
J Seismol
https://doi.org/10.1007/s10950-019-09857-8

ORIGINAL ARTICLE

Quantifying location uncertainties in seismicity
catalogues: application to the Pyrenees

Antoine L. Turquet ·Thomas Bodin ·
Pierre Arroucau ·Matthieu Sylvander ·
Kevin Manchuel

Received: 4 January 2019 / Accepted: 25 July 2019
© Springer Nature B.V. 2019

Abstract Linearised least-square inversions are com-
monly used to locate small-magnitude earthquakes, as
they are fast and simple to implement. These meth-
ods are based on minimising the root-mean-square
(RMS) of travel time residuals to find the best-fitting
location coordinates and origin time. There are two
well-known problems that affect location estimates:
(1) the linearisation of the inverse problem causes
dependence on the initial guess; (2) regularisation
produces solutions that depend on the chosen damp-
ing coefficient and biased uncertainty estimates. In
this work, we propose a method to quantify unbiased
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uncertainties with a series of synthetic tests. We first
generate travel times for events from all possible coor-
dinates on a 3D grid and then locate each synthetic
event by using HYPOCENTER software (this can be
applied to any location method). We show that the
uncertainties estimated from the standard linearised
inversion are strongly underestimated, and we propose
another method to compute uncertainties. We produce
a 3D error map, where at each grid point we plot
the location error, defined as the distance between the
event at the given grid point and its inverted location.
Moreover, we show how this error map varies with the
quantity and quality of the data, and with user-defined
parameters such as maximum event–station distance
or station corrections. We also provide a methodology
to tune the seismic location parameters and calcu-
late the corresponding uncertainties for users who are
using similar earthquake location software. Finally,
we present an application to the Pyrenean region.

Keywords Earthquake location · Seismicity
catalog · Uncertainty quantification · Velocity model

1 Introduction

Location of seismic sources is necessary for many dif-
ferent geological and geophysical studies (Lee et al.
2014). These studies require information such as loca-
tion, origin time and magnitude of past earthquakes,
which are available in earthquake catalogues produced
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by seismological observatories. Even though there are
a number of location algorithms that are available
today (see Lomax et al. 2000 for a review), linearised
iterative methods (LIM) are still being widely used
for constructing seismicity catalogues. Several studies
have been conducted on the comparison of differ-
ent earthquake location methods (e.g. Thurber 1986;
Lomax et al. 2009; Richards et al. 2006; Turkaya et al.
2016; Turquet et al. 2019) but an unbiased quantifi-
cation of error in source location estimations done
using LIMs remains challenging (Pavlis 1986, 1992).
It is clear that linearised iterative methods require bet-
ter uncertainty quantification since they are widely
used by different communities for different purposes.
For example, earthquake catalogues are used as an
input for seismic hazard assessment. A poor seismic-
ity catalogue lacking uncertainty estimates may lead
to an underestimated hazard assessment, and may have
a direct societal impact (Abrahamson and Bommer
2005). Thus, in this work, we propose a simple method
to quantify uncertainties in earthquake source estima-
tions obtained from LIMs (Lee and Lahr 1972; Lahr
et al. 1994, 1999; Kissling et al. 1995; Lienert et al.
1986). We focus our work on the Pyrenean region.
The Pyrenees is a slowly deforming mountain range
having continuous low magnitude seismicity, which
makes it a good choice for our study. The uncer-
tainty in earthquake source locations—estimated via
LIMs—is present due to three main factors as given
in Pavlis (1986): (1) seismic measurement errors, (2)
errors in the modelled arrival times and (3) non-
linearity of the problem. First of all, seismic measure-
ment errors depend on the level of signal to noise ratio
of the observed waveforms and on the method used
to pick arrival times. Secondly, the errors in modelled
arrival times depend on the theory and velocity model
used for computation. It is well known that the errors
in the model can lead to systematic biases in the esti-
mations (Jordan and Sverdrup 1981; Thurber 1992;
Billings et al. 1994). Pavlis (1986) has shown that the
conventional methods of obtaining error ellipses from
LIMs do not include the systematic errors in the veloc-
ity model. The inverse problem of earthquake location
can be defined as:

d = g(m) (1)

where d is the data available to solve the problem,
and g is the non-linear function linking the model m

and the data. The earthquake location problem is non-
linear and thus, to solve this equation, we need at first
to linearise it. This is done around a reference model
mi in Eq. 1 and we obtain:

