantage of the extra

information provided, i.e. that changepoints are common across each of the four

signals. This example illustrates the benefit of inverting together different datasets

as the knowledge obtained is larger than the sum of information resulting from

individual inversions.

The posterior marginal for the hyperparameters (n,σ) used in our formulation

is plotted in Figure 4.15. The first panel shows the posterior distribution for the

number of cells. The inference leads to a high probability that there are 9, which

is the number of cells in the true model. This is of course, conditional on all the

model assumptions (a finite number of discrete changes with constant mean values

in each cell), although these are appropriate in this example. In practice, however, it

is unlikely that we would be primarily interested in the absolute number of change-

points, but rather in where changes are inferred to occur. Lower panels of Figure

4.15 show the marginal for the four components of σ. The four datasets have been

generated with a significantly different value of noise (from σ1 = 2 to σ4 = 8) and

the expanded Bayes formulation is able to recover the true values which is crucial

for an accurate assessment of model complexity.
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4.3.5 Results with field data

Here we apply the method to the real data series from Hongyuan showed in Figure

4.9. Figure 4.16 shows regression results for the 6 geochemical series. The average

solution curves capture the most significant changepoints, as these will appear in

many of the simulations, while less important or poorly resolved change points tend

to be smoothed out. Figure 4.17 shows the posterior probability distribution of

change points. This enables us to see the depth (and therefore the time in history)

at which there have been dramatically changes in incoming airborne material, and

how statistically significant are these changes in the data. It is interesting to note

that changepoints are better constrained for shallower events, and as we go deeper,

changepoints become less constrained.

The summary diagram of Large et al. (2009) (their figure 7) compares their data

to previous studies, and in particular of inferred periods of cold, dry (permafrost)

periods relative to warmer, wetter periods. Thus our inferred changepoints should

correspond to times when these conditions switch. Apart from the relatively low

amplitude probability changepoint inferred around 200 cm and the recent varia-

tions (<50cm, attributed to disturbance as a consequence of Yak grazing by Large

et al. (2009), the changepoints in Figure 4.17 agree well with those inferred by a

qualitative comparison of regional datasets from China by Large et al. (2009). The

palaeoenvironmental history interpreted from these data can then be linked to the

climate variations in northwest Pacific, the El Niño-Southern Oscillation, movement

of the Intertropical Convergence Zone and the East Asian Monsoon.

Figure 4.18 also shows the posterior marginals for the hyperparameters (number

of cells and data noise). Although the expected values of the hyperparameters are

of little use for interpretation, they reveal statistical characteristics of the inverse

problem. For example, it can be seen that the posterior expectation of the data noise

is different according to data types. When data are normalised to have 0 mean and

unit variance, the level of noise for the density record is expected to be around 0.15

whereas for δ13C it is around 0.75, meaning the first record is 5 times less ‘noisy’ than

the second. The expected number of cells shows the model complexity required to

fit the data. It implies 24 change points while Figure 4.17 has 13 except the cluster

at shallow depth. Again, this concentration of shallow changepoints might result

from data being perturbed by Yaks.
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Figure 4.17: Real data experiments. Joint Inversion. Posterior distribution for the
change points.

4.4 Discussion

In an inverse problem, it can be difficult to assess the correct number of unknowns

needed to fit the data to the level required by the estimated data noise. However,

it has been shown that the reversible jump algorithm naturally adapts the model

complexity in order to fit the data to the adequate level. While this property can

be seen as an advantage, the posterior solution strongly depends on the estimated

data uncertainty, and hence this can be a problem if the user knows little about

the measurements errors. Therefore, we have presented a method to expand the

conventional Bayesian accounting of data uncertainty. In this expanded formulation,

the likelihood function is defined by a hyperparameter (the standard deviation of the

measurement noise) that need not be fixed but has a prior uncertainty itself. This

noise parameter is ‘free’ during the inversion process and its posterior probability

distribution is dictated by the data. We observe that this hyperparameter not only

takes into account the measurements errors, but also the error present in the forward

theory.

In order to illustrate results, we have applied the algorithm to a simple 1D

regression problem. However, the reversible jump regression method turns out to

be particularly relevant for change point modelling of palaeoclimate time series.

Changepoints can be defined as abrupt changes in the mean signal, over depth or

time. That is, the regression function is defined in terms of a constant value between

two changepoints (i.e. a 1D equivalent to our Voronoi seismic velocity models).

Using synthetic data, we have shown that we can recover the changepoint struc-
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Figure 4.18: Real data experiments. Joint Inversion. Normalised data. Marginal
posterior distributions for the number of nuclei (upper panel) and for the values of
data noise corresponding to each data set (lower panels)

ture and the noise level reliably. When dealing with multiple datasets, we assume

that all datasets contain the same changepoint locations, but the response, and noise

level are different. This allows us to infer a changepoint structure, common to all

datasets, in terms of distributions for number and location of changepoints, as well

as the the regression function and the noise level for each data type.

The approach we present can be generalised readily to allow for different noise

levels between partitions, if required. Additionally, the different datasets can be ir-

regularly spaced in depth (or time) and there is no need for the data to be sampled at

the same depths. The details of the solution will depend on which datasets are used

(i.e. singly or jointly) and we recommend using joint modelling if the assumption

of common changepoints is considered valid. This assumption is perhaps best as-
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sessed from the understanding of geochemical behaviour in different environmental

systems. Certainly, the results are more coherent and generally easier to interpret

than by combining results from individual dataset modelling.

Application of the method to real datasets from peat core in Eastern Tibet

provide results in agreement with previous qualitative interpretations. However, our

approach provides probability distributions on all parameters and so allows us to

assess quantitatively the relative importance of the inferred change point structure.

The method is clearly an effective tool for identifying changes in the source regions

for airborne material and to the study of climate change using such deposits.

Directions for future work would be to consider transdimensional regression func-

tions (for example we would estimate the order of a polynomial in each partition and

these could be different between partitions) and to allow for uncertainty in depth

to age conversions (which is likely to be important when comparing records from

different locations either regionally or globally).



Chapter 5

Multiscale Seismic Tomography

With the Hierarchical Bayes

Methodology

5.1 Introduction

As shown in chapters 2 and 3, the main advantage of reversible jump tomography

is to have a parameterisation that is able to naturally adapt to the distribution

of information provided by the data but also to the underlying structure of the

earth. The parameterisation not only adapts to the density of rays but also to the

structures to be imaged (e.g. discontinuities). For example, the parsimonious nature

of the approach means that in a large homogeneous region of constant wave speed,

it will result in a single large cell, even if the ray coverage is dense there (a feature

that will be shown in this chapter). This is why reversible jump tomography can be

particularly useful to a problem with multiple scales, i.e where the spatial sampling

of the velocity field is highly heterogeneous or where the velocity field itself has

variables scale lengths.

It is known that fixed grid optimisation schemes that use regularisation proce-

dures give limited results in such situations. The grid size required to resolve densely

sampled areas may introduce small-scale artefacts in regions where the velocity field

is much less constrained. This effect is usually avoided by adding non data-driven

constraints on the model. However, smoothing and damping procedures are global

(responsive to the entire model) and while averaging over large areas, they make

resolvable small-scale details difficult to see, or even hide them all together. Sharp

discontinuities present in the model are typically blurred by smoothing processes

123
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into gradual transitions.

To avoid these problems, the use of wavelet decomposition in seismic tomography

is becoming popular. Chiao and Kuo (2001) used Harr wavelets on a sphere to

parameterise a 2D model of shear wave velocities in D”. They inverted S-SKS travel

times and showed that the wavelet provides a natural regularization based on density

of rays. Tikhotsky and Achauer (2008) also used Haar wavelet to build a 3D model

constrained by both controlled source seismic and gravity data. Loris et al. (2007)

used a more complex wavelet parameterization and minimized an L1-norm measure

of the wavelet coefficients in order to produce a solution model that only has details

where required by the data. However, their method is an optimization scheme that

requires tuning of a regularization parameter and the complexity of the solution

model (i.e. the norm of the wavelet coefficients) fully depends on the value given

to this parameter by the user. Many other data-driven adaptive parameterization

methods exist in the literature and are presented in chapter 1.

As an alternative to wavelet parameterization, in this chapter we address the

multiscale nature of seismic tomography with the reversible jump algorithm. We

simultaneously invert different datasets that span the Australian crust at various

scales. The Rayleigh wave group traveltime dataset from Saygin and Kennett (2008)

presented in chapter 3 is inverted in conjunction with similar cross-correlation travel

times obtained from the WOMBAT experiment which sample the southeast part of

the continent with a much higher resolution (Rawlinson et al., 2008; Arroucau et al.,

2009, 2010). The datasets used here are different both in size (i.e. the number of

picked travel times) and in the scale of the region they sample (see Figure 5.1).

Although considerable detail might be resolvable for densely sampled areas, only

relative large-scale information is available for sparsely sampled regions. The idea is

to see whether additional information can be revealed by simultaneously inverting

some data that can’t conveniently be inverted together by a standard approach.

In chapter 3, the reversible jump tomography methodology was presented and

tested on a simple synthetic problem. Then, in order to show the feasibility of

the method in seismic tomography, an application to ambient noise data was also

presented. Applying the method to a real dataset gave us additional insights into

the mechanisms involved in the inversion. Indeed, we found out that the complexity

of the sampled models (i.e. their number of cells) was extremely dependent on the

estimated level of data uncertainty given by the user. For example, when the data

noise is under-estimated, the required level of data fit is then over-estimated and

the algorithm automatically adds more cells into the model and provides a solution
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that is too complex with an artificially high data fit. As seen in chapter 4, this is

because in a transdimensional Bayesian inversion, the level of data noise directly

determines the required level of data fit, and hence the number of model parameters

in the inversion.

In this chapter, the data errors are assumed to be independent and normally

distributed with zero mean. Hence, each time we use the phrases ‘level of noise’,

‘magnitude of errors’, or ‘data uncertainty’, we always refer to the standard deviation

of an independent random Gaussian noise.

As shown in the previous chapter, most tomographic models obtained with op-

timization schemes do not directly depend on the magnitude of data noise but only

on relative uncertainties. This is why the definition of errors in seismology has been

rather qualitative than quantitative. For example, Steck et al. (1998) used relative

weights (1,2,3 and 4) to describe data noise. However, a Bayesian method requires

absolute uncertainties and it therefore becomes essential to have reliable estimates

of the noise magnitude prior to the inversion.

Seismologists have evaluated seismic travel times between pairs of stations in

correlations of ambient seismic noise and tomographically constructed impressive

maps of seismic wave velocity (Shapiro et al., 2005; Sabra et al., 2005; Yao and

Van der Hilst, 2009; Yang et al., 2006; Villasenor et al., 2007; Brenguier et al.,

2008; Arroucau et al., 2010). Although such techniques are now well established

and widely used, the uncertainties associated with these travel time are still poorly

understood. While recent studies propose to quantitatively measure the bias due

to different effects in ambient noise measurments of surface waves dispersion curves

(Weaver et al., 2009; Yao and Van der Hilst, 2009; Hubans et al., 2010), this is

ongoing work and there is presently no consensus on the way to quantify errors.

In this multiscale study, inter-station distances, ambient noise recording period

and processing techniques differ with each dataset. Therefore the uncertainty on the

computed travel times might vary considerably between datasets as well as within

a dataset.

Without any reliable estimation of data noise, it appears difficult to directly use

the conventional reversible jump algorithm described in chapter 3. Hence, we pro-

pose to apply the Hierarchical Bayes formulation developed in chapter 4 to perform

multiscale tomography of the Australian continent that does not depend on noise

estimates given by the user.

The purpose of this chapter is twofold. First, we show that the reversible jump

algorithm can be used to jointly invert different datasets in a multiple scale tomog-
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raphy problem. Secondly, we show that using a broad prior distribution for the data

uncertainties and letting the data infer its own level of noise is not only relevant but

indispensable.

We first present our three ambient noise datasets, and then establish the ne-

cessity of the Hierarchical Bayes formulation. A synthetic experiment is presented

before simultaneously inverting the three real datasets to construct a detailed map

of Rayleigh wave group velocity at 5 s for Australia.

5.2 The data

We use the 5 s Rayleigh wave group traveltimes dataset computed from ambient

noise by Saygin and Kennett (2008) (this dataset will be referred as the large scale

dataset) in conjunction with similar cross-correlation travel times obtained from

the WOMBAT experiment (see Figure 5.1). WOMBAT is an extensive program of

temporary seismic array deployments throughout southeast Australia and Tasmania.

Each array consists of between 30 to 60 short period instruments that continuously

record for between five to ten months. Over the last decade, a total of over 500 sites

have been occupied resulting in a very large passive seismic dataset that has been

used for several studies (e.g. Graeber et al., 2002; Rawlinson et al., 2006; Rawlinson

and Urvoy, 2006; Clifford et al., 2007; Rawlinson and Kennett, 2008). Recently,

Arroucau et al. (2010) used the large volume of recorded noise, which comes from

diffuse sources of seismicity such as oceanic or atmospheric disturbances, to construct

travel times between stations that recorded simultaneously. Black lines in Figure

5.1 join station pairs for which a travel time is available.

Arrays were not deployed at the same time in Tasmania and in southeast Aus-

tralia. As a consequence, there are no apparent travel times available between

Tasmanian and mainland stations. Furthermore, the average interstation distance

for the mainland arrays is about 50 km, while it is only 15 km in Tasmania. Hence

the WOMBAT data can be divided into two subsets corresponding to 2 separate

regions with different scales: southeast Australia and Tasmania.

Arroucau et al. (2009, 2010) performed ambient noise tomography using the

WOMBAT arrays (Fig. 5.1(b)). The technique used to compute the cross-correlation

of the vertical component of the background noise was slightly differrent from the

one used for the large scale dataset by Saygin and Kennett (2008). Rayleigh wave

group traveltimes were determined from the obtained cross-correlograms in a two-

stage approach. In the first stage, preliminary dispersion curves for periods ranging
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Figure 5.1: Ray coverage for the 3 datasets sampling the Australian crust at different
scales. Black lines indicate rays between station pairs (red circles) that recorded
ambient noise at the same time and for which a travel time has been measured. Top:
Large scale dataset (Saygin and Kennett, 2008). Bottom: Wombat Experiment that
can be divided into two sub-arrays (southeast Australia and Tasmania)



128 5.3 Necessity of Hierarchical Bayes

from 1 to 20 s were constructed and averaged in order to build a phase-matched

filter which was subsequently applied to the seismograms prior to a second round of

traveltime picking. Relative uncertainties for the picked travel times were obtained

following the procedure presented by Cotte and Laske (2002) and Harmon et al.

(2007). We note here that there is no information available on the data uncertainty

for the large scale dataset in Figure 5.1(a).

The travel times obtained using WOMBAT arrays were used to generate tomo-

graphic maps for each frequency with the subspace method (Kennett et al., 1988;

Rawlinson et al., 2006). Due to the difference in ray densities, data from main-

land arrays and Tasmania were inverted separately with two different grid sizes.

The internode distance for mainland regions (20 km) was four times as large than

for Tasmania (5 km). Furthermore, the regularization parameters (smoothing and

damping) were different for the two inversions (Arroucau et al., 2009) .

We carry out a joint inversion of these three datasets which have different scales

and have been processed separately. Each dataset samples a particular region (whole

of Australia, southeast Australia and Tasmania) and is characterised with a scale

length defined by its average ray length (respectively 200km, 50 km, 15km). We note

that, while the two WOMBAT datasets independently sample two separate regions

(Figure 5.1(b)), the largest scale dataset spans the whole country and includes areas

sampled by the smaller arrays (Figure 5.1(a)). Therefore, the joint inversion should

reveal more information because some areas are sampled simultaneously by different

datasets.