�d = G�m
dobs − di = G(mi+1 − mi )

(2)

The linearisation followed by an iterative procedure
allows us to solve Eq. 2. The solution may vary based
on the initial guess m0 which is required for the least
squares solution. After linearising the equation, the
solution can be obtained with a generalised inverse as
given in Tarantola and Valette (1982):

�m = (GT G)−1GT �d. (3)

(GT G) can be a singular (i.e. non-invertible)
matrix. A common way to regularise the inverse of this
matrix is to introduce damping into the system as in
Tarantola and Valette (1982):

�m = (GT G + λI)−1GT �d (4)

where λ is the level of damping applied to the system
and I is the identity matrix. Even though the regular-
isation enables us to find a stable solution, it biases
the estimation of the error for the solution (Tarantola
and Valette 1982). To estimate the error for the solu-
tion, first we define a G∗ = (GT G)−1GT to calculate
covariance matrix C which represents uncertainties in
the model. Then, C can be written as:

C = G∗T CdG∗ (5)

where Cd is the covariance matrix for data errors,
which is set to 0.1 s in this study. Finally, we can
express the estimation error E as:

Eh =
√

C2
1,1 + C2

2,2

Ez = C3,3

E =
√

E2
h + E2

z

(6)

where Eh and Ez are the estimation errors in horizon-
tal and vertical directions respectively. In this work,
the likelihood of the event falling into the area defined
by Eh and Ez is taken as 68%.

The usual way in the LIM is to use the covari-
ance matrix C to determine location errors (Peters and
Crosson 1972; De Natale et al. 1984; Tramelli et al.
2013) as given in Eqs. 5 and 6. It should be noted that
C can only be estimated in the case where GT G can be
inverted to compute G∗. Otherwise, a damping param-
eter in G∗ will stabilise the inverse but will bias the
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error estimate (an increase in the damping parameter
will artificially decrease the size of the error ellipse).

In Section 2 of this article, we explain our method-
ology. We describe our synthetic study, the algorithm
used for source location estimation and the pro-
posed scheme to compute maps of location errors. In
Section 3, we present results of this synthetic study
for the Pyrenees. This study allows us to quantify
the pre-existing problem of underestimation of the
uncertainties in LIMs. Then, we explore the effect of
different parameters. For example, we quantify the
contribution of errors in the velocity models (3D varia-
tions) in estimation errors. We explore and discuss the
effect of S arrivals in the input data, the importance of
the spatial coverage, the maximum event station dis-
tance, subregional velocity models, station corrections
and the effect of the number of phases used in the
estimation.

2 Method

In this study, we compute the distance between a given
source location and the estimated location obtained
from synthetic travel times produced for this given
source. We compute this error for sources located over
a fine 3D grid and compare it with the estimated uncer-
tainties given by Eq. 6. Event location is performed
by means of HYPOCENTER, a commonly used open
source algorithm (Lienert and Havskov 1995), but
the error quantification procedure proposed here can
be applied to any location technique (e.g. HYPO71
(Lee and Lahr 1972), VELEST (Kissling et al. 1995),
HYPODD (Waldhauser 2001)).

2.1 Constraints based on OMP methodology

There are 24,500 event locations available from the
OMP (Observatoire Midi-Pyrenees) catalogues. Total
number of P phases (Pg , Pn) recorded is 235,261 and
S phases is 235,172 for these 24,500 events. This gives
an average 10 P and S arrivals for each event in the
catalogue. The mean uncertainties estimated for this
catalogue are Eh = 1.3 km and Ez = 2.7 km (The-
unissen et al. 2017). These uncertainties are computed
using Eq. 6.

The results from linearised iterative methods
depend on the initial location. The standard OMP
procedure is to choose the coordinates of the station

having the smallest travel time as the initial location.
Next, the inversion is carried out 20 times with 20 dif-
ferent initial depths, eventually obtaining 20 estimated
locations for an event. The spatial mean of the 20 loca-
tions is computed and chosen as the final earthquake
location.

The contribution of different observations to the
solution can be weighted. In OMP for earthquake loca-
tion, they use a station weighting based on the event–
station distance, which helps limit 3D effects that are
accumulating as we get farther from the source. Travel
time picks for stations farther than 30 km have a lin-
early decreasing weighting until 120 km where the
weights diminish to 0. The stations farther than 120
km have no effect on epicentre location procedure.

2.2 Algorithm HYPOCENTER

HYPOCENTER is an algorithm to locate the seis-
mic events as seen in Fig. 1. First, the software reads
the initial parameters (e.g. number of maximum iter-
ations, damping, maximum event distance from sta-
tions), station coordinates and the 1D velocity model
provided with the input file. Second, the software
reads the data related to the particular event. After
a quick consistency check on the arrival time set to
find obvious bad arrivals (miswritten phases, large dif-
ferences between adjacent stations, etc.), it computes
the modelled arrival times. We use a 1D horizontally
layered velocity model to calculate the arrival times.
This type of velocity model is suitable for local stud-
ies as we have in the Pyrenean Region. Finally, after
a number of iterations, we obtain the output solu-
tion corresponding to the minimum misfit. Next, the
software continues with calculating the uncertainty as
described in Lienert and Havskov (1995). To choose
the optimal damping—which minimises the travel
time residuals—the software proposes an “Adaptive
Damped Least Squares Method” described in Lienert
et al. (1986).

2.3 Map of mean error

We first build a simple system consisting of a homo-
geneous half-space velocity model with a station net-
work made of 9 regularly distributed stations. As seen
in Fig. 2, 9 stations are placed symmetrically. The dis-
tance from one side of the array to the other is 1◦
(around 111 km).



J Seismol

Fig. 1 Flowchart showing the algorithm of earthquake location in HYPOCENTER

After defining the grid where events are gener-
ated, we produce a map showing the location errors
ε for the set of events shown in Fig. 2. We start
with a case in which we have a fixed initial point
m0 (see the red square in Fig. 2) having the coor-
dinates α0, β0, and z0 that are the initial longitude,
latitude and depth respectively. We locate the synthetic
events using HYPOCENTER. Then, we compute the
distance between the estimated position and the real
event location as:

ε(α, β, z) = |mR(α, β, z) − mE(α0, β0, z0)| (7)

where mR is the exact location of the event having
coordinates α, β, and z. In Fig. 3, we see the location

error (7) of the events that are located using the initial
guess marked with a red square (α0 = 3◦ E longitude,
β0 = 3◦ N latitude and z0 = 5 km depth). One of
the reasons to see the high error zones even below the
station network is the instability of the matrix (GT G).
This numerical instability can cause an increase in the
error over the whole region.

We mentioned two problems that need to be consid-
ered for a better quality estimation: (1) dependence on
the initial guess, (2) biased error estimations. Depen-
dance on the initial guess has been treated by using the
procedure of OMP. Then, Eq. 7 can be updated as:

ε(α, β, z) = |mR(α, β, z)−〈mE(α0, β0, z0(q))〉 | (8)
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Fig. 2 Setup of the synthetic station network. Top view of the station array: triangles indicate the station locations (left). A–A’ cross
section; dots indicate the synthetic event locations and red square show the initial guess m0 (right)

where 〈mE〉 shows mE(q) having minimum RMS of
arrival time residuals over a set of initial depths q. To
make these analyses more realistic, we added Gaus-
sian noise with a standard deviation of 0.1 s in our
initial datasets which will be discussed further in the
next section. We created T = 10 datasets having

different noise realisations and computed the mean
error ε̂ as:

ε̂(α, β, z)= 1

T

T∑
τ=1

|mR(α, β, z)−〈
mτ

E(α0, β0, z0(q))
〉 |

(9)

Fig. 3 An error map obtained using a fixed initial guess (red square). Red triangles show the station locations. The colour bar indicates
the offset from the real source in km. Error is plotted over a grid based on true source location
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Fig. 4 Error maps obtained using different methods. a Conventional error map obtained using Eq. 6. b Proposed error map obtained
using Eq. 9 for the same setup

where τ indicates the noise set. By computing ε̂ for
every point on the grid, we obtain a map of mean error
and eventually compare with the uncertainty obtained
from conventional formulation, i.e. Eq. 6. In Fig. 4,
we see these two maps for the same dataset. Even for
this simple system, the conventional results are quite
different from the exact mean error.