5.3 Necessity of Hierarchical Bayes

In chapter 3, the largest scale dataset was inverted with the conventional reversible

jump algorithm. The data errors were supposed to be independent and normally

distributed with zero mean and a fixed standard deviation σest. Thus the likelihood

probability distribution is

p(dobs |m) =
1

(
√

2πσest)N
× exp

{
−
∥∥g(m)− dobs

∥∥2

2σ2
est

}
. (5.1)

The model vector m has a variable number of components, and as seen previously,

the number of Voronoi cells needed to explain the data is directly determined by the

estimated level of data noise σest. The level of data uncertainty effectively quantifies

the information present in the data and here it naturally determines the quantity
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Figure 5.2: Conventional reversible jump tomography with ambient noise cross cor-
relation for the Australian continent (large scale dataset). Average solution model
(kms−1) obtained with four different (but realistic) values for σest.

of information that consequently should be present in the model. Since the level of

detail in the solution is automatically adjusted as a function of the required data

fit, this has been seen as an advantage over optimization based inversions where the

level of data noise is not accounted for in the inversion and the level of smoothing

manually adjusted by the user.

However, in surface wave dispersion analysis and ambient noise cross-correlation

techniques, assessment of measurements errors are not straightforward (Bensen
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Figure 5.3: Posterior distribution on the number of Voronoi cells for four values
of estimated level of data noise. As estimated uncertainty on data decreases, the
complexity of sampled model increases.

et al., 2007). Here the large scale dataset has been inverted with the conventional

reversible jump algorithm and the solution maps obtained for four different, yet

reasonable, values of σest are shown in Figure 5.2. The posterior distribution on the

number of cells for each solution is shown in Figure 5.3. There is clearly a strong

correlation between σest and the number of cells of the sampled models. As the

estimated data error decreases, more cells are added in the model and the solution

maps show more complexity. The number σest effectively behaves as a smooth-

ing parameter. In absence of information about the data noise, it is impossible to

give a preference to any of these four solutions. The details appearing in 5.2(a)

could be unreal and noise induced and data might be ‘over-fitted’. Conversely, in

Figure 5.2(d), data might have been considered too noisy and uninformative and

consequently the solution model might be missing some detail. This shows that by

choosing σest, we also choose the model complexity.

By adding the Hierarchical Bayes formulation to the algorithm and by treating

σest as an unknown, we let the data infer its own degree of uncertainty without

imposing any fixed value for the required data fit. In Figure 5.2 the model complexity

is spatially variable but the algorithm operates within a fixed data noise level. By

freeing up this constraint and treating the data variance as an unknown, we allow

the overall model complexity level to be driven by the data.

In our multiscale problem, data noise may vary between datasets resulting from
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variations of spectral and azimuthal characteristics of the noise field on different

regions and at different scales. Furthermore, travel times have been computed dif-

ferently between datasets. The Hierarchical Bayes formulation can account for this

by independently treating the uncertainty on each dataset. That is, the level of

noise of the three data type can be treated as an individual parameter to be in-

verted for. In this way, the inversion procedure can discriminate between datasets

that do not have the same level of uncertainty and information provided by each

dataset is naturally weighted.

5.4 Synthetic test

5.4.1 Experimental setup

A synthetic multiscale checkboard velocity model (Fig. 5.4) is constructed in which

the square size is approximatively proportional to the spatial sampling of the data

shown in Figure 5.1. The three regions of equal area A, B and C are examples of

regions with different square size. The areas in orange have a velocity of 2.5 km/s

and the green have a velocity of 3.1 km/s which makes the tomographic problem

fairly non-linear. Three synthetic travel time datasets corresponding to the same

configurations as shown before are constructed by using the Fast Marching Method

(Sethian and Popovici, 1999; Rawlinson and Sambridge, 2004).

As explained in detail below, we think that it is realistic to have smaller un-

certainties at shorter interstation distances. Consequently, some random Gaussian

noise has been added to the synthetic travel times with a standard deviation of 4

s for the large scale dataset and of 1 s for the WOMBAT arrays. The hierarchical

formulation will attempt to recover these noise values along with the model and its

complexity.

5.4.2 Data noise hyperparameters

We use the Hierarchical Bayes formulation and invert for two noise hyperparameters:

σ1 for the large scale dataset and σ2 for the WOMBAT arrays (southeast Australia

+ Tasmania). Hence, the likelihood function takes the form:

p(dobs |m) =
1∏N

i=1(
√

2πσ′i)
× exp

{
N∑
i=1

−(g(m)i − di)
2

2(σ′i)
2

}
(5.2)
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Figure 5.4: Synthetic velocity model (km/s) with a multiscale resolution.The three
region A, Band C have equal area but a different complexity of the velocity structure.

where {
σ′i = σ1 for data belonging to the largest scale set.

σ′i = σ2 for WOMBAT data.
(5.3)

The model parameters (m, n, σ1, σ2), where n is the number of Voronoi cells, will

be successively perturbed along the Markov chain in order to collect an ensemble of

models that samples the posterior probability distribution.

5.4.3 Results

Posterior inference was made using an ensemble of around about 4× 105 models. A

total of 96 Markov chains were run in parallel. Each chain was run for 2×106 steps.

The first million were discarded as burn-in steps, only after which the sampling



5.4.3 Results 133

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

150˚

150˚

−40˚ −40˚

−30˚ −30˚

−20˚ −20˚

−10˚ −10˚

(a)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

150˚

150˚

−40˚ −40˚

−30˚ −30˚

−20˚ −20˚

−10˚ −10˚

(b) Region A
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(c) Region B
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Figure 5.5: Average solution model obtained with the Hierarchical Bayes reversible
jump algorithm by jointly inverting the three datasets. The three lower panels show
details for Regions A, B and C.

algorithm was judged to have converged. Then, every 250th model visited was taken

in the ensemble. Three passes were made around the ‘outer loop’ of the reversible

jump algorithm with an update of the ray geometry for each pass (see Figure 3.2 of

chapter 3).
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Figure 5.6: Posterior distribution for hyperparameters σ1 (top) and σ2 (bottom) for
three ‘outer-loop’ iterations. The Posterior distribution after the first iteration is
shown in light blue, second iteration is in blue, and third iteration in dark blue. Red
lines indicate the true values of noise added to the data. The bounds of the uniform
prior distribution on the noise parameters are shown with dashed lines.

The spatial average of the post burn-in samples collected during the last iteration

is shown in Figure 5.5 and clearly recovers features of the true velocity field at

different scales. By retrieving the different sizes of the chequerboard squares, the

parameterisation has been able to adapt to the underlying structure of the model

as well as to the spatial distribution of rays, overcoming the effects of a global

regularization procedure. The solution model varies smoothly in regions of limited

coverage like region A without sacrificing any sharp or small-scale features in well-

sampled regions like region C.

The uniform prior distributions on both hyperparameters σ1 and σ2 were defined

over the range [0.5 7] s. Their posterior distribution after each ‘outer-loop’ iterations

are shown in Figure 5.6. For the last iteration, the posterior maxima are close to

the true value of data noise (relative to the wide range of the prior). The posterior

maxima for σ1 is about four times larger as σ2 which is the ratio between the two

true values of data noise. Note that the posterior maxima for both hyperparameters

would be closer to the true value if a Jeffreys prior (i.e. 1/σ)was used instead

of a uniform prior. This is because the standard deviation of the noise is a scale
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parameter, and a Jeffreys prior would be the proper non-informative prior to use.

(Note that the same is true for the number of model parameters). However in this

thesis, for simplicity matters, we always use uniform priors for hyperparameters.

With scant information on the data noise prior to the inversion, The Hierarchical

Bayes procedure recovers the standard deviations of the true data noise (4 s and

1 s) and therefore provides a parsimonious solution model with a complexity and

resolution that varies spatially and that locally conforms to the level of information

provided by the data. Indeed, the low gradients in regions sampled by the largest

dataset (e.g. region A in Figure 5.5) indicate that observations are less fitted there

than under the WOMBAT arrays (e.g. regions B and C) where the discontinuities

are better recovered. This can be seen quantitatively in Figure 5.6. Notice that

inferring the level of data noise for each dataset is tantamount to inverting for the

weighting factor between datasets in a joint inversion. This is because the estimated

noise given to a particular dataset directly weights the contribution of this dataset

to the total data fit.

5.4.4 Hyperparameters and uncertainty on the forward model

In seismic tomography, incorrect estimates of ray geometries implies an incorrect

forward model, i.e. an incorrect function g in equation (5.2). This is because by

keeping fixed ray paths, the tomographic problem is linearised in slowness around

a reference model (see chapter 3). This linear approximation on the forward model

may also contribute to the misfit. For example, let us imagine a tomographic prob-

lem where the data are perfect (no noise) but where the ray geometries used in the

inversion are completely wrong. In this case it would be impossible to perfectly

fit the data and the data misfit would not come from data errors (which are null)

but from incorrect ray geometries. Therefore, the data misfit is not only due to

the measurements uncertainty but also to the uncertainty on the forward model

(i.e. the function g). In an inverse problem the data noise is inevitably defined as

the difference between the observed and the predicted measurements (dobs− g(m)).

Therefore, the noise necessarily contains both random and modeling errors. In prac-

tice, “noise” is whatever component of the measured data that g(m) cannot account

for. See Gouveia and Scales (1998) and Scales and Snieder (1998) for a discussion.

Figure 5.6 illustrates how the hyperparameters σ1 and σ2 take into account this

‘modelling’ error. The Hierachical Bayes tomography algorithm was run over three

iterations. During the first iteration, travel times for all the sampled models were

computed assuming straight rays between station pairs. Then the average of all



136 5.4 Synthetic test

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

150˚

150˚

160˚

160˚

−40˚ −40˚

−30˚ −30˚

−20˚ −20˚

−10˚ −10˚

(a) Coarse grid: 56× 39 nodes.
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(b) Fine grid: 112× 78 nodes.

Figure 5.7: Fixed B-spline node parameterisation used for the subpsace inversion.

collected models was used to update ray geometries which were used in the next

iteration. We show in Figure 5.6 the posterior distribution on the two hyperpa-

rameters obtained after each of these three ‘outer-loop’ iterations, that is for three

different approximations of the forward model. The values taken by the hyperparam-

eters during the random walk are clearly higher that the true data noise and seem to

decrease as the iterations progress. By retracing the rays and iterating the process,

the true rays geometries can be better approximated and the expected posterior

value of the noise parameters decrease and converge towards the true value of data

noise. As ray paths are better approximated, the error present in the forward model

g decreases and contributes less to the data misfit. Hence the hyperparameters σ1

and σ2 effectively quantify the ability of the model to fit the data and therefore take

into account all contributions to the misfit.

5.4.5 Comparison with the Subspace inversion

In order to compare our result to a fixed grid optimization based inversion, we

jointly inverted the three datasets with the subspace method (Kennett et al., 1988;

Rawlinson et al., 2006, 2008). Note here that the level of data noise is not accounted

for as the problem is regularised using “ad-hoc” damping and smoothing and a

scale factor in Cd simply absorbs into the regularization parameters. Several grid

sizes were tried, and for each an iterative L-curve method (Aster et al., 2005) that

successively ‘tuned’ both damping and smoothing parameters was carried out as in

Rawlinson et al. (2006).



5.4.5 Comparison with the Subspace inversion 137

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

150˚

150˚

−40˚ −40˚

−30˚ −30˚

−20˚ −20˚

−10˚ −10˚

(a) Coarse grid: 56× 39 nodes. ε = 4.5, η = 6
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Figure 5.8: Solution models obtained with the Subspace inversion for the two dif-
ferent grid sizes shown in Figure 5.7. The smoothing and damping regularization
parameters have been chosen by successively finding the maximum curvature of the
L-curve.
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Figure 5.9: Upper panel: L-curve for the 112×78 nodes grid, ε is kept constant and
η is changed Lower panel: curvature of the L-curve. The maximum curvature gives
the corner of the L-curve and provides the optimum η.

Here we show two solutions obtained with two grid sizes as shown in Figure 5.7.

A coarse parameterisation was defined with 56 × 39 nodes, that is with a distance

separating the B-spline nodes of about 1 degree. A finner Parameterisation was

defined with a finer grid of 112×78 nodes, i.e. an internode separation of 0.45 degrees

The two solutions obtained with the two grid sizes are shown in Figure 5.8. The

coarse grid solution shown in Figure 5.8(a) recovers the amplitudes relatively well

of the true model but misses the sharp discontinuities and the small scale features

under WOMBAT arrays. By using a finer grid, in Figure 5.8(b) the velocity field in

south-east Australia is better recovered but small artefacts are introduced elsewhere

and overall the amplitudes are worse. In both cases, information seems to be lost

compared to the reversible jump solution. The coarse grid appears to be adequate

for the large scale dataset whereas the finner grid is best for WOMBAT arrays.

The level of residuals (i.e. the data misfit) for both solution is relatively similar

with an ‘rms’ value of 3.3 s for the coarse grid solution and of 3.1 s for the finer

grid. In the absence of information on the measurements errors, there is no way to

objectively quantify which of these two solutions better describes the true velocity
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model.

Figure 5.9 shows the L-curve and its curvature obtained for the finer grid in

5.8(b) for a fixed damping value (ε = 3) and with a varying smoothing parameter

η. The curve shows the model roughness against the data fit for several values of

η. The sharpness of the corner is not very well-defined, resulting from the fact that

different datasets with different properties (error and scale) are inverted together.

The Subspace inversion only uses a single global smoothing value although the opti-

mal regularization parameter may be different according to datasets. This L-curve

solution gives a mean of residual of 3.1 s (which is a weighted average between the

two true values of data noise 1 and 4), and there is no way to discriminate between

different data types.

Smoothing constraints are applied equally to all parts of the model regardless of

the actual resolution capability which depends on the ray coverage. This smooth-

ing prevents unconstrained artefacts in the poor-sampled areas but also suppresses

model details in the well-sampled areas.

Note that other methods can be applied to find the ‘optimal’ regularization pa-

rameters like the discrepancy principle (Aster et al., 2005). However, the discrepancy

principle is based on the level of measurement noise which is unknown here.

5.5 Field data application

In this section we apply the Hierachical Bayes reversible jump algorithm to the

three real datasets presented above and construct a multiscale tomographic image

of Rayleigh wave group velocities at a period of 5 s.

5.5.1 Data noise parameterization

As previously, errors are assumed to be independent and normally distributed with

zero mean and standard deviation σi. As a consequence, the data covariance matrix

is diagonal and σi represent its diagonal elements. There are 5142 path averaged

velocities available and it would be infeasible to invert for the uncertainty σi of each

of these data. Instead, the errors are modelled by only a few numbers, the definition

of which we call the noise parameterization.

In the synthetic example shown above, the data noise was parameterised with

only two hyperparameters σ1 (for the large scale dataset) and σ2 (for WOMBAT

arrays). Here, different arrays are also modeled separately but the nature of the data

may require the noise parameterisation to be slightly more complex rather than a
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Figure 5.10: Estimated travel time picking error as a function of interstation distance
for WOMBAT arrays. According to Cotte and Laske (2002) and Harmon et al.
(2007), this method of estimating uncertainties only provides relative errors between
data points.

single constant number for each array type. This subsection presents the noise

parameterization chosen for each array and explains how it is based on physical

arguments.

5.5.1.1 WOMBAT arrays

Arroucau et al. (2009) produced traveltime picking uncertainties for WOMBAT

arrays following the procedure presented by Cotte and Laske (2002) and Harmon
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et al. (2007). That is, uncertainties were defined as the half-width of the time

interval during which the amplitude of the envelope was 50% of its peak amplitude.

The aforementioned authors state that this choice for error bars sometimes results

in a large scatter that may not reflect the actual precision of the measurements.

Thus their error estimates need to be empirically rescaled, i.e. to be multiplied by

a constant factor.

These travel time errors estimates for WOMBAT arrays are shown as a function

of the angular distance in Figure 5.10. It is clear that the data noise increases and is

more scattered with increasing interstation distance. Short travel times are very well

constrained with an estimated uncertainty around 1.5 s while picked travel times for

stations that are far apart are less precise. For an angular distance of three degrees,

the estimated noise is around 3 s.

In an optimization based inversion, this estimation of relative errors would be

sufficient to weight the information brought by each data. However, as we are here

interested in absolute values, these uncertainties must be rescaled and we invert for

a scaling factor applied in front of the data covariance matrix. Therefore, the σ′i in

(5.2) take the form

σ′i = λ× σirel (5.4)

where σirel corresponds to the relative uncertainty given by the procedure described

above and shown in Figure 5.10, and λ is a model hyperparameter to be inverted

for. In this way, the algorithm uses the information available on relative errors in

conjunction with posterior inference on a scaling factor provided by the Hierarchical

Bayes procedure.

5.5.1.2 Large scale dataset

No information at all is available on data uncertainties for the large scale dataset.

Instead of parameterising the data noise with a single hyperparameter as in the

synthetic example, here we treat the noise as a linear function of the interstation

distance and use two noise parameters. Hence, for each model sampled along the

Markov chain, the likelihood in equation (5.2) is computed with:

σ′i = a× di + b (5.5)

where di is the intersation distance, and a and b are hyperparameters to be inverted

for during the inversion and that randomly vary along the chain. Modelling uncer-

tainties as a linear function of distance is a choice that can be justified with several
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arguments both empirical and theoretical.

The above trend is a common phenomenon called a proportional effect (Aster

et al., 2005). It occurs when the size of measurements errors are proportional to

the measurement magnitude. It is clearly observable in Figure 5.10 for the relative

uncertainties measured for the WOMBAT arrays. Another way to detect this effect

is to examine the behaviours of residuals as a function of the interstation distance.

We plot in Figure 5.11 the residuals obtained with conventional reversible jump

tomography (i.e. with a given fixed constant σest) for the large scale dataset. These

residuals are simply the differences between estimated travel times from Figure 5.2(c)

and observations. Although they appear random, the absolute value of the residuals

clearly seems to increase as the interstation distance increases. As expected, the

“rms” value almost equals the given estimated noise σest = 12. However, short rays

tend to be over-fitted relatively to this value whereas long rays are under-fitted.

This shows that ‘long’ rays are more difficult to fit and hence could carry more noise

than ‘short’ rays.

They are also some theoretical arguments to explain the proportional effect in

ambient noise data.

At longer distances, the coherent part of the noise between two stations is more

attenuated, and hence more recording time may be needed to construct the Green’s

function (Bensen et al., 2007). There is also a decrease in signal to noise ratio

with distance due to the smaller range of azimuths of propagating surface waves

that contribute constructively to the cross correlation and to the scattering and

multipathing along the great circle path between stations.(Harmon et al., 2007;

Weaver et al., 2009).

5.5.2 Results

The Hierarchical Bayes algorithm was run using two different definitions for the

likelihood. Datasets were first inverted with an L2 misfit measure as in (5.2), this

is the most common definition used in inversions. We also tried to define the misfit

with an L1 norm, that is :

φL1(m) =
N∑
i=1

|di − g(m)i|
σ′i

(5.6)
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Figure 5.11: Residuals against interstation distance for the solution map showed
in Figure 5.2(c), which was produced by inverting the large scale dataset with the
conventional reversible jump. The purpose of this figure is to show the correlation
between residuals and ray length.

The likelihood function associated with the L1 norm is a double sided exponential

distribution, which is comonly named a Laplacian probability distribution :

p(dobs|m) =
N∏
i=1

[
(2σ′i)

−1
]
× exp{−φL1(m)}. (5.7)

The advantage of using a Laplacian likelihood distribution is that the average so-

lution will be more outlier resistant, or robust, than the expected Earth model

obtained with a Gaussian likelihood (Aster et al., 2005).

In an optimization framework, finding the L1 norm solution is complicated be-
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Figure 5.12: Hierarchical Bayes average solution (kms−1). top: data misfit defined
with an L1 norm, i.e. the likelihood is Laplacian distribution. Bottom: data misfit
defined with an L2 norm, i.e.the likelihood is a Gaussian distribution.
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cause the likelihood function is then a non differentiable function of m at any point

where one of the residuals di − g(m)i is zero. The general problem of finding a so-

lution model that maximises equation (5.7) becomes relatively complex. However,

Monte Carlo schemes do not use derivatives and sampling a Laplacian distribution

is as straightforward as sampling a Gaussian distribution.

Figure 5.12 shows the average solution maps for both L1 and L2 misfit definitions.

Both maps were obtained after four ‘outer-loop’ iterations (i.e. four updates of the

ray paths). For each iteration, a total of 96 independent Markov chains were run

independently on separate processors and posterior inference was made using an

ensemble of 57600 models. Each chain was run for 3 × 106 steps, the first half of

which were discarded as burn-in. Then, every 250th model visited was taken in the

ensemble. In our case, it turns out that the solution model obtained with an L1

norm is relatively similar to the one obtained with an L2 norm.

The travel times used here are mostly sensitive to the structure in the first 3 km

of the crust and the solution models in Figure 5.12 resolve shallow crustal structure,

and clearly discriminate between sedimentary and hard rock regions. The results

indicate the variations in wavespeed between Archaean cratons in west Australia

and sedimentary zones in the central and eastern Australia. The seismic images are

in good agreement with results from receiver function and earthquake tomography

(Fishwick et al., 2005; Zielhuis and Hilst, 2007; Fishwick and Reading, 2008). As

the aim of this study is to concentrate on the mathematical aspects of the inverse

problem, it is beyond our scope to give a detailled geological and tectonic interpre-

tation of our results, and hence we only show results for a period of 5 s. This results

are in agreement with the first order geological map showed in Figure 3.24.

The posterior information on hyperparameters (n, λ, a, b) is shown in Figure 5.13.

Note that the collected velocity models in the ensemble solution have an average

of 1200 cells. Each cell is defined by a 3 parameters (2D location of the nucleus +

velocity) which makes the dimension of the model space around 3600. The Monte

Carlo integration of such a space is normally impossible given “the curse of di-

mensionality”. However here, due to the Voronoi parameterization, the posterior

distribution is highly redundant which reduces dramatically the apparent size of the

model space. This can be seen from a qualitative consideration. Let us assume that

we are at the maximum of the posterior. If we swap the location of two nuclei with

the velocity assigned to them, the velocity field does not change at all, although we

are at a different point in the parameter space. This shows that any velocity model

can be described by a large number of points in the model space. Furthermore, the
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Figure 5.13: Posterior probability distribution on hyperparameters for the L1 misfit
solution shown in Figure 5.12(a).

Monte Carlo integration is carried out thanks to parralelization of the code on a

super-computing facility like a ‘Beowulf‘’ cluster of computers. To give the reader

an idea of the computational cost of such an inversion, each ‘outer-loop’ iteration of

the algorithm needed approximatively 5 days, so each panel of figure 5.12 represents

about 15 days of computational time. The inferred information on the level of noise

in travel times indicates that the uncertainties provided for the WOMBAT arrays

have been rescaled to around λ = 0.28. The posterior value on the hyperparameter

a indicates that the data noise for the large scale is expected to increase 0.85 s each

time the interstation distance increases by 1 degree with an expected data error of

0.6 s at 0 degrees (see lower panels in Figure 5.13).

Figure 5.14(a) shows the error map for the L1 solution, which is constructed by

taking, at each point of the velocity field, the standard deviation of the ensemble

of sampled partitionned models. This locally shows how well the solution model in

5.12(a) is constrained. As expected, well sampled areas in Western Australia, South

East Australia and Tasmania show a lower velocity uncertainty.

It is also interesting to look at the spatial density of Voronoi nuclei across the

ensemble of models collected. The velocity field was discretised with constant square

cells of size 0.5×0.5 degrees, and Figure 5.14(b) shows the average number of Voronoi

nuclei per cell over the ensemble of collected models. Hence this map directly shows

the average size of Voronoi cells at each point of the velocity field. A large number

of small Voronoi cells are concentrated at WOMBAT arrays while there are larger
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Figure 5.14: Top: Error map (kms−1) associated with the L1 norm solution in
5.12(a). Bottom: Density of Voronoi nuclei across the ensemble of sampled models.
The colour scale represents the expected number of nuclei per pixel
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cells elsewhere. This example demonstrates the adaptive character of the Voronoi

parameterization.

It is interesting to see that the estimated error on the model is not necessarily

correlated with the density of cells. The Archaean cratons in Western Australia are

indeed well constrained without need of small cells (This area shows low values for

model uncertainty in 5.14(a) with the lowest density of cells in 5.14(b)). There is

good ray coverage in Western Australia, and the algorithm would be expected to

introduce a lot of small cells to provide details there. However, the velocity field

seems to be quite homogeneous and there is no need to introduce complexity to

properly image it. This example shows the parsimonious nature of the algorithm

and indicates that the Voronoi parameterization not only adapts to the density of

rays but also takes into account the underlying velocity structure.

5.6 Conclusion and future work

We have shown here that the reversible jump algorithm is particularly suited for

inversion of multiple datasets that sample the Earth at different scales. Synthetic

and real data examples have illustrated the adaptive character of the parameteriza-

tion which enables us to image small scale features in well sampled areas without

introducing spurious artefacts elsewhere. The level of smoothing is spatially variable

and is naturally determined by the data. Contrary to other multiscale tomography

methods, it is not only regulated by the density of rays but also by the inferred data

noise and by the structure of the underlying velocity field.

As the complexity of the model is variable, the estimated level of data noise

takes an important role in the inversion as it directly determines the number of

model parameters needeed to fit the data to the required level. We have shown

that an extended Bayesian formulation called Hierarchical Bayes can take into ac-

count the lack of knowledge on the level of data uncertainty. When assessment of

measurements errors is difficult to achieve a priori (as in ambient noise tomogra-

phy), this procedure treats the standard deviation of data noise as an unknown and

makes a joint posterior inference on both model complexity and data uncertainty.

The Hierarchical Bayes procedure turns out to be particularly useful when dealing

with multiple data types having different unknown levels of noise. With scant prior

knowledge on data errors, the algorithm is able to infer the level of information

brought by each data type and to naturally adjust the fit to different datasets.

In our ambient noise tomography application, the data noise from WOMBAT
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arrays was naturally rescaled while the noise for the large scale dataset was param-

eterised as a linear function of the interstation distance. The inversion resulted in

a parsimonious velocity map with a spatial resolution adapted to the quantity of

information present in the data.

Uncertainty assessment on apparent travel times from ambient noise cross core-

lation is an active area of research and Hierarchical Bayes could be used as a tool to

quantify the behaviour of noise with different parameters like inter-station distance,

azimuthal source distribution, or recording time.

It will be soon possible to incorporate new data from on-going deployments at

different scales in Australia. Saygin and Pozgay (2010) recently processed addi-

tional travel times that sample the crust at the continental scale. There are aslo

suplementary ambient noise data for Tasmania available (Young et al., 2010). Fur-

thermore, 67 short-period seismometers have recently been positioned across the

Gawler and Curnamona Cratons in South Australia (Salmon and Arroucau, 2010).

Station spacing was approximately 60 km and covers the area from the Streaky Bay

in the west to the New South Wales border in the east. Stations recorded continuous

three component data for a period of 6-8 months and ambient noise travel time are

currently being processed.

Another study that could be carried out in the future is to invert for anisotropy.

Arroucau et al. (2009) observed an azimuthal dependence on the path-averaged

velocities extracted from WOMBAT arrays. Therefore, instead of inverting for a

single velocity value within each cell, one would invert for 3 anisotropic parameters

within each cell (a maximum velocity, a minimum velocity, and a direction).

Possible extension also include combining other classes of seismic data like re-

ceiver functions with the ambient noise. The Hierachical Bayes procedure is expected

to be a powerful tool when used for joint inversion as it would be able to naturally

weight the contribution of different data types in the misfit function, thus removing

the arbitrary choice of a weighting factor.





Chapter 6

Transdimensional Inversion of

Receiver Functions With the

Hierarchical Bayes Algorithm

6.1 Introduction

The purpose of this chapter is to show that the class of algorithm presented in this

thesis is not restricted to seismic tomography but is rather a general approach to

inverse problems. Here we propose to apply our methodology to invert receiver func-

tion waveforms (RF), which is a well known highly non linear problem (Langston,

1979; Ammon et al., 1990).

The coda of teleseismic P-waves contains a large number of direct and reverber-

ated phases generated at interfaces beneath the receiver that contain a significant

amount of information on seismic structure. However, they are difficult to identify

as they are buried in microseismic and signal-generated noise (Lombardi, 2007).

The signal to noise ratio is usually improved by stacking seismograms from different

records recorded at a single station, but a major drawback is the introduction of

different source time functions generated by different earthquakes.

This problem is overcome by a method developed in the 1970’s following the

pioneering work of Phinney (1964) which is now widely used in seismology. The idea

is to deconvolve the vertical component from the horizontal components to produce

a time series called a ‘receiver function’ (Langston, 1979). In a receiver function

the influence of source and distant path effects are eliminated, and hence one can

enhance conversions from P to S generated at boundaries beneath the recording site.

In this chapter we present a RF inversion methodology where the number of

151
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layers defining the velocity model as well as the presumed magnitude and correlation

of data noise are variable and treated as unknowns in the problem.

6.1.1 A brief history of receiver function inversion

The receiver function waveform can be inverted in the time domain for a 1D S-wave

velocity model of the crust and uppermost mantle beneath the receiver. The RF

inverse problem is highly non-linear and Ammon et al. (1990) used synthetic tests

to show the non uniqueness of the solution. However, linear inversions were first

used due to their simplicity. Owens et al. (1984) carried out an iterative linearised

inversion where partial derivatives in the linearised equations were computed numer-

ically with a finite difference scheme. The inversion was stabilised with truncation

of small eigenvalues after singular value decomposition of the system of equations.

Kosarev et al. (1993) and Kind et al. (1995) used a linearised Tikhonov inversion

and stabilised the algorithm by penalising solutions far from a given reference model.

Linear inversion procedures based on partial derivatives are easily trapped by local

minima, and hence final models are strongly dependent on initial models. Therefore

the initial model must be close to the true velocity structure for the procedure to

be meaningful, which is difficult to ensure.

In order to deal with the inherent non-linearity of the problem, Zhu and Kanamori

(2000) and Chevrot and van der Hilst (2000) proposed a simple 2D grid search

method where only first order crustal features are inverted, namely Moho depth

and mean Vp/Vs ratio. By staking RFs from different distances and directions,

effects of lateral structural variations are suppressed, and an average crustal model

is obtained. Thus the Earth model is simply parameterised with two model pa-

rameters describing a single layer over a half-space. Consequently, this method has

been widely applied to map Moho depth and mean crustal composition (e.g. Yuan

et al., 2002; Vergne et al., 2002; Harland et al., 2009). However, this straightforward

approach is limited as it ignores more complex structures that are present in the RF

and could effectively be constrained.

As more computational power became available, Monte Carlo parameter search

methods progressively became an unavoidable alternative for RF inversion. First,

global optimization techniques such as genetic algorithms (Shibutani et al., 1996;

Levin and Park, 1997; Clitheroe et al., 2000b; Chang et al., 2004), niching genetic

algorithm (Lawrence and Wiens, 2004), simulated annealing (Vinnik et al., 2004,

2006), very fast simulated annealing (Zhao et al., 1996), or the neighbourhood algo-

rithm (Sambridge, 1999a; Bannister et al., 2003; Nicholson et al., 2005) were succes-
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sively applied to avoid solutions trapped in local minima of the objective function.

These approaches are able to efficiently search a large multidimensional model space

and provide complex Earth models that minimise a misfit measure without need of

linearisation.