2.4 Noise in the initial dataset

A common way to take into account the noise in the
recorded seismic data in a numerical study is to add
Gaussian noise to the synthetic data. We checked the
evolution of error with different levels (with a stan-
dard deviation 0.1 and 0.2 s) of noise in the arrival
time dataset on the mean error maps. We saw that
an increase in the noise level increases the error in
almost every location. A 100% increase in the stan-
dard deviation of the Gaussian noise causes a 67%
increase of the maximum of the mean error map. In

Supplementary Figure S1, we see that the error
increase is almost constant everywhere in the map and
it does not have a particular signature.

Furthermore, we are comparing two types of noise
functions in a simple synthetic model in Fig. 5: (a)
noise having 0 s mean and 0.1 s standard deviation for
all the events around the grid; and (b) noise having 0
s mean and linearly varying standard deviation from
0.05 s for the events closest to the stations and 0.15 s
for the events farthest to the stations. When we com-
pare these two cases, we clearly see that the signature
of the error map that we are interested in during this
study does not change significantly based on the type
of noise used on the input data.

2.5 Effect of 3D velocity model

In this section, we present an application to the Pyre-
nean region using a 3D velocity model. We used
the station coordinates presented in Theunissen et al.

Fig. 5 Mean error map of the simple region using different noise functions: a σN = 0.1 s and b σN = 0.05 − 0.15 s (linearly
increasing with distance between the true location of the event and the station) noise are added
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Fig. 6 Details of the 3D velocity model. a A slice on the latitude 42.5◦ N of the 3D P wave velocity profile. The colour bar shows the
P wave velocity in km/s. b A map of Moho depth in the region. The colour bar shows the Moho depth in km

(2017). Our study covers the region between longi-
tude 2◦W–3.4◦E and latitude 42◦–43.6◦N. We have
generated 6300 events positioned at each node of a
regular grid (0.5◦ spacing over longitude and latitude
and 1 km spacing in depth, down to 25 km in depth).
We use the Fast Marching Method (FMM) to compute
synthetic arrival times in a 3D model (Rawlinson and
Sambridge 2005). A brief explanation of the method
is provided in the Supplementary Material A - Fast
Marching Method.

A cross section from the 3D velocity model show-
ing the P wave velocity profile between longitudes
3◦W–4◦E and latitude 42.5◦ N is given in Fig. 6a. Fur-
ther cross sections can be found in the Supplementary
Fig. S2 - 3D Velocity Model. In Fig. 6b, we provided
a map of Moho depth in the region.

Due to inhomogeneities in the 3D velocity struc-
ture, one cannot locate earthquakes without error by
using a 1D velocity model–based earthquake location
software. In Fig. 7, we quantify these errors. In this
figure, both maps are prepared using Eq. 9 showing
an arithmetic mean of ε̂ over 25 km depth. In Fig. 7a,
we present an error map in which the arrival times
are generated with a 1D velocity model (see Table 1,
see Supplementary Material B - Choice of 1D Veloc-
ity Model for the Pyrenees for more details) and the
synthetic events are located using the same velocity
model. However, in Fig. 7, we generate the arrival
times using a 3D velocity model presented in Fig. 6
and we use the 1D velocity model given in Table 1
to locate the events. We see in the colour bars of
Fig. 7a and b that 3D velocity variations in the model

Fig. 7 Mean error map of the Pyrenean Region using a
HYPOCENTER and b Fast Marching Method to generate
arrival times. The colour bar shows the mean of the error (in

km) of the all events over 25 km depth. Triangle points show the
stations in France; circles show the stations in Spain
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Table 1 1D velocity model of the Pyrenees

Depth (km) Vp (km/s)

0 5.0

5 5.0

10 5.5

20 6.0

30 7.0

40 7.5

60 8.0

increase the mean error observed on the map up to
10 times.