As mentioned before, an inherent characteristic of RF inversion is that the prob-

lem is highly non-unique, thus two Earth models that are far apart in the model

space (i.e which have different parameter values) can provide a similar data fit. Un-

fortunately, non-linear optimization algorithms are good at searching a large space

and finding a global minima but they only provide a single solution, i.e. the best one

in some sense, which leaves open the possibility that other Earth models which are

far from this solution might also fit the data within errors. Hence a single solution

is not representative of the information brought by the data. To avoid the problem

of non-uniqueness, global optimization techniques have been used to perform an

ensemble inference, where one obtains an ensemble of models satisfying some pre-

defined criteria (e.g. the best 1000 data fitting models generated by the algorithm).

The ensemble of ‘acceptable’ models are thus plotted together for visualisation (e.g.

Piana Agostinetti et al., 2002; Reading et al., 2003; Hetényi and Bus, 2007).

However, the criteria defining whether or not a model can be accepted in the

ensemble is chosen arbitrarily. Furthermore, the statistical distribution of models

within the ensemble does not represent the objective function and therefore cannot

be directly used to infer trade-off, constraints or resolution on model parameters.

This is because most non-linear optimization algorithms do not perform importance

sampling (i.e where the frequency distribution of sampled models is proportional to

the objective function), and hence the ensemble solution strongly depends on user

choices or on the class of algorithm employed.

A typical example has been the use of the neighbourhood algorithm (Sambridge,

1999a) for RF inversion (e.g. Piana Agostinetti et al., 2002; Reading et al., 2003;

Bannister et al., 2003; Frederiksen et al., 2003; Hetényi and Bus, 2007). In a second

paper, Sambridge (1999b) invoked the Bayesian philosophy and showed how to carry

out a proper ensemble inference by means of a simple scheme that uses the ensemble

of collected models to resample the model space at a relatively low computational

cost. However, most studies that have used the neighbourhood algorithm only used

it in an optimization context and plotted the best 1000 sampled models which give

an idea of the non-uniqueness but cannot be directly used to quantify resolution

and trade-offs. The distribution of the 1000 best models depends on the tuning

parameters of the neighbourhood algorithm, which control the balance between
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exploration and exploitation of the search.

The “Bayesian neighbourhood algorithm” (Sambridge, 1999b) was used for RF

inversion by Lucente et al. (2005) and Piana Agostinetti and Chiarabba (2008).

Subsequently, Piana Agostinetti and Malinverno (2010) expanded the Bayesian for-

mulation to the case where the number of layers is not fixed in advance but is

treated as an unknown in the problem. This appears to be the first application of

transdimensional McMC to the receiver function problem. In this chapter, we follow

their lead and extend their scheme to the hierachical case where noise levels are also

treated as unknowns.

Instead of being an ensemble of best fitting models, in a Bayesian framework

the solution is an ensemble of models that represent the posterior probability dis-

tribution quantifying the degree of belief we have about the Earth structure and

composition. This probability distribution combines ‘a priori ’ information with in-

formation contained in the observed data. The best fitting models represent the

maxima of this distribution, the tails are described by poorly fitting models in the

ensemble, and the ‘width’ or the variance quantifies the constraints we have on

model parameters, i.e the uncertainty on the inferred solution. Finally, the covari-

ance of the posterior distribution shows the correlation or trade-off between model

parameters.

6.1.2 Receiver function variance

As shown in previous chapters, the estimated data noise plays a critical role in

Bayesian inference. In an optimization framework the solution does not depend on

the level of data noise (the best fitting model remains the same as we rescale error

bars around data). In contrast, with a Bayesian framework, the data uncertainty

directly determines the variance of the posterior probability distribution. In the

context of a transdimensional parameterization, the variance of data noise becomes

even more important in the inversion. This is because it quantifies the level of usable

information in the data, and thus the number of parameters needed to construct the

inferred models. As seen in previous chapters, when given a level of data noise, our

transdimensional Bayesian algorithm naturally adapts the complexity of the solution

in order to fit the data to the required level (see Figures 4.3, 4.5 and 5.2). Of course,

as more model parameters (e.g. more layers) are introduced, the data could be fit

better, but the procedure naturally prevents the data to be fit more than the given

level of noise.

Receiver functions are time series and hence the noise will be correlated from
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sample to sample by the band-limited nature of the waveforms. The uncertainty in

RFs has mainly four different origins : observational noise, errors involved in the

deconvolution, modelling errors, and incoherence between the averaged RFs due to

the different backazimuths and angles of incidence of events.

Observational errors on the seismic waveform result from background seismic

noise (microseisms) and from the instrumental noise affecting the recording. The

signal to noise ratio is expected to increase with the increasing magnitude of the

events and can be considered uncorrelated among different receiver functions. Sec-

ondly, errors occur in the deconvolution which is an unstable process. For example,

in the case of a frequency domain deconvolution, it is known that the result is heav-

ily corrupted if the numerator has significant spectral power where the denominator

is small. Then, there are assumptions made about Earth (e.g. horizontal homo-

geneous isotropic layers) that prevent us from reproducing the observed RFs. We

call ‘modelling errors’ the part of the data that cannot be modelled by our physical

approximation of the Earth. This type of noise is coherent and fully reproducible,

and following the definition of Scales and Snieder (1998), it is a part of the signal

we choose not to explain. For example, the complex structures near the receiver

produce a scattered wavefield that is not taken into account in our forward model

and which is thus considered as data noise in the inversion. Finally, the ‘observed’

Receiver function is an average over a number of events arriving at the sation from

different backazimuths and at different angles of incidence. This may imply inco-

herence between RFs due to a range of effects like anisotropy and/or dipping layers,

although this effect is typically avoided by staking waveforms from events occurring

in the same region.

As shown by Di Bona et al. (1998), all these contributions to the RF variance

may not be simply additive and an overall quantification of the noise in terms of

magnitude and correlation may be difficult. Furthermore, those different undesirable

effects are suppressed with a range of schemes where the noise reduction is even more

difficult to quantify.

The background noise is reduced by the averaging proccess involved in the con-

struction of the observed RF. The frequency domain deconvolution is stabilised with

a water-level scheme, whose parameter is chosen by trial and error (Clayton and

Wiggins, 1976). In addition, a Gaussian filter is applied to limit the final frequency

band, in order to reduce the sensitivity to fine structure (if one is interested in de-

veloping an initial first-order model of the velocity structure beneath the receiver),

or to exclude the high-frequency signals not justified by the frequency content of
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the original data (Di Bona et al., 1998). Often, outlier RFs in the stack are elimi-

nated from visual inspection and hence there is no clear quantification of the degree

of noise, although Tkalčić et al. (2010) recently proposed a statistical approach to

select coherent receiver functions from an ensemble of events.

Gouveia and Scales (1998) showed in the case of Bayesian seismic waveform

inversion that it is important to consider all the contributions to the misfit for an

accurate construction of the posterior probability distribution. This becomes even

more crucial when the number of parameters is variable, because in this case the

level and correlation of noise directly dictate the number of layers and thus the

complexity of the solution. Therefore here it becomes clear that a major issue of a

transdimensional RF inversion is the quantification of data noise.

6.1.3 The covariance matrix of data errors

In most Bayesian studies, the data noise is assumed to be normally distributed, and

accounted for in the likelihood function by means of a covariance matrix Cd. While

most optimization inversion schemes assume no correlation, different procedures

have been used to construct the covariance matrix of data errors needed in a Bayesian

inversion. Ammon (1992) estimated the noise level from the power-spectral density

in a pre-signal time window (the segment which precedes the direct P-wave arrival).

Sambridge (1999b) simply used the statistics in the ensemble of averaged RF to

produce an average, a variance and a covariance. Piana Agostinetti and Malinverno

(2010) derived the noise correlation from the averaging function which is calculated

by deconvolving the vertical component of motion from itself, using the chosen water-

level parameter. If the water-level fraction is zero, the result is a perfect Gaussian

(from the low-pass filter included in the procedure). Di Bona et al. (1998) evaluated

the noise involved in the frequency domain deconvolution by using the residuals of

a time domain deconvolution of the averaging functions from the computed RFs, in

the portion preceding the P-pulse.

These different schemes approximate different effects, and it is clear here that

there is no consensus to date on the way of measuring noise in RFs. Although these

techniques can be used to infer the level of observational and processing noise, they

do not estimate the modelling uncertainties such as errors due to assumption of a

laterally homogeneous isotropic medium. Note however that Gouveia and Scales

(1998) accounted for model discretisation errors in the case of Bayesian seismic

waveform inversion.

In this work we address the issue of noise estimation with hierarchical models



6.2 Methodology 157

which are able to consider the uncertainty the user has on errors. We use a Hier-

archical Bayes formulation where both the level and correlation of data noise are

treated as unknowns in the inversion (Malinverno and Briggs, 2004; Malinverno and

Parker, 2006). This expanded Bayesian procedure lets the data infer the required

level of data fit, and hence fully takes into account the complex combination of

effects contributing to the misfit, which can be represented with the noise parame-

terisation employed. In the context of a variable number of layers, it was shown in

the previous chapter that this is of great advantage over having fixed noise estimates

that might be erroneous.

As with previous chapters, we first present the methodology, and then test it on

some synthetic examples before considering field data.

6.2 Methodology

6.2.1 Model parameterisation

In this study the radial RF is assumed to be dominated by the response of homoge-

neous horizontal layers beneath the receiver. The geometry of layers is described by

a variable number m of Voronoi nuclei as shown in Figure 6.1. Each nucleus is given

a velocity value representing a homogeneous S-wave velocity in the layer. Hence the

seismic structure is described with 2m parameters. Note that the last layer does

not have a lower boundary and hence is a half space. The layer boundaries are

defined as equidistant to adjacent nuclei, and as shown in Figure 6.1, the mapping

of the seismic structure is non-unique. Two models with different parameterization

can describe exactly the same Earth structure. If two adjacent Voronoi cells have

the same Vs value (see third panel of Figure 6.1), then the two cells result in a

single layer, and hence we acknowledge that there is no direct relation between the

number of nuclei and the number of layers. Note that we could have easily removed

this non-uniqueness of the parameterization by simply defining layers by the po-

sition of their boundaries as in Hopcroft et al. (2007). However in the context of

an important sampling of the model space this non unique mapping can be seen

as an advantage as a given seismic structure can be approached by different paths.

That is, the best fitting seismic structure can be described by different points in

the model space, and different chains sampling independently the model space in

different regions can simultaneously approach the same solution.

As well described in Lombardi (2007), the timing of RFs are relative to the first
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Figure 6.1: The model is parameterised with a variable number of Voronoi nuclei
(red squares) which define the seismic structure (blue line). The vertical location of
nuclei define the geometry of layers which Vs value is given by horizontal positioning
of nuclei. Note that Voronoi nuclei are not necessary at the centre of layers but
rather boundaries are defined as equidistant to adjacent nuclei. Hence the mapping
is not unique, and here three models with different parameterisation and different
dimensions can map exactly the same Earth structure. This makes the posterior
probability distribution highly redundant and the sampling less ‘rigid’ as the true
velocity structure can be approached by different types of models.

P arrival and thus very sensitive to the variation of Vs relative to Vp. Note that

RFs are also sensitive to crustal attenuation. However in this study, we consider

the Vp/Vs ratio as well as attenuation coefficients fixed to a reference model and

we only invert for Vs in each layer. Note that such modelling approximations will

induce data noise, that is an inability of our model to fit observations. These errors

contribute to the misfit, and in a conventional Bayesian framework, they have to be

taken into account in the covariance matrix of data errors which might be difficult

(see Gouveia and Scales (1998) for details). For example, how would one quantify

the magnitude and correlation of data noise generated by approximating a dipping
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layer as horizontal? The advantage of the Hierachical Bayes formulation is that we

let the data infer its own degree of uncertainty.

6.2.2 The forward calculation

Our direct search algorithm requires solving the forward problem a large number of

times, that is to compute the RF predicted by a given Earth model parameterised

as described above. We use the Thomson-Haskell matrix method (Thomson, 1950;

Haskell, 1953) to compute the spectral response of a stack of isotropic layers to an

incident planar P-wave. Multiple reflections are considered with this method. Since

this way of solving the forward model is done without slowness integration, it is fast

and has been widely used in Monte Carlo algorithms (e.g. Shibutani et al., 1996;

Sambridge, 1999a). Once synthetic seismograms have been computed for different

components, receiver functions are made via frequency domain deconvolution of the

vertical component from the radial component using water-level spectral division

(Langston, 1979) with a water-level of 0.001.

6.2.3 The reversible jump algorithm

In a stimulating short essay, Scales and Snieder (1997) reviewed the philosophical

arguments that have been invoked for and against Bayesian inversion. The principal

criticism made of Bayesian inversion is that users often ‘tune’ the prior in order to

get the solution they expect. In other words, the a priori knowledge of the model is

often used as a control parameter to tune the properties of the final model produced.

As done in previous chapters, we acknowledge this weakness and set priors to uniform

distribution with relatively wide bounds.

The overall implementation of the algorithm is basically the same as presented

in previous chapters and hence it is not repeated here. However, the main difference

with previous applications of the Hierarchical Bayes inversion is that here the data

noise is correlated. The observed receiver function can be written as

dobs(i) = dTrue(i) + ε(i) i = [1, n] (6.1)

where ε(i) represents errors that are distributed according to a multivariate normal

distribution with covariance Cd, which may be poorly known or not known at all.

We recognise that the Gaussian assumption is a very particular way of seeing the

data noise that might not be appropriate. However, this is virtually the only way
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the noise is accounted for in geophysical inversions.

In the case of correlated data noise, the fit to observations is no longer defined

as a simple ‘least-square’ measure but is the Mahalanobis distance (Mahalanobis,

1936) between observed and estimated data vectors :

Φ(m) = (g(m)− dobs)
TC−1

d (g(m)− dobs) (6.2)

Contrary to the Euclidean distance, this measure takes in account the correlation

between data. Of course, if the covariance matrix is diagonal, the Mahalanobis

distance reduces to the Euclidean distance. The general expression for the likelihood

probability distribution is hence:

p(dobs |m) =
1√

(2π)k|Cd|
× exp

{−Φ(m)
2

}
. (6.3)

Note that this expression requires both the inverse C−1
d of the covariance matrix of

data errors and also its determinant |Cd|.

As explained before, our philosophy is to consider the level of data noise as

an unknown in the inversion. Therefore the main issue here is to ‘parameterise’

the covariance matrix Cd, i.e. to express it as a function of a given number of

parameters. This is a symmetric n×n matrix that is defined with (n2 +n)/2 values

which are obviously impossible to estimate separately from only n data, and hence

some assumptions need to be made. The covariance matrix can be written in terms

of a matrix of correlation R and a vector of standard deviations S

Cd = StRS (6.4)

With this decomposition, one can separate two properties of the noise, i.e its mag-

nitude and correlation (Piana Agostinetti and Malinverno, 2010). If the noise is

considered stationary, i.e. its magnitude and correlation are constant along the time

series, then Cd can be written:

Cd = σ2R (6.5)

where σ2 is the constant noise variance (i.e. the magnitude of data noise) and the
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R is a symmetric diagonal-constant or Toeplitz matrix:

R =



1 c1 c2 ... cn−1

c1 1 c1 ... cn−2

c2 c1 1 ... cn−3

...

cn−1 cn−2 cn−3 ... 1


(6.6)

where ci (i = [1, n]) describes the noise correlation between points of the series.

Thus c1 defines the correlation between two adjacent points, and more generally

ci is the noise correlation between points that are i samples apart in the series.

The key properties that we need are that the correlation function decreases with

distance, with limiting values of 1 at i = 0 and of 0 at i = ∞. This is the most

common kind of association found in time series. Then the magnitude of data noise

is quantified by the parameter σ2, and the main question now is how to parameterise

the correlation function ci and with how many unknowns? Below we present two

types of parameterisation for the noise correlation.

6.2.3.1 1st type of noise parameterization

We first propose a parameterization which is convenient to implement for our par-

ticular problem. The correlation function is simply assumed to decay exponentially

and is thus given by:

ci = ri (6.7)

where r = c1 is a constant number between 0 and 1 which describes the correlation

between two adjacent samples in the time series. This correlation function is plotted

in Figure 6.2a for different values of r, and realisations of noise with such a correlation

are shown in left panels of the same figure. Then our covariance matrix of data

errors is simply described by two unknowns σ and r that represent magnitude and

correlation of noise. They are called noise hyperparameters in the inversion since

they do not describe Earth properties.

The major advantage of such a parameterization is that the inverse and determi-

nant of Cd needed in the likelihood in (6.3) have simple analytical forms, i.e. they

can be expressed in terms of σ and r. It can be easily shown with linear algebra
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that the inverse of Cd is a symmetric tridiagonal matrix:

C−1
d =

1

σ2(1− r2)



1 −r 0 ... 0 0

−r 1 + r2 −r ... 0 0

0 −r 1 + r2 ... 0 0
...

0 0 0 ... 1 + r2 −r
0 0 0 ... −r 1


(6.8)

See Malinverno and Briggs (2004) for a detailed demonstration (note that when r = 1

all the elements of Cd are one and the inverse does not exist). The inverse covariance

matrix requires storage that is proportional to n, while computing the Mahalanobis

distance in (6.2) only requires order n operations. The likelihood in (6.3) also needs

the determinant of Cd. As showed in Malinverno and Briggs (2004), an expression

of this determinant can be obtained by writting the tridiagonal inverse covariance

matrix C−1
d = LLT , where L is a lower triangular matrix whose determinant is

the product of its diagonal elements. The final result for the determinant of the

covariance matrix is

|Cd| = σ2n(1− r2)n−1. (6.9)

Hence the two hyperparameters σ and r describing the covariance matrix of

data errors can be given a wide uniform prior probability distribution and posterior

inference can be done to infer the magnitude and correlation of data noise. The two

noise parameters will be perturbed along the transdimensional Markov chain and

each time a new value is proposed, C−1
d and |Cd| will be perturbed accordingly to

compute the likelihood value of the proposed model.

With this form of correlation, the covariance matrix of data errors is well-

conditioned and there are stable analytical solutions for C−1
d and |Cd|. However,

as shown below, this is usually not the case if we use other forms of correlation

function. Here the main advantage is that each time we want to perturb r or σ

along the random walk, we directly perturb the determinant and inverse without

having to numerically compute them from a perturbed Cd, which would be too

computationally expensive.

Finally, we detail the general form of the proposal function used to perturb

models in our Monte Carlo algorithm. At each step of the Markov chain, one

type of model perturbation is uniformly randomly selected from the following 6

possibilities, and the proposed model is either accepted or rejected according to the
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usual acceptance probability:

1. Change a velocity value in one layer. Randomly select a layer and propose a

new S-wave velocity using a Gaussian probability distribution centred in the

current value.

2. MOVE: Randomly pick one layer and perturb the position of its nucleus ac-

cording to a Gaussian probability distribution centred in the current location.

3. BIRTH: Add a new layer. Its location is drawn from the uniform prior distri-

bution and its velocity is drawn from a Gaussian distribution centred at the

current value.

4. DEATH: remove a random layer.

5. Change the noise magnitude σ. The proposed value is drawn randomly from

a Gaussian distribution centred on the current value.

6. Change the noise correlation r. The proposed value is drawn randomly from

a Gaussian distribution centred on the current value. The major advantage is

that the likelihood of the perturbed model can be directly obtained without

having to numerically estimate C−1
d and |Cd|.

The variances of the Gaussian proposal functions are parameters to be fixed

by the user. As shown before, the magnitude of perturbations does not affect the

solution but rather the sampling efficiency of the algorithm. Thus the width of

proposal distributions are ’tuned ’ by trial-and-error in order to have an acceptance

rate as close to 44% for each type of perturbation (Rosenthal, 2000).

6.2.3.2 2st type of noise parameterization

A second type of parameterization that is commonly used to model the noise in RFs

is a Gaussian correlation function

ci = r(i2). (6.10)

Here again r = c1 is the correlation between two adjacent data in the series. Note

also that r can be written as r = e
−1
2ρ2 where ρ2 is the variance of the Gaussian

correlation function, which is shown in Figure 6.2b. Realisations of such a noise for

different values of r are shown in right panels of the same figure. Compared to the

first type of correlation, here there are no high frequency components, and hence this
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Figure 6.2: Top panels (a and b) show the two types of correlation functions ci for
different values of r. These symmetric functions represent the correlation between
a point in the time series and its neighbours. In order to compare the two forms
of noise assumed in this study, we plot different realisations of noise for different
values of r and a fixed standard deviation σ = 1. Left panels (c, e and g) show
different realisations with the first type of correlation (exponential decay), whereas
noise vectors plotted in right panels (d, f, and h) are generated with a Gaussian
correlation. The second type of noise in right panels seem to be closer to what is
observed on RF before the first arrival, however this way of parameterising the noise
turns out to be more difficult to implement for a Hierarchical Bayes inversion.
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form of noise clearly seems closer to what is observed in receiver functions before the

first P-arrival. This is because a Gaussian filter is used in the deconvolution process

to remove high frequency noise that has high amplitude and which blurs the signal.

Note that a white noise which has been convolved with a Gaussian filter will have

exactly the same structure as our second type of noise.

Although this form of correlation clearly appears more relevant for our problem,

it turns out that the associated correlation matrix R in (6.6) is highly ill-conditioned,

and hence there are no stable analytical formulation for its inverse and determinant.

Therefore C−1
d and |Cd| have to be numerically computed with SVD decomposition

and removal of a large number of small eigenvalues that destabilise the process.

Unfortunately an SVD decomposition of a n× n matrix is computionally expensive

and cannot be carried out each time Cd is perturbed along the random walk. As a

result, the correlation r needs to be fixed and cannot be treated as an unknown in

the inversion. However, the magnitude of data noise σ2 can be perturbed without

having to re-invert each time Cd. This is because we have

C−1
d = (σ2R)−1 = 1

σ2 R−1 (6.11)

and

|Cd| = |σ2R| = |σ2Id| × |R| = σ2n|R|. (6.12)

In this way R−1 is computed once at the beginning and remains fixed along the

Markov chain, and the level of data noise σ2 can be treated as an unknown since

each time a new value is proposed, C−1
d and |Cd| can be computed from (6.11) and

(6.12) without having to redo any SVD decomposition.

Therefore, here one can only invert for the magnitude of noise σ2 whereas its

correlation r is predetermined by the user. Here we set the variance ρ2 of the

Gaussian correlation function equal to the variance of the low-pass Gaussian filter

(in the time domain) used in the deconvolution process.

The proposal probability distribution used to perturb the model along the ran-

dom walk is the same as previously described, but with only 5 possibilities as here

r is fixed. Note that this second type of inversion, where only the magnitude σ is

inverted for, can be carried out with any given correlation matrix R, provided that

an approximation of its inverse is given as an input of the algorithm.
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6.3 Inversion of synthetic receiver functions

We first test our algorithm with synthetic data computed from a known velocity

model made of 6 horizontal layers. Figure 6.5b shows the true model (red line),

which presents two major features often targeted by RF studies : a low S-wave

velocity layer in the crust (between 10-20 km) and a strong velocity increase at the

moho (at about 30 km depth). A synthetic receiver function is calculated from the

true model and a correlated random noise is added, which results in the ‘observed’

receiver function (see Figure 6.6). The correlation function used to generate the

synthetic noise decays exponentially, and hence inversions carried out in this section

assume the first type of correlation. The algorithm is used in parallel and about

100 Markov chains (starting at different random points) sample the model space

simultaneously and independently.

6.3.1 Generating a correlated random noise

The synthetic noise vector is constructed by drawing a sample from a n-dimensional

normal distribution with zero mean and covariance matrix Cd. The covariance

is defined with the first type of correlation with values σtrue = 2.5 × 10−2 and

rtrue = 0.85 (these values will be unknown in the inversion). To draw values from

the distribution, the covariance matrix Cd is diagonalised by SVD decomposition:

Cd = USVT . (6.13)

In this way, the Gaussian function is expressed in a coordinate system where it

is uncorrelated, i.e. with a diagonal covariance matrix S. Since Cd is symmetric

and positive-definite, U and VT (= U−1) represent the bijective transformation and

its inverse used to change coordinate systems. In the new coordinate system, the

Gaussian distribution is uncorrelated, and then it is straight-forward to draw a

random vector Sε, where ε = (ε1, ..., εn)T is a vector of independent normal random

numbers with zero mean and variance one (i.e. a Gaussian white noise time series).

Then, this noise vector is rotated back into the physical coordinate system.

ε = USε (6.14)

Our noise vector ε generated in this way is shown in Figure 6.4d. In order to

verify the procedure, we generated in this way a large number N of noise vectors

εi and numerically tested that they were statistically distributed according to our



6.3.2 Sampling the prior 167

covariance matrix, that is

Cd = 1
N

N∑
i=1

εiε
t
i (6.15)

Note that a more common way to produce correlated noise is to simply apply a

low-pass filter to a white noise (e.g. a Gaussian filter). However, as we are here

interested in the noise covariance, our scheme is advantageous since we are directly

able to generate a noise with any given covariance.

6.3.2 Sampling the prior

Before inverting the synthetic receiver function, we tested the ability of the algorithm

to sample a known transdimensional distribution. A convenient way to do that is to

set the likelihood to unity and check if the collected models are distributed according

to the given prior probability distribution (see section 3.1.6). In our case, we do a

similar test where estimated data are set to zero and observations are equal to the

generated noise plotted in Figure 6.4d. In this way, any proposed model in the

Markov chain predicts a null data vector and residuals are kept equal to the noise

along the random walk independently of the model parameters. Residuals are thus

constantly equal to the value one would obtain if the proposed model was the true

model. Hence, the algorithm is run such that the likelihood distribution is constant

in regard to the Earth parameters, and it samples the prior distribution as it is

directly proportional to the posterior. However, the likelihood in (6.3) depends on

the noise hyperparameters and is maximised when σ and r take the true values used

to generate the noise.

Figures 6.3 and 6.4 show results for this test. The frequency distribution of

sampled values for S-wave velocities at depth (Figure 6.3a) shows that the algorithm

samples the imposed distribution, i.e. a uniform 2D distribution over the range

[Vmin = 2, Vmax = 5] and [Dmin = 0, Dmax = 60]. The average velocity value

sampled at each depth is shown in Figure 6.3b, and as expected, it is a constant line

with value equal to the mean of the uniform prior distribution on the velocity. The

frequency distribution of the sampled transition depths (i.e. the layer boundaries),

plotted in Figure 6.3c, correctly follows their uniform prior distribution between

0 and 60 km depth. Finally, Figure 6.4a plots the histogram on the number of

layers across the ensemble of collected models, which is uniform between 2 and 60

interfaces, as required by the prior.

The posterior distribution on hyperparameters σ and r are shown in Figures
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Figure 6.3: (a) Prior sampling of the S-velocity in the Depth interval considered.
(b) mean value of the velocity parameter, as retrieved at the end of the sampling.
(c) Prior sampling of the Depth of interfaces in the model.

6.4b and 6.4c together with the true values and with the uniform prior distributions

in light blue. Note that those are equivalent to the posteriors on hyperparameters

conditional on the true values of model parameters, i.e when residuals equal the data

noise. Here one can clearly see that the algorithm is able to recover the magnitude

and correlation of the noise from a wide poorly informative prior. Notice however

that the maximum value of the posterior distribution for noise parameters are not

exactly at the true values showed by red lines in Figures 6.4b and 6.4c. This is

because the noise vector we have used is only a realisation of a random process. By

repeating this experiment a large number of times or by simply using a much longer

noise vector, we observe that the posterior expectation on hyperparameters tends

towards the true values of noise magnitude and correlation.
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6.3.3 Sampling the posterior distribution

In the next step, the full synthetic receiver function is then inverted and posterior

inference on model parameters is carried out. A burn-in period that allows the

Markov chains to converge is used before samples start to be collected to construct

the ensemble solution. As described in previous chapters, the convergence of the

algorithm is monitored with a number of indicators such as acceptance rates, and

sampling efficiency is optimised by adjusting the variance of the Gaussian proposal

functions.
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Figure 6.5: (a) Posterior probability distribution for Vs at each depth. Red shows
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plotted as a red line. (b) Grey line: mean of the posterior at each depth. Black
line: maximum of the posterior at each depth. Red line: true velocity model. (c)
Posterior probability for the position of discontinuities.

Figures 6.5-6.8 show results for this test. The observed RF is shown in blue in

Figure 6.6d, and it is constructed by adding the noise vector in Figure 6.4d to the

‘true’ RF (corresponding to the true model) in red in Figure 6.6e. The black line is

Figure 6.6e shows the RF estimated from the best fitting model in the ensemble.

At each depth, local information about the velocity model is represented by a

complete distribution which can be seen as a marginal distribution of the posterior.

These marginal posteriors are shown as a colour density map in Figure 6.5a together

with the true model in red (The marginal posterior at 31km depth is plotted in

Figure 6.7). It is tantamount to picking a depth and asking the ensemble solution
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Figure 6.6: (a), (b), and (c): posterior distribution for the three hyperparameters,
i.e. number of layers, standard deviation of data noise, and correlation of data noise.
(d) Observed receiver function ( i.e. true RF + synthetic noise). (e) Red: Synthetic
receiver function. Black: RF estimated from the best fit model in the ensemble.

what velocity constraint is given by the data. The marginal posterior is constructed

from the density plot (i.e. the histogram) of the ensemble of models in the solution.

This density plot is used as a way to visualise the ensemble solution, and it is

particularly usefull to picture the constraint we have on Vs. The Vs parameter is

better constrained at shallow depths (the marginal posterior in Figure 6.5a as a low

width and reaches the highest amplitudes).

Then the marginal posterior at each depth can be used to construct specific
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1D models. In Figure 6.5b are plotted the posterior mean model (grey line) which

follows the mean of the marginal with depth and the maximum of marginal posterior

(MMP) model (black) which follows the maximum of the marginal with depth. Note

that these models are merely properties of an ensemble of models that have variable

parameterisations, and hence they are ‘parameterless’ as they cannot be constructed

with our initial Voronoi parameterization. Note also that the MMP model is different

from the best fitting model in the ensemble, or from the model that maximises the

posterior distribution. Here it is clear that those models provide a good estimation

of the true model in red.

The RF inverse problem is highly non linear and hence the posterior is far from

being a unimodal Gaussian distribution. To illustrate this, we have plotted in Figure

6.7 the marginal distribution on Vs at 31 km depth. This crosssection corresponds

to the dashed line in Figure 6.5b, and it is close to the Moho transition in the true

model. As a result, the marginal distribution is influenced by velocity values in the

two layers on each side of the Moho, and it has two maxima about this two values.

Here one can see that the mean value is not representative of the true model whereas

the maximum is closer to the true velocity in the lower interface. That is why the

posterior mean model (grey line in Figure 6.6b) is smooth whereas the posterior

maximum model is better at showing sharp transitions.

If one is interested in assessing the number and position of seismic discontinuities

beneath the seismic station, it is possible to examine the ensemble solution from a

different point of view and to plot the marginal posterior distribution on the location

of interfaces. Figure 6.5c shows a histogram of interfaces depth in the ensemble

of models. For each depth, this function represents the probability of having a

discontinuity, given the data. This provides useful information on the location of

transitions, which can be unclear in other plots. Note that the positions of interfaces

are not direct model parameters, and hence this marginal distribution is constructed

by projecting the ensemble of sampled Voronoi models into a different model space.

Here the five transitions present in the true model are well recovered, and again

shallower structures are better resolved than deeper ones. Posterior information

on the complexity of the seismic structure is obtained by plotting the histogram of

the number of layers in the sampled models (see Figure 6.6a), and most models in

the ensemble have 6 layers, which is the correct number of cells present in the true

model.