3 Results and discussion

3.1 Comparison of synthetic work with the catalogue

In this study, first we compare the synthetic results
with the relocation of earthquakes recorded by the
observatory. To locate events, we use the constrain-
ing parameters that we have defined earlier. For a
fully controlled synthetic test, we identify the differ-
ences between the uncertainties computed using Eq. 6
and the exact distance (i.e. Eq. 9) between estimated
location and exact location of the event. The mean
uncertainty obtained from relocation (i.e. E= 1.5 km)
is of the same order as the one given in Theunissen

Fig. 8 Comparison of
computed uncertainties with
measured exact error. Blue
and green curves are
obtained using Eq. 6 and
red curve is obtained using
Eq. 9

et al. (2017) (i.e. E= 3 km). This difference occurs
because the parameters, velocity model and software
used in Theunissen et al. (2017) are not exactly the
same as the ones used in this study.

As we see in Fig. 8, the blue and green histograms
are very similar. However, the red curve which shows
the exact error is overall larger, more spread than the
other histograms. Equation 6 can estimate the error
which is 3–4 times smaller than the average of the
error of 6300 events and 10 times smaller than the
maximum of error of these events.

3.2 Effect of S arrivals in the input data

After quantifying the effect of 3D velocity model in
Section 2.5, we want to understand the effect of P and
S pairs. For the analysis presented in Fig. 7, we used
P and S arrivals together. To quantify the effect of S
arrivals on the quality of estimation, we removed S
arrivals and located the events using the same setup.
This effect depends on the velocity model used in the
study, but we can quantify it for this particular setup.

In Fig. 9, we clearly see how the quality of the
estimation increases with the use of S wave arrivals.
When we use P and S arrivals together, we see
that the maximum error recorded in the region is
decreased approximately by 40%. The use of S wave
arrivals does not particularly ameliorate the results
of well-located events but it increases the quality of
poorly located events. This can particularly be seen at
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Fig. 9 Estimation quality increases by using S arrivals. In the
subfigures, error maps of the region without (a) and with (b) S
wave arrivals are given. c The difference of these maps is

provided by subtracting image (b) from (a). d Histogram of the
error sets corresponding to (a) and (b)

the top-right and bottom-left corners of the region
shown with saturated white pixels in Fig. 9a.

3.3 Effect of the station corrections

A common technique to increase the quality of esti-
mations obtained using a 1D velocity model is to inte-
grate 1D station corrections. This method helps reduce
the systematic errors due to the differences between
the 3D velocity model used to generate events (or the
events recorded in the observatory) and the 1D model
used in estimation. A constant value is added to the
arrival times recorded at a particular station to account
for the abrupt velocity variations in the vicinity of that
station. In our synthetic tests, these station corrections
strictly depend on the chosen underlying 3D velocity
model. HYPOCENTER is one of the publicly avail-
able software that can take into account corrections to
reduce the residual between the observed arrival time
to and the estimated arrival time te for a better fit (i.e.

smaller RMS). The following formula is used to com-
pute the station corrections for our synthetic study:

δ̄t
x = 1

N

N∑
i=1

(txo (i) − txe (i)) (10)

where δ̄t
x

is the correction for station x; i is the
number of an event over N events.

Using the station corrections, we obtain maximum
error εmax = 24.2 km, mean error ε̄ = 4.6 km
(which is the arithmetic mean of ε̂ over the region),
and minimum error εmin = 0.22 km over the entire
zone of study. These corrections increase the aver-
age quality by 25% and decrease the minimum error
by 78%. In Fig. 10a and b, we see the error maps
without station corrections and with station correc-
tions, respectively. By subtracting these two maps, we
obtain a map which indicates the zones where we
decreased the error (positive values mean a decrease
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Fig. 10 Estimation quality increase by using the station correc-
tions. In the subfigures, two error maps of the region without
(a) and with (b) station corrections are given. c The difference

of these maps is provided by subtracting image (b) from (a). d
Histogram of the error sets correspond to (a) and (b)

in mean error ε̂) in Fig. 10c. We also compare the his-
togram of these two mean error sets in Fig. 10d which
shows the general stabilising effect of station correc-
tions. We observe in Fig. 10 that there is a general
tendency to have smaller errors when station correc-
tions are applied. We see particularly that the use of
station corrections has almost no negative effects on
the error map and thus we strongly recommend such a
procedure.

3.4 Effect of spatial coverage

The Pyrenean region covers the border between
France and Spain, and both countries have seismic sta-
tions in the region. Figure 7 shows the distribution of
stations used in our synthetic study. 56 of the stations
belong to Spain and 66 of them belong to France. The
stations are assumed to be identical. In the simula-
tions, the only difference is the spatial spreading of the
station network.

In Fig. 11a and b, we see the important effect of
station networks. When we mark the stations on this
map, we see that as density of the stations increases,
the error measured in estimations decreases. To anal-
yse this point further, we prepare two error maps using
only French stations and only Spanish stations. In
Fig. 11a and b, we see that if we remove the sta-
tions in distance, we obtain a mean error lower than
5 km in the zones in the vicinity of the station net-
work. Furthermore, we can quantify this variation with
respect to the initial error map where we used all of
the stations. In Fig. 11c and d, we identify the neces-
sity to optimise the distance between the event and
the stations. The farther away we get from the event,
the more important reflected and refracted phases
become. Instead of direct arrivals, we start to have
indirect phases in our recordings (see Supplementary
Material C: Effect of the station aperture for a detailed
analysis on a simplified case). These indirect arrivals
bear higher average uncertainties, which means the
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Fig. 11 Mean error map of the Pyrenean region computed with different station sets. The map is computed using only the stations in
France (a) and in Spain (b). Then, the difference with the map computed using all the stations is calculated respectively in (c) and (d)

residuals between the recorded and modelled arrival
times are higher at distant stations than closer sta-
tions. This happens due to the differences between the
1D velocity model used to estimate the location and
the 3D velocity model used to generate the seismic
dataset. We are going to investigate this further in the
next section.

3.5 Maximum event–station distance

After observing the fact that using subsets of the big
station network increases the estimation quality, we
want to quantify this quality variation with respect to
maximum event–station distance. We choose 5 events
in the Pyrenean region. Next, we locate these synthetic
events with maximum event–station ranges starting
from 10 up to 1000 km. We observed that the error ε

decreases with the distance until 130 km and increases
beyond this threshold. We decided to apply linearly
decaying weighting, starting from 130 down to 0 km

at distance 230 km. This weighting function is very
similar to that used by OMP as described previously
in Section 2.1.

As we can see by comparing Fig. 12a and b—which
are without and with range correction, respectively—
the range correction increases the quality significantly
on the zones having a high station density. However,
we also observe that, in the zones with a lower sta-
tion density, estimation error increases since there are
not enough stations to ensure a high-quality location
estimation. In particular in Fig. 12d, we see the sig-
nificant shift towards the left on the histogram just by
adding the range correction to the data, which means
that the overall quality of estimation increases signif-
icantly. Approximately 50% reduction in mean error
can be achieved by taking into account the maximum
event–station range weighting. It should be noted that
the parameters that we use for this weighting are spe-
cific to this very region and to the velocity models that
we have used to generate and locate the events. For
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Fig. 12 Mean error map of the Pyrenean region computed with
maximum event station distance weighting. The map is com-
puted without any weighting (a) and with weighting (b). Then,

the difference with the map computed using all the stations is
calculated respectively in (c), and the histogram of these two
maps is provided in (d)

another region or another velocity model, one should
optimise their own weighting parameters via similar
synthetic tests. Furthermore, the maximum range and
station corrections can be applied together to obtain
even better quality estimations. In Fig. 13, we present
the case where we apply both of these corrections and
we see that the number of events having lower than a
5-km error increases more than 25% compared to the
cases where these corrections are applied separately.