Figures 6.6b and 6.6c show the marginal posterior on the noise parameters to-

gether with prior distribution in light blue. The true values σtrue and rtrue used to
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Figure 6.7: Marginal posterior for Vs at 31 km depth (i.e. slightly after the Moho
discontinuity). The distribution is clearly influenced by both Vs value taken above
and under the discontinuity. Grey line shows the mean value. Black line is the
maximum of the marginal and the red line is the true value (i.e. the Vs value in the
first layer of the mantle in the true model).

generate the synthetic noise are showed in red. With minimal information on data

errors, and on the complexity of the true model prior to the inversion, the Hierar-

chical Bayes procedure has been able to infer the magnitude and correlation of data

noise, which quantified the required level of data fit, and thus the number of model

parameters needed in the inversion.

Finally, we give an example of trade-off assessment between two model param-

eters, that is Moho depth vs S-wave velocity in the last layer of the crust. Again,

here the depth of an interface is not strictly a model parameter but a useful feature

that can be picked in any sampled model. The crust-mantle transition is defined

in the Voronoi models as the closest discontinuity to 30 km. We aknowledge that

this definition for the Moho is loose, and instead we could choose to look at the

strongest discontinuity near 30km depth. However here the main purpose it to

illustrate trade-off assesment between selected seismic properties.

Figure 6.8 shows the 2D marginal posterior for the selected pair of parameters,

which is obtained from the 2D histogram over the ensemble of models. White

dashed lines shows the true values for both parameters. In this way one can extract

accurate and quantifiable information from the ensemble about the constraints and
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to 30 km in the Voronoi models). White dashed lines show true values for both
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correlation for these parameters. This trade-off means that data are fit equally well

when Moho is deeper and Vs is higher or vice-versa. This result is not surprising in

that the thicker the crust gets, the slower the entire model, which is compensated

by increasing the velocity in the crust.

6.3.4 Solution with incorrectly assigned noise level

In order to demonstrate the necessity of using hierarchical models when carrying

out a transdimensional inversion, we repeat the experiment of the previous section

with exactly the same data vector but using a fixed covariance matrix of data errors.

As shown in the introduction of this chapter, estimating the data noise in receiver

functions is a difficult task and in the absence of information, practitioners may

well use erroneous estimates. We place ourselves in such a situation and perform

a conventional transdimensional inversion using a noise covariance matrix with in-

correct values of σ and r. Here σ has been underestimated by 40% (we use 0.015

instead of 0.025), and r has been overestimated by 8% (we use 0.92 instead of 0.87).

In this test the observed RF remains as previously and we observe the effects of

misestimating the data noise.

Figures 6.9 and 6.10 show results for this test. Since the magnitude of noise

has been underestimated, the required level of data fit is increased, and thus the

algorithm automatically adds more cells than necessary and ’overfits’ the observed
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Figure 6.9: Same as Figure 6.5 but here the noise parameters σ and r used in the
inversion are fixed and respectively under and over estimated. The posterior approx-
imation of the true model is clearly worsened.(a) Posterior probability distribution
for Vs at each depth. Red shows high probabilities and blue low probabilities. The
synthetic true velocity model is plotted as a red line. (b) Grey line: mean of the
posterior at each depth. Black line: maximum of the posterior at each depth. Red
line: true velocity model. (c) Posterior probability for the position of discontinuities.

RF by fitting the noise. The expected number of layers in the model in Figure 6.10a

is 15, which is the double of the true value. This results in an inferred model that is

overcomplicated, and Figure 6.9c shows that location of transitions are not recovered

as well as with the Hierarchical Bayes where correct values of noise are inferred by the

algorithm. Even though features are generally degraded in comparison with Figure

6.5, the most resolvable elements (i.e. location of shallow discontinuities) remain

resolvable. This example demonstrates that, by allowing the user to formulate the
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Figure 6.10: Same as Figure 6.6 but here σ is fixed and underestimated and r is
fixed and overestimated. (a) Posterior distribution on the number of layers. Red
line shows the true value. The model complexity is overestimated. (b), and (c):
fixed values used in the inversion for the standard deviation of data noise σ, and
correlation of data noise r. True values are showed in red. (d) Observed receiver
function ( same as in Figure 6.6d). (e) Red: Synthetic receiver function. Black: RF
estimated from the best fit model in the ensemble.

full state of uncertainties he has about data noise, a hierarchical Bayesian procedure

provides better estimates than when the data noise is mis-estimated.

6.4 Inversion of field measurements

To demonstrate how our transdimensional inversion algorithm fares on real data, we

apply to broadband waveforms from a station located in Qiongzhong (19.039ÂoN,
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Figure 6.11: Global distribution of events for which broadband data were available
at the station.

109.843ÂoE) which is situated on the Hainan island in China (Qiu et al., 2002).

Although it is an island station, the quality of waveforms is rather good for a receiver

function study. Previous studies have shown the crust beneath eastern China is as

thin as 31-33 km and the underlying Moho is relatively flat and sharp (Chen et al.,

2010; Tkalčić et al., 2010).

The map in Figure 6.11 shows the station location and the distribution of

recorded earthquakes. Most events are coming from Japan and Aleutian islands

from the northeast, and from Tonga-Fiji and Indonesia regions from the southwest.

There is also some minor seismicity coming from the Middle East and the Indian

Ocean. More than 50% of earthquakes (157 out of 302 events) are located in the

South-East, i.e. between 90 deg and 180 deg. Only events from this direction are

used in this study, and their ray path projections are highlighted in red in a more

detailed map shown in Figure 6.12. For each event, all three components were cut

for the same time window and rotated to radial and tangential. Finally, radial

receiver functions were calculated using the time domain iterative deconvolution

procedure proposed by Ligorria and Ammon (1999) for a low pass Gaussian filter

with parameter a = 1.0 and a = 2.5 (results will be show for both values).

Compared to the widely used ’water-level’ deconvolution technique in frequency

domain (Clayton and Wiggins, 1976), this method can produce more stable results,

but at the price of longer computation times. It is also free of complex relationships

between water-level values and the resulting receiver functions.

The 157 obtained receiver functions are not all coherent, resulting from events



178 6.4 Inversion of field measurements

102˚

102˚

104˚

104˚

106˚

106˚

108˚

108˚

110˚

110˚

112˚

112˚

114˚

114˚

116˚

116˚

14˚ 14˚

16˚ 16˚

18˚ 18˚

20˚ 20˚

22˚ 22˚

24˚ 24˚

QIZ

Figure 6.12: A detail from Figure 6.11, with highlighted ray paths used to obtain
an averaged receiver function shown in Figure 6.13.

arriving at the station with different angle of incidence. In order to select receiver

functions that are mutually coherent and could be stacked to determine the observed

RF, we follow the statistical approach developed by Tkalčić et al. (2006), and carry

out a coherency test and empirically determine 2 factors. The first factor is the

cross-correlation coefficient limit, above which we call two RFs similar (for this

parameter we choose 0.9). The second factor is the percentage of all other RFs from

the starting group of RFs that must be correlated at 0.9 level or higher. For RFs

produced with a Gaussian filter with parameter a = 2.5, we choose 5%. In other

words, we select only those RFs that correlate at 0.9 or higher with at least 5% of

all other RFs.

The starting group of RFs is showed in black in Figure 6.13, the selected are in

blue, and final average of all selected RFs is in red. For a = 2.5, only 40 waveforms

out of 157 satisfy this criterion. So, each one of 40 selected RFs correlates at 0.9

level with at least 5% of all RFs (Figure 6.13). For 8%, we would get 21 mutually

coherent waveforms and for 10%, we would only get 7 coherent waveforms which are

obviously not enough to create a robust average. For a = 1.0, waveforms are much

more coherent as we get 59 mutually coherent waveforms for only a factor of 25%

(Figure 6.13).

The average RF is used as the data vector in our algorithm. In the direct search

algorithm, synthetic RFs predicted by proposed models are computed as mentioned
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Figure 6.13: Observed receiver functions for the two types of filter used in the
deconvolution process. Black lines show RFs for each of the 157 recorded events.
Blue lines represent the selected coherent RFs used to produce the average RF in
red.

above with a simple frequency domain deconvolution technique and a water level of

0.001 (Helmberger and Wiggins, 1971). We acknowledge here that the observed and

estimated data vectors in our inversion are computed with different deconvolution

methods which provide slightly different results. Ligorria and Ammon (1999) and

Lombardi (2007) showed, that in the presence of noise, frequency domain deconvo-
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lution shows long period instabilities with amplitude distortion visible within the

first 10 s. Although it would be more appropriate to use an iterative time domain

deconvolution for the forward calculation of receiver functions, the discrepancy be-

tween the two deconvolution methods, and hence the inability for estimated data

to fit the observations will be treated here as errors from the forward model and

automatically included in the noise covariance matrix by our noise hyperparameters.

The inversion was run with both types of noise parameterization presented in

section 2.3. The first type of noise parameterization enables us to invert both for

magnitude and correlation of noise, although the correlation function ci = ri erro-

neously assumes high frequency components in the noise which have obviously been

cut by the Gaussian filter used in the deconvolution. In the second type of inversion,

a Gaussian correlation function ci = r(i2) is kept fixed and we only invert for the

magnitude of data noise. In this case the correlation function is simply taken equal

to the impulse response of the Gaussian low-pass filter with parameter a used in the

deconvolution, thus r is empirically kept fixed equal to r = e−a
2
.

Figures 6.14 to 6.17 show results obtained with a = 1.0 for both types of noise

parameterisations. Although results appear consistent, the two types of noise param-

eterization clearly result in different posterior distributions, and this demonstrates

the importance of assumptions made about the data noise. Figures 6.18 to 6.21

show results for a Gaussian filter of a = 2.5. In this case the observed RF contains

more high frequencies and it is thus modeled with more layers. Note that in the

case of first type of noise parameterization, the expected values for the hyperparam-

eter r are close to one (Figures 6.14c and 6.18), with the maximum of the marginal

posterior for r asymptoting towards one. When r tends towards one, the estimated

data noise becomes more and more correlated, although high frequency components

remain present in the noise (see Figure 6.2). When r = 1 all the elements of Cd are

one and the inverse does not exist.

In the case of the second type of noise parameterization, the parameter r has been

fixed at the outset, and to validate this choice, we compare the residual waveform

(observed - predicted) for the best fitting model in the ensemble solution, to a

realisation of a random noise generated from the inferred expected Cd. If the choice

of r is adequate, the noise realization and residuals should have similar properties

(i.e. variance and smoothness). This is because the data noise is defined as the

component of the measurements that cannot be explained by g(m). From visual

inspection, one can see in Figure 6.22 that residuals and estimated noise are similar

for a=2.5. While this is a qualitative test, note that posterior error validation
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Figure 6.14: (a) Posterior probability distribution for Vs at each depth. (b) Grey
line: mean of the posterior at each depth. Black line: maximum of the posterior at
each depth. (c) Posterior probability for the position of discontinuities.
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Figure 6.15: (a), (b), and (c): Posterior distribution for the three hyperparameters,
i.e. number of layers, standard deviation of data noise, and correlation of data noise.
(d) Thick grey line: Observed receiver function. Black line: RF estimated from the
best fit model in the ensemble.
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Figure 6.16: (a) Posterior probability distribution for Vs at each depth. (b) Grey
line: mean of the posterior at each depth. Black line: maximum of the posterior at
each depth. (c) Posterior probability for the position of discontinuities.
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Figure 6.17: (a), (b), and (c): Posterior distribution for the two hyperparameters,
i.e. number of layers, standard deviation of data noise (note that here the noise
correlation r is kept fixed during the inversion. (d) Thick grey line: Observed
receiver function. Black line: RF estimated from the best fit model in the ensemble.
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Figure 6.18: (a) Posterior probability distribution for Vs at each depth. (b) Grey
line: mean of the posterior at each depth. Black line: maximum of the posterior at
each depth. (c) Posterior probability for the position of discontinuities.
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Figure 6.19: (a), (b), and (c): Posterior distribution for the three hyperparameters,
i.e. number of layers, standard deviation of data noise, and correlation of data noise.
(d) Thick grey line: Observed receiver function. Black line: RF estimated from the
best fit model in the ensemble.
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Figure 6.20: (a) Posterior probability distribution for Vs at each depth. (b) Grey
line: mean of the posterior at each depth. Black line: maximum of the posterior at
each depth. (c) Posterior probability for the position of discontinuities.
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Figure 6.21: (a), (b), and (c): Posterior distribution for the two hyperparameters,
i.e. number of layers, standard deviation of data noise (note that here the noise
correlation r is kept fixed during the inversion. (d) Thick grey line: Observed
receiver function. Black line: RF estimated from the best fit model in the ensemble.
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can also be carried out by applying quantitative tests to residuals resulting from

one model (see Dettmer et al., 2009). However, whether an individual model can

be considered representative of an ensemble solution is questionable. Hence, data

residuals can be examined based on ensembles, that is a large random subset of the

posterior can be used to compute a large sample of data residuals, which are then

used to examine the assumptions about data errors (Dettmer et al., 2010).

Almost all the computed S-wave velocity models are characterised by a very low

velocity uppermost structure with a mean Vs = 1.75 km/s in the first kilometer

of the crust. These low values are interpreted to be related to the presence at

surface of either unconsolidated sediments or weathered exposed rocks. The upper-

crust (0-15 km) shows complex structures and is characterised by the presence of

velocity inversions. The S-wave velocity in the second part of the crust (15-30 km)

is relatively constant with a mean V s = 3.75 km/s, although the inversion models

also show some small velocity steps at these depths. For a = 1.0, it is possible to
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identify a relatively sharp crust-mantle transition around 31 km depth. However,

for a = 2.5, the Moho is characterised as a gradient transition zone over a depth

range of 30-35 km. The inferred seismic models are fairly consistent with the results

of other studies (Qiu et al., 2002; Chen et al., 2010; Tkalčić et al., 2010). Although

our analysis of the geological implications is rather limited, the aim here is to argue

that the ensemble solution produced by the transdimensional approach is in good

agreement with the main geological features beneath the receiver.

6.5 Conclusion and future work

Teleseismic receiver function analysis is now a well-established seismological tech-

nique, and a large number of schemes have been implemented in last 30 years to

infer seismic structure beneath broadband stations. Here we have presented a novel

RF inversion method where a Bayesian formulation is employed to produce a mul-

tidimensional posterior probability distribution, and each model parameter can be

described with a full probability density function. While the variance of the poste-

rior can be used to assess uncertainty on model parameters, the posterior covariance

directly quantifies the trade-offs (i.e. the correlation) between parameters. Hence

the posterior can be examined from several point of views to infer different proper-

ties of the model (e.g. depth of transitions, mean Vs value at one depth, number of

layers, etc).

The parameterization of the Earth is adaptive and information is extracted from

an ensemble of models with a variable number of layers. While Piana Agostinetti

and Malinverno (2010) published a transdimensional inversion of receiver function

data, here we have extended their formulation by allowing estimation of measure-

ment noise properties. Therefore, beyond the transdimensional character of the

inversion, an original feature of this study is that little needs to be assumed about

the covariance matrix of data errors. This matrix plays a capital role in a Bayesian

problem, since it directly determines the form of the posterior. The noise covariance

represents the level and correlation of data noise, which in the case of RFs can be

difficult to quantify. However in this work, instead of using an inaccurate approx-

imation of data noise, our philosophy is to let the data infer their own degree of

uncertainty by treating the magnitude and correlation of noise as unknowns in the

problem.

We have here focused on the mathematical problem and illustrated the algo-

rithm in simple situations where a number of approximations have been made. We
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only inverted for S-wave velocity structure while considering Vp/Vs ratio constant

throughout the velocity model. An obvious improvement of the algorithm would be

to also consider Vp/Vs ratio in each layer. In addition, layers have been assumed

homogeneous and horizontal and it would be possible to treat anisotropy, slope of

discontinuities, and lateral variations as unknowns in the problem. These improve-

ment could be achieved by using densely spaced arrays, by including earthquake

waveforms from a wide range of backazimuth, and using more sophisticated forward

solvers.

Furthermore, there have been recent studies in which RFs have been jointly

inverted with surface waves dispersion for crustal structure (e.g. Ozalaybey et al.,

1997; Du and Foulger, 1999; Julia et al., 2000; Chang et al., 2004; Lawrence and

Wiens, 2004; Yoo et al., 2007; Tkalčić et al., 2006). These methods have the advan-

tage of improved sensitivity to absolute velocities compared to RFs alone. However,

a general drawback is the definition of the misfit function. The Hierarchical Bayes

procedure is expected to be a powerful tool in this situation, as it would be able to

naturally weight the contribution of differrent data types in the likelihood function,

thus removing the arbitrary choice a weighting factor.





Chapter 7

Conclusions

In this work we have presented a general class of algorithm for geophysical inversion.

Detailed summaries and discussion of results have been given at the end of each

chapter. The goal of this concluding chapter is to view the method from a broader

and more global perspective. We first present the main results of the thesis. Then we

briefly describe how these objectives were obtained, and give directions for further

work.

7.1 Thesis Achievements

The major issue tackled in this thesis is the need of arbitrary choices made before

a geophysical inversion is carried out. These choices are multiple and can take dif-

ferent forms. They include the form of the parameterisation used to discretise the

Earth, the number of model parameters, the level of smoothing, or the required data

fit (which is directly related to the definition of data noise). These quantities define

the formulation of the inverse problem and differ between specific situations. Tradi-

tionally, they are arbitrarily determined at the outset or iteratively tuned manually,

and by definition affect the final solution.

The work carried out in this thesis consisted in combining different novel method-

ologies recently developed in the area of statistics such as hierarchical models, Par-

tition Modelling or the reversible jump McMC algorithm, in order to construct a

general geophysical inversion strategy that addresses the issue presented above. The

philosophy behind our strategy consists in letting, where possible, the data natu-

rally decide these choices that otherwise need to be arbitrarily made at the outset.

Instead of rigidly defining the problem, that is precisely specifying what we want to

extract from the data, here our philosophy of problem solving can be summarised

189
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by the sentence : “Let the data themself formulate the problem and tell us what

information can be inferred, and how it should be done”. This includes letting the

data assess which part of the data is retrievable information and which part is noise,

and hence how much information should be present in the model. We acknowledge

that the retrievable information in the data does not depend on the data alone, but

also on the forward modeling function g(m) and the associated assumptions (e.g.,

that the Earth is one-dimensional, that seismic rays are straight, etc.).

Therefore, we have built a method, where the Earth is parameterised using

Voronoi cells with mobile geometry and number. The size, position and shape of

the cells defining the Earth model, as well as the data uncertainty, are directly

determined by the data.

We first showed in the case of 2D tomography, that the method gives promising

results in situations where the ray coverage is far from ideal, as it performs better

compared to standard methods that use regular parameterisations. Calculations of

uncertainty estimates is also possible, and experiments with synthetic data suggested

that they are a good representation of the true uncertainty. Computational cost

issues have been treated and the algorithm has been optimised and parallelised.

Subsequently, the methodology was applied to seismic tomography in a situation

where both the data density and the underlying structure itself contain multiple

length scales. Three ambient noise datasets that span the Australian continent at

different scales were simultaneously inverted to infer a multiscale tomographic image

of Rayleigh wave group velocity for the Australian continent. We showed that the

procedure turns out to be particularly useful when dealing with multiple data types

that have different unknown levels of noise as the algorithm is able to naturally

adjust the fit to different datasets and to provide a velocity map with a spatial

resolution adapted to the quantity of information present in the data.

In order to show that the class of algorithm presented in this thesis is not re-

stricted to seismic tomography but is rather a general approach, two applications

to 1D problems were considered. The first was an application to palaeoclimatol-

ogy, where the goal is to infer the position and number of abrupt changes in noisy

geochemical records. The second was an application to receiver function waveform

inversion. A particular feature of receiver functions is that they are times series,

and hence the data noise is correlated. We showed how to ‘parameterise’ the data

covariance matrix and invert for both the magnitude and correlation of noise. The

algorithm was first tested on synthetic data contaminated by correlated synthetic

noise, and then applied to data collected by a broadband station located on the
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Haiman island in China.

7.2 The alliance of two concepts

These objectives have been achieved mainly by the combination of two approaches,

each already widely used in geophysical inversion, but rarely employed together,

namely adaptive parameterisation and Bayesian inference.

7.2.1 Adaptive parameterisation

Partition Modelling addresses the issue of discretising the Earth as part of the mod-

elling process. The model is parameterised with a variable number of Voronoi poly-

hedra with mobile geometry throughout the inversion. The advantage of Voronoi

cells is that they enable a sophisticated discretisation of the Earth model (with com-

pletely unstructured polygons) by means of an ingenuous parameterization simply

made up of a few coordinates (i.e.Voronoi nuclei). To our knowledge, this is the first

time in seismic tomography that the Voronoi nuclei used to discretise the velocity

field are treated as direct model parameters in the inversion.

A simple analogy can be made with photography, where there is a trade-off be-

tween the quantity of light arriving at the lens and the pixel size. When a lot of light

is available, pixels can be small and good resolution can be achieved. Conversely, a

picture taken in the dark will require larger pixels in order to better absorb light.

New cameras measure the luminosity prior to taking the picture, and automatically

adapt the resolution. However the size of pixels is constant across the image. In this

analogy, our scheme would locally measure the luminosity (quantity of information),

and consequently locally adapt the size of pixels.

In this thesis we have shown that a Voronoi adaptive parameterization provides

a flexible and powerful mechanism for tomographic problems when combined with

an ensemble inference approach.

7.2.2 Bayesian Inference

At the same time, a Bayesian framework is used to formulate the problem probabilis-

tically. We use hierarchical models which allow us to treat the number of parameters,

as well as the level of data noise, as unknowns in the inversion. The Hierarchical

Bayes model is called ‘hierarchical’ because it has two levels. At the higher level

are the ‘inversion parameters’ such as the model complexity, or the required level



192 7.2 The alliance of two concepts

of data fit. These are not directly linked to Earth properties and are called hyper-

parameters. At the lower level are the ‘physical parameters’ that represent Earth

properties, whose probability is conditional on hyperparameters. Thus, a transdi-

mensional posterior probability distribution is defined both for hyperparameters and

the Earth model.

The reversible-jump McMC algorithm (Green, 1995) is employed, and allows effi-

cient exploration of the model space by sampling models of varying dimension. The

output of the scheme is an ensemble of models from which properties like a spatial

average, variance, or position of discontinuities can be extracted. In this thesis we

have explored ways of extracting tomographic images from trans-dimensional en-

sembles of solutions. Note here that Markov chains is not the only way to carry

out nonlinear Bayesian inference. Algorithms such as particle filters (van Leeuwen,

2009) or neural network modelling (Meier et al., 2007, 2009; Maiti and Tiwari, 2010)

can be used alternatively. Although these methods give good model uncertainty es-

timates and can be used in the case of adaptive parameterization, Markov chains

remain the only tool to date for transdimentional inference.

7.2.3 Notable features of the methodology

The alliance of the two methodologies (i.e. the dynamic parameterisation together

with the Bayesian framework) allows the emergence of some remarkable and prof-

itable features, which were experienced in the 1D case by Malinverno (2002) and

Malinverno and Leaney (2005), but which are totally novel in tomography.

First, the mesh self-adapts to the information contained in the data. Cell bound-

aries are free to move during the sampling process, and adapt to the structural fea-

tures of the unknown model. This adaptive character of the parameterization also

takes into account the spatial variability of the information provided the data, and

is able to spatially adapt the mesh resolution (i.e. the cell sizes). In this way, small

scale features can be imaged in well sampled areas without introducing spurious

artefacts elsewhere.

Therefore the method is particularly suited to problems with multiple scales,

i.e where the spatial sampling of the Earth is highly heterogeneous, or where the

unknown model itself has variables scale lengths. Contrary to most adaptive-mesh

tomographic schemes, here the mesh is not solely regulated by the density of rays,

but instead the Bayesian procedure is able to infer the quantity of retrievable in-

formation present in the data in any region of the velocity field, and to provide a

parsimonious solution. For example, a large homogeneous region of constant wave
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speed, will be imaged with a single large cell, even if the ray coverage is dense there.

Second, explicit regularisation of the model parameters is not required, thus

avoiding global damping procedures and the subjective process of finding an optimal

regularisation value. In this sense, the approach can be viewed as a self-regularising

inversion algorithm. Furthermore, the level of smoothing is spatially variable and is

determined by the data.

Third, when posterior expectations (mean and variance) are computed, models

with variable geometries overlap providing a smooth solution map (or curve in 1D)

that has a resolution better than any single model. This allows the construction of a

continuous smooth map giving accurate estimation of the Earth model uncertainty.

Moreover, the model parameterisation involves fewer parameters to achieve better

resolution than a fixed grid. We call this feature ‘super-resolution’. The average

over all models in the ensemble seems to better capture the variability in the range

of possible solutions than a single (e.g. best data fitting) model. The discontinu-

ities of individual Voronoi models are smoothed out in the ensemble solution but

the discontinuities required by the data are constructively reinforced. In this way,

sharp transitions present in the unknown Earth model can be imaged without being

smoothed.

Finally, the transdimensional approach naturally adapts the model complexity

(the number of cells or layers) in order to fit the data to the adequate level given

by the data noise. In this way, the procedure ensures that parsimonious model

descriptions are preferred without imposing an additional simplicity (smoothing)

requirement. The uncertainty due to the noise in the data is also accounted for pre-

cise identification of any non-uniqueness or poor resolution of the model parameters.

But beyond the transdimensional character of the inversion, an original feature

is that little needs to be assumed about the data noise, which is often difficult to

quantify. Hierarchical models can take into account the lack of knowledge on the

level of data uncertainty. The magnitude and correlation of noise are treated as

unknowns in the problem, and the algorithm is able to infer the level of information

brought the data, and hence to naturally adjust the model complexity.

7.3 Creating and analysing ensembles of solutions

The approach developed in this work can also be viewed as the combination of two

separate and independent procedures. The first is the transdimensional Bayesian

inference, where the problem is to produce a large number of models with different
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parameterisations and variable complexities that describe the posterior probability

distribution. This distribution represents the complete solution of the inverse prob-

lem, it mathematically contains all the available information and uncertainty (lack

of information) about the Earth model, as well as the correlation between parame-

ters. However, the final goal of geophysical inversion is to produce an interpretable

solution, and a single Earth model is often useful for practitioners who are not fa-

miliar with Bayesian methods. This is a reason why optimisation methods are often

preferred by Earth scientists (the true Earth is unique). As shown in Figure 7.1

with the regression problem, the ensemble solution is hardly readable and cannot

be directly interpreted.

Hence, the second part of the procedure consists in extracting interpretable in-

formation (e.g. a solution velocity model, a regression function or the location of

discontinuities) from this ensemble of models, that is to construct a comprehensive

view of the Bayesian solution. In Bayesian studies, the standard way of extracting

information from the ensemble is to use marginal and conditional distributions on

model parameters (Box and Tiao, 1973; Sivia, 1996). A problem with transdimen-

sional models is that the mapping of a same model parameter may differ between

dimensions. It is therefore necessary to consider combination of parameters, or even

functionals of parameters which retain their interpretations as the sampler moves

along the model space. For example, the location of discontinuities (i.e. the cells

boundaries) can be obtained from the set of Voronoi nuclei. They are likely to be

largely located at interfaces (or change points) present in the Earth model, and

hence provide a physical comprehension of the Earth structure.

To obtain a ‘solution model’ for analysis purpose, the partition models are first

projected into the ‘physical Earth’ domain. In tomography, sampled models are

projected into the space domain, where the parameters represent the velocities in

each pixel of the velocity field. Then all the models are simply averaged, i.e. a

solution map is constructed by taking the mean of the distribution of values at each

point across the Earth model. Instead of the mean value, another possibility is to

take the mode of the distribution of values at each pixel. Figure 7.2 shows examples

of different solution models that can be constructed from the ensemble solution in

Figure 7.1.
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Figure 7.1: Ensemble solution representing the posterior probability distribution.
This is the complete solution of the inverse problem but is difficult to interpret.

7.4 Criticisms and limits of the method

There is a relative freedom in the design of solution models. For example, instead

of using the whole ensemble of collected models, one can first compute the expected

value of hyperparameters (expected number of cells or expected data noise) and

construct a solution map by only averaging models that take these hyperarameters

values. This is known in the statistical literature as ‘Empirical Bayes’. Alternatively,

instead using expected values of hyperparameters, one can take as well the mode of
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Figure 7.2: Different projections of the ensemble solution. In Left panels solution
models are obtained considering the full ensemble solution. Right panels show ‘Em-
pirical Bayes’ projections, where only partition models with maximum posterior
complexity are considered (i.e. only Voronoi models with 5 cells). a) and b) Mean
value of the marginal posterior at each depth. c) and d) Maximum value of the
marginal posterior at each depth. e) and f) best fitting Voronoi model (posterior
maximum).
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the marginal distribution on hyperparameters.

There is a large number of ways of producing interpretable models, and the

choice is purely arbitrary. Different choices may lead to different Earth models,

and hence to different interpretations. Therefore it can be argued that there is

an inherent contradiction in our method, as the initial philosophy is to remove any

subjective choices made at the outset. Indeed, as we introduce hyperparameters and

produce a parsimonious ensemble solution that accounts for all states of uncertainty,

the geometry of model space becomes very complex, and then arbitrary projections

of the posterior need to be chosen for interpretation. However, it is important to

emphasise that in our formulation, the only veritable solution to the inverse problem

is the posterior distribution, and any single model derived from the ensemble must

be seen by interpreters only as a projection of the posterior solution.

Apart from the above conceptual consideration, the main criticism that can be

made to our methodology is the computational price. If the Earth is defined by too

many parameters, the number of partition models needed to sample the posterior

distribution becomes colossal. And since the predicted data have to be computed

each time a model is proposed, our algorithm become computationally prohibitive.

In each chapter of the thesis, we have compared our results to solutions obtained

with conventional inversion schemes, and showed that our algorithm performed bet-

ter. However we did not compare computational times, and here it is necessary to

recognise that, even parallelised and optimised, our method is between 1 and 3 order

of magnitude slower than standard linearised inversions.

7.5 Other potential applications of the ideas in

this thesis

The approach presented in this thesis is a general inversion strategy, and it has a

wide range of possible applications in geosciences (given that the model space is not

too large). From a statistical inversion point of view, the main difference between

different geophysical inverse applications lies in the description of the forward prob-

lem. Since our method is based on a direct parameter search algorithm, the forward

problem is a separate routine independent of the algorithm. Therefore our method-

ologies can be immediately applied to any geophysical inverse problem, provided

that the Earth is parameterised with Voronoi cells, where each cell is associated

with a given number of constant geophysical properties.

The method is efficient in automatically picking discontinuities present in the
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data, and provides a solution model that can exhibit at the same time low gradients

and sharp discontinuities. In this sense it appears to have considerable potential in

Earth sciences, given the dual continuous/discrete nature of the Earth.

Geophysical inverse problems that seem appropriate here include resistivity sur-

veying with vertical electric souding or electromagnetic surveys (EM) (Lowrie, 1997),

inversion of frequency-domain airborne electromagnetic (AEM) data (e.g. Brodie

and Sambridge, 2006, 2009), or seismic cross-hole tomography (Nicollin et al., 2008).

Furthermore, in potential fields studies, complex polyhedra are often used to describe

anomalous bodies underneath the earth surface (e.g. Luo, 2010), and our Voronoi

parameterisation approach could be used for imaging geophysical objects, where the

number and shape of objects are unknown.

In this thesis, applications have been proposed in 1D (palaeoclimate regression

models and receiver functions) and 2D (seismic tomography). However, all the

algorithms presented for the 2D case are known to work in 3D, and hence the

approach could be implemented in 3D, at increased computational cost.