3.6 Subregional velocity models

In earthquake location, there are many studies advis-
ing use of 3D velocity models for better estimation
quality (Font et al. 2004; Flanagan et al. 2007; Sim-
mons et al. 2012; Theunissen et al. 2012). If 1D
models are used, it has been mentioned that in com-
plex heterogeneous zones, the use of a subregional 1D

velocity model can increase the quality of estimation
(Husen et al. 2011).

In this section, we aim at quantifying the effect
of subregional 1D velocity models. Instead of using
a unique 1D velocity model in the zone of interest,
the area is divided into subregions and a 1D veloc-
ity model is defined for each region. To calculate the
mean velocity model in an area closest to an event,
we need to know the location of the event. Since we
do not know the location of an event, we consider the
closest station and calculate the mean velocity model
around it. To define the models, we stack the 3D veloc-
ity model within a 230-km radius (corresponding to
the optimal range computed in a previous section) of
each station so that we obtain one velocity model per
station. In other words, we build one velocity model
corresponding to the area around the initial guess for
one event.
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Fig. 13 Mean error map of the Pyrenean region computed using distance weighting and station corrections. Then, the difference with
the map computed using all the stations is calculated respectively in (c) and the histogram of these two maps is provided in (d)

Figure 14 illustrates the effect of the subregional
velocity models applied on the Pyrenean region. In
Fig. 14a, we see the mean error map obtained with
a regional 1D velocity model and Fig. 14b shows
the same map obtained using subregional 1D velocity
models. There is a significant increase in the quality
(around 50% decrease in estimation error) in the zone
where the station network is quite dense; however,
there is a significant decrease of estimation quality
(around 80–90% increase in estimation error) in the
regions away from the station network. A map of
mean error difference is provided in Fig. 14c to bet-
ter identify the affected zones. The red colour shows a
decrease in estimation error and the blue colour shows
an increase in estimation error. A histogram of the esti-
mation error over the events generated of the region
is given in Fig. 14d. We clearly see in the histogram
that when we use subregional velocity models, the
events having the location error smaller than 10 km in
Fig. 14a have their error further decreased in Fig. 14b.
However, events estimated with a higher error have

their estimation quality decreased even further. For the
earthquakes located under the station network, the use
of subregional velocity models is a very powerful way
to increase source location quality.

3.7 Effect of number of phases

We made a detailed analysis of the effect of the num-
ber of recorded P and S pairs on the absolute error
for the region of interest. For 63 selected grid points
spread over the region, we generated synthetic events
with different P and S pairs. The number of input
arrival time pairs is weighted with the distance as
described in Section 2.1 to be able to quantify the
mean error when we follow the standard protocol
of the observatory. For location, we are taking into
account all the PS pairs closer than 30 km to the sta-
tion. Following this, we are picking stations randomly
(with a uniform picking probability for all stations)
up to the P and S pair limit. We are doing 10 rep-
etitions for each event with different PS sets to be
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Fig. 14 Mean error map of the Pyrenean region computed
using subregional velocity models. The map is computed using
velocity model given in Table 1 (a) and using mean of the 3D
velocity model 230 km vicinity of the initial guess for the event

(b). Then, the difference with the map computed using all the
stations is calculated respectively in (c) and the histogram of
these two maps is provided in (d)

more realistic. We saw that the mean error for the
region reduces asymptotically from 7.8 km towards
5.5 km with increasing number of P and S pairs from 5
towards 25. In Fig. 15, we present how the estimation
error decreases with an increasing number of pairs.
Up to 20 pairs, the estimation quality increases as the
number of PS pairs increases. Starting from 20 pairs,
the quality does not vary too much for an event based
on the number of PS pairs.

3.8 Discussion

The mean error map proposed in this article is a tool
for earthquake location error estimation. Knowing that
the conventional tools assessing the earthquake loca-
tion error are limited, one can use a mean error map
produced for a region to directly find the associated
error for a located earthquake. In Sections 2.3 and 3.1
of this article, we have shown this limitation clearly.

Furthermore, since the mean error map requires gener-
ating many synthetic events on a regular grid over the
region, it can be used to identify the zones in which the
location error is systematically higher than the over-
all. Covering these weak zones with more stations can
increase the seismic resolution significantly.