We also anticipate that the hierarchical McMC is ideally suited for joint inver-

sions, such as for example DC resistivity and gravity anomaly (e.g. Santos et al.,

2006), or surface wave dispersion and receiver functions (e.g. Ozalaybey et al., 1997;

Du and Foulger, 1999; Julia et al., 2000; Chang et al., 2004; Lawrence and Wiens,

2004; Yoo et al., 2007; Tkalčić et al., 2006). A general drawback of joint inver-

sions is the definition of the likelihood function, where different likelihood functions

resulting from different geophysical data are involved. The Hierarchical Bayes pro-

cedure is expected to be a powerful tool in this situation, as it would be able to

naturally weight the contribution of differrent data types in the likelihood function,

thus removing the arbitrary choice a weighting factor.

7.6 Potential improvements

Finally, we give three examples of potential improvements that could be brought to

the algorithm.

7.6.1 An alternative measure of efficiency

A common issue of McMC is the choice of transitions that will optimise the per-

formance of the algorithm, that is sampling efficiency and speed of convergence to

stationarity. As seen before, the overall performance depends on the form of transi-

tions, and proposal functions are either manually or automatically ‘tuned’ in order
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to achieve the best performance. Hence the way of quantifying efficiency (how fast

the model explores the model space) is an essential component of the algorithm.

Traditionally, efficiency is measured with the rate of acceptance (i.e. the ratio

of accepted models to iterations). However, the acceptance rate is a monotonous

function (always decreasing) of the variance of proposal functions, and hence sam-

pling efficiency cannot be directly optimised, and the Goldilocks principle must be

used (i.e. the acceptance rate must remain within certain margins, as opposed to

reaching extremes).

Instead of using the acceptance rate, an alternative way of measuring efficiency

would be to directly measure the speed of displacement along the model space, that

is the average distance travelled per iteration. A distance between two consecutive

models d(mi,mi+1) needs to be defined. For transdimensional moves, the distance

can be defined as a spatial least square measure. Each time a proposal is rejected,

the Markov chain remains at the same place and d(mi,mi+1) = 0. Hence, for a

given number N of iterations, the ‘velocity of exploration’ is given by :

velocity =
1

N

N∑
i=1

d(mi,mi+1) (7.1)

In this way, the velocity increases with the size of perturbations, but if the variance of

proposal functions becomes too large, too many models are rejected, which makes

the velocity smaller as there are more zeros in the average. With this type of

measure, the algorithm efficiency can be directly optimised by seeking the model

transitions that maximised the velocity of exploration.

7.6.2 Treating the forward model as an unknown

In our hierarchical model, the data noise and the model parameterisation are variable

and unknown in the problem. However, the forward model, i.e. the function g linking

the model to the data, is given by the user and remains fixed during the procedure,

although in the tomography problem ray geometries are iteratively recomputed. The

forward model is the mathematical formulation of our understanding of geophysical

processes (e.g. the propagation of seismic waves), it is based on assumptions and

contains errors. An idea would be to push the Bayesian formulation further and

take into account the uncertainty one has about the forward model. That is, the

forward model could be parameterised with hyperparameters which would be given

a prior probability density, and which would be perturbed along the Markov chain.
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The idea of solving the forward and the inverse problem at the same time is

called the ‘all-at-once’ approach and was first proposed in an optimization context

by Haber and Ascher (2001). Subsequently, Haber et al. (2004) applied it to inversion

of 3D electromagnetic data. In our 2D tomography problem, the ray paths could

be characterised by a given (or variable) number of ‘ray parameters’, and one would

obtain for the geometry of each ray a posterior distribution. In the case of finite

frequency surface wave tomography (e.g. Yoshizawa, K. and Kennett, B. L. N, 2004),

it could be interesting to compare this distribution to the ‘banana doughnut’ shaped

sensitivity kernels.

7.6.3 Treating the data smoothing as an unknown

In the case of inversion of receiver functions, the data vector is a low pass filtered

waveform. A Gaussian filter is applied to the time series in the frequency domain to

remove high frequency components which have a low signal to noise ratio. This data

smoothing is controlled by the width a of the Gaussian filter. It has been shown in

chapter 6 that solution models strongly depend on this parameter a. A possibility

could be to expand our hierarchical model and consider the data smoothing param-

eter a as a hyperparameter. If a is too small, the receiver function is smooth, has

a low resolution and some infomation about the velocity model is lost during the

filtering process. Conversely if a is too large, the signal has not been filtered enough

and the receiver function is buried into high frequency noise. Hence the parameter

a directly determines the form and quantity of data noise. We have seen that the

hierarchical algorithm is able to descriminate between signal and noise and to use

the maximum level of retrievable information in the data. Therefore, by letting the

parameter a to be an unknown in the problem, we could let the data infer its own

level of smoothing.



Appendix A

Hierachical Bayes regression

algorithm for multiple data sets

A.1 The prior

Since we have independent parameters of different physical dimension, the prior can

be separated into two terms,

p(m, n) = p(m | n)p(n). (A.1)

Where p(n) is the prior on the number of partitions. We choose for that a uniform

distribution over the interval I = {n ε N | nmin < n ≤ nmax}. Hence,

p(n) =

{
1/(∆n) if n ε I

0 otherwise
(A.2)

where ∆n = (nmax − nmin).

Given a number of cells n, the prior probability distributions for the model

parameters are independent from each other, and so can be written in separable

form

p(m | n) = p(c | n)p(V | n)p(σ | n). (A.3)

For the response values V, the prior for each data type j is specified by a constant

value over a defined interval J j = {v ε < | V j
min < v < V j

max}.
Hence we have

p(Vi j | n) =

{
1/(∆jv) if Vi j ε J

j

0 otherwise
(A.4)

201



202 A.2 proposal distributions

where ∆jv = (V j
max−V

j
min). Since the response values in each cell and for each data

type are independent,

p(V | n) =
m∏
j=1

n∏
i=1

p(Vi j | n) (A.5)

Similarly, for σ, the prior for each data type is specified by a uniform distribution

over a defined interval Kj = {σ ε < | σjmin < σ < σjmax}.
Hence we have

p(σj | n) =

{
1/(∆jσ) if σj ε K

j

0 otherwise
(A.6)

where ∆jσ = (σjmax − σ
j
min). Since the estimated noise for each data type is inde-

pendent,

p(σ | n) =
m∏
j=1

p(σj | n). (A.7)

For mathematical convenience, let us for the moment assume that the Voronoi

nuclei can only take place on an underlying grid of finite nodes defined byN = nx×ny
possible positions. For n Voronoi nuclei, there are

(
N !

n!(N − n)!

)
possible configu-

rations on the N possible points of the underlying grid. We give equal propability

to each of these configurations. Hence,

p(c | n) =

[
N !

n!(N − n)!

]−1

. (A.8)

Therefore, after substituting (A.5), (A.7), and (A.8) into (A.3), the full prior prob-

ability density function can be expressed as

p(m) =


n!(N − n)!

∆nN !
∏m

j=1[∆jσ(∆jv)n]
if (n ε I and ∀(i j) ε [1, n][1,m], Vij ε J

j and σj ε K
j)

0 otherwise

(A.9)

A.2 proposal distributions

At each iteration, one type of move is uniformly randomly selected from the 5

following possibilities (each having equal probabilities) :

1. Change a Value. Randomly select a cell (i j) from a uniform distribution over



A.2 proposal distributions 203

[1n]× [1m] and propose a new value V′i j using

qv1(V′i j | Vi j) =
1

θ1

√
2π

exp

{
−

(V′i j −Vi j)
2

2θ2
1

}
. (A.10)

Hence we have

V′i j = Vi j + u× θ1 (A.11)

where u is a random deviate from a normal distribution N(0, 1) and θ1 is the

standard deviation of the proposal. All the other model parameters are kept

constant, and hence this proposal does not involve a change in dimension.

2. Change the estimated data noise. Randomly select a data set j from a uniform

distribution over the range [1,m]. Propose a new value σ′j using

qσ(σ′j | σj) =
1

θ2

√
2π

exp

{
−

(σ′j − σj)2

2θ2
2

}
. (A.12)

3. BIRTH : create a new cell. Add a new Voronoi centre with the position c′n+1

found by choosing uniformly randomly a point from the underlying grid that

is not already occupied. There are (N − n) discrete points available. Then,

m new response values (V′n+1 1, ...,V
′
n+1m) need to be created for the new

cell. For each data type, the new value is proposed according to a Gaussian

probability density qv2(V′n+1 j|dj, c′) with mean and variance equal to the mean

and variance of the data points within the cell.

qv2(V′n+1 j|dj, c′) =
1

Θ
√

2π
exp

{
−

(V′n+1 j − L)2

2Θ2

}
. (A.13)

where L and Θ are functions giving the mean and standard deviation of data

points of type j within cell i, given the Voronoi tessellation c’. If there are

no data points in the new cell, the reponse value V′n+1 j is drawn according to

the prior distribution.

4. DEATH. Remove at random one cell by drawing a number from a uniform

distribution over the range [1, n]. The response values of the neighbooring

cells remain unchanged.

5. MOVE : Randomly pick one cell (from a uniform distribution) and Randomly
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change the position of its nucleus according to

qc(c
′
i | ci) =

1

θ3

√
2π

exp

{
−(c′i − ci)2

2θ2
3

}
. (A.14)

A.3 Proposal ratios

For the proposal types that do not involve a change of dimension the distributions are

symmetrical. That is, the probability to go from m to m′ is equal to the probability

to go from m′ to m. Hence

qc(c
′
i | ci) = qc(ci | c′i)

qσ(σ′j | σj) = qσ(σj | σ′j)
qv1(V′ij | Vij) = qv1(Vij | V′ij)

(A.15)

and in all three cases the the proposal ratio equals one.

q(m |m′)
q(m′ |m)

= 1. (A.16)

For a birth step, the algorithm jumps between a model m with n cells to a model m′

with (n + 1) cells. Since the new nucleus c′n+1 is generated independently from the

new response values (V′n+1 1, ...,V
′
n+1m) then proposal distributions can be separated

and we write
q(m |m′)
q(m′ |m)

=
q(c | m′)

q(c′ |m)
.
q(V |m′)
q(V′ |m)

. (A.17)

Specifically we have the probability of a birth at position c′n+1 which is given by

q(c′ |m) = 1/(N − n), (A.18)

the probability of generating a set of new velocity values (V′n+1 1, ...,V
′
n+1m) is given

by

q(V′ |m) =
m∏
j=1

qv2(V′n+1 j|dj, c′) (A.19)

the probability of deleting the cell at position c′n+1 (reverse step)

q(c |m′) = 1/(n+ 1) (A.20)
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and the probability of removing a velocity when cell is deleted (reverse step)

q(v |m′) = 1. (A.21)

Substituting these expressions in (A.17) we obtain(
q(m |m′)
q(m′ |m)

)
birth

=
(N − n)

(n+ 1)
∏m

j=1 qv2(V′n+1 j|dj, c′)
. (A.22)

For the death of a randomly chosen nucleus, we move from n to (n − 1) cells.

Suppose that nucleus, ci is removed. In this case, a similar reasoning to the birth

case above leads us to a proposal ratio (reverse to forward) of

(
q(m |m′)
q(m′ |m)

)
death

=
n
∏m

j=1 qv2(Vi j|dj, c)

(N − n+ 1)
(A.23)

where (Vi 1, ...,Vim) are the response value of the cell deleted.

A.4 The Jacobian

In our case, the Jacobian only needs to be calculated when there is a jump between

two models of different dimensions, i.e. when a birth or death is proposed (Green,

1995). If the current and proposed model have the same dimension, the Jacobian

term is 1, and can be ignored.

For a birth step, the bijective transformation h used to go from m to m’ can be

written as

m = (c,V, uc,uv)←→ (c,V, c′n+1, V
′
n+1 1, ..., V

′
n+1m) = m′. (A.24)

The random variable uc used to propose a new nucleus cn+1 is drawn from a discrete

distribution defined on the integers [0, 1, ..., N − n]. The random numbers uv =

(u1
v, ..., u

m
v ) are drawn from Gaussian distributions depending on the distribution of

data points.

V ′n+1 j = L+ ujv (A.25)

where L is the average of data points of type j in the new cell and ujv is drawn from

Gaussian distributions centred at 0.

Note that the model space is divided into a discrete space (nuclei position) and

a continuous space (response values). uc is a discrete variable used for the transfor-
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mation between discrete spaces and uv is a vector of continuous variable used for the

transformation between continuous spaces. (Denison et al., 2002) showed that the

Jacobian term is always unity for discrete transformations. Therefore, the Jacobian

term only accounts for the change in variables from

(V,uv)←→ (V,V′n+1 1, ...,V
′
n+1m) = V′. (A.26)

Hence, we have

|J|birth =

∣∣∣∣ δ(V′)

δ(V,uv)

∣∣∣∣ = 1. (A.27)

So it turns out that for this style of birth proposal the Jacobian is also unity.

Since the Jacobian for a death move is |J|death = |J−1|birth, this is also equal to one.

Conveniently, then the Jacobian is unity for each case and can be ignored.

A.5 The acceptance probability

The probability of accepting the proposed model is given by

α(m′ |m) = min

[
1,
p(m′)

p(m)
× p(dobs |m′)
p(dobs |m)

× q(m |m′)
q(m′ |m)

× |J|

]
(A.28)

We now substitute expressions for each proposal ratio into (A.28) to get final

expressions for the acceptance probability in each case. For the moves that do not

include a change in dimension, we have seen that the proposal ratio becomes unity.

Hence for the three cases the acceptance term is simply given by the ratio of the

posteriors

α(m′ |m) = min

[
1,
p(m′)

p(m)
.
p(dobs |m′)
p(dobs |m)

]
. (A.29)

Since the dimension of the model does not change, according to (A.9), the prior

ratio is either null or unity and we have

α(m′,m) =

{
min

[
1, p(dobs|m′)

p(dobs|m)

]
if ∀(i, j) ε [1, n][1,m], V′i j ε J

j)

0 otherwise
(A.30)

We now consider now the 5 possible moves described earlier. For changes in response
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values and nuclei positions, we have

α(m′,m) =

{
min

[
1, exp

{
−φ(m′)−φ(m)

2

}]
if ∀(i, j) ε [1, n][1,m], V′i j ε J

j)

0 otherwise

(A.31)

When perturbing the estimated noise parameters σ, the normalizing constant in

the likelihood is changed and

α(m′,m) =

{
min

[
1,
∏m

j=1

(
σj

σ′
j

)
Mj exp

{
−φ(m′)−φ(m)

2

}]
if ∀j ε [1,m], σ′j ε K

j)

0 otherwise

(A.32)

Note that φ(m′) and φ(m) incorporate σj and σ′jÂ respectively.

For a birth step, according to (A.9), the prior ratio takes the form

(
p(m′)

p(m)

)
birth

=


n+ 1

(N − n)
∏m

j=1[∆jv]
if
(
(n+ 1) ε I and ∀j ε [1,m],V′n+1 j ε J

j
)

0 otherwise.

(A.33)

After substituting (4.12), (A.22), and (A.33) into (A.28), the acceptance term for

the birth step reduces to

α(m′,m) =

 min
[
1,
∏m

j=1

[
1

qv2(V′
n+1 j |d

j ,c′)∆jv

]
. exp

{
−φ(m′)−φ(m)

2

}]
if A

0 otherwise

(A.34)

with

A =
(
(n+ 1) ε I and ∀j ε [1,m], V′n+1 j ε J

j
)

(A.35)

For the death step, the prior ratio in (A.33) must be inverted. After substitut-

ing this with (4.12) and (A.23) into (A.28), and after simplification we get an the

acceptance probability

α(m′,m) =

{
min

[
1,
∏m

j=1

[
qv2(Vi j|dj, c)∆jv

]
. exp

{
− (φ(m′)−φ(m))

2

}]
if (n− 1) ε I

0 otherwise

(A.36)

where i indicates the cell that we remove from the current changepoint model. c.
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