The proposed error estimation procedure can also
be used to calibrate the temporary (or weak) networks.
Using a synthetic analysis, the resolution of temporary
networks can be adjusted and sensor placements can
be optimised. This will help increase the quality of the
subsurface monitoring and risk assessment. For exam-
ple, this technique can be used to increase the control
during industrial operations such as carbon storage or
geothermal energy.

Furthermore, a mean error map can be used to
optimise the software parameters. By checking the
variation of the mean error on a region as function of
certain software parameters as we conducted in this
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Fig. 15 The variation of
the error in function of
number of phases. Synthetic
events are located with 10
different phase pair sets. As
the number of PS pairs
increases, the outliers
disappear and location
estimation gives more
robust solutions

study, one can maximise the quality of the seismic
locations and minimise the overall error on the region
of interest.

Apart from the software parameters, one other
important issue is understanding the effect of com-
plementary techniques to obtain better quality esti-
mations. We recommend using station corrections as
a tool to reduce the effect of un-modelled 3D vari-
ations in the velocity model. It is a very practical
way to overcome the constant differences between the
modelled and recorded arrival times on a specific sta-
tion. These constant differences can occur naturally
since 1D velocity model is not enough to explain
local velocity fluctuations. The second most important
thing is weighting with respect to the event-station dis-
tance. Correctly optimising this distance may decrease
the average error significantly. Because the wavefront
travelling longer distances will be more affected by the
3D effects and eventually can be harder to model with
a 1D velocity model. When we limit this distance, we
limit the 3D effects and achieve higher quality event
locations.

We studied the effect of the use of subregional
velocity models as well. Varying 1D velocity model
for each station is a more tedious procedure than using
station corrections. However, for this tedious proce-
dure the final estimation quality is not better than
using only station corrections. The maximum error

reduction achieved is around 75% when using station
corrections compared with 50% when using subre-
gional velocity models. Therefore, the authors prefer
using station corrections for future studies on this
region. Subregional velocity models can be more use-
ful in the regions having more abrupt changes in their
3D velocity model than the Pyrenees. However, in
Pyrenean region, velocity fluctuations are not high
enough to make subregional velocity models prefer-
able. Another question that we wanted to answer
is the effect of the number of phases in the cata-
logues. In seismic recordings, the number of phases
recorded varies from event to event. We compared
the evolution of average error with respect to num-
ber of phases included. We observed that in up to
20 PS pairs mean error decreases and becomes sta-
ble for pair numbers higher than 20. This number
can be changed with respect to the other parameters
chosen such as the maximum event–station distance
or the 3D velocity model. A future analysis can be
conducted to create a correction function linking the
number of events taken into account in the loca-
tion and the mean error for that event to correct
the events recorded with a number of pairs lower
than 25.

The results presented in this paper can vary as a
function of the velocity model chosen for the numer-
ical modelling. Therefore, it is recommended to use
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high-quality velocity models to reach better quality
results on the mean error maps. Also, the mean error is
related to the noise level on the numerically generated
data. In this study, the standard deviation of the noise
in the input data is set to 0.1 s but this can be increased
to better analyse the regions where the recorded data
has overall lower quality.

4 Conclusion

We have conducted a study to quantify the error in
earthquake location obtained from an iterative lin-
earised earthquake location method. We proposed a
method to compute mean error maps. These maps
show the mean distance between the estimated loca-
tion and the exact location of an event on a grid (based
on true event locations). We showed that the effects of
including S arrival times are mostly noticeable when
the events are farther away from the station network.
We have also observed that it is possible to increase
the quality of estimations using station corrections
for arrival times. For Pyrenean region, station correc-
tions are more efficient than using 1D subregional
velocity models. We have observed that the maximum
event - station distance should be taken into account
in an optimised way to increase estimation quality.
As we include farther stations to the solution pro-
cedure, after a certain threshold around 100 km, the
mean error increases. We have also shown that up to
20 PS pairs—respecting the maximum event–station
distance—increasing the number of pairs, increases
the location quality.
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