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Abstract. We study the local limits of uniform high genus bipartite maps with prescribed face
degrees. We prove the convergence towards a family of infinite maps of the plane, the q-IBPMs,
which exhibit both a spatial Markov property and a hyperbolic behaviour. Therefore, we observe
a similar local behaviour for a wide class of models of random high genus maps, which can be
seen as a result of universality. Our results cover all the regimes where the expected degree of
the root face remains finite in the limit. This follows a work by the same authors on high genus
triangulations [15].

1 Introduction

Planar maps. Maps, i.e. gluings of polygons forming an orientable surface, have been the
object of extensive research in the last decades, both from the combinatorial and probabilistic
viewpoints. The most popular category of maps are planar maps, i.e. maps homeomorphic to
the sphere. Their combinatorial study goes back to Tutte in the 60s, e.g. [34], who gave explicit
formulas for the enumeration of various classes of planar maps using a generating functions
approach. More recently, bijective approaches have been developped such as the Cori–Vauquelin–
Schaeffer bijection for quadrangulations [32] and its generalization, the Bouttier–di Francesco–
Guitter bijection [9].

On the other hand, much attention has been given in the last 20 years to asymptotic proper-
ties of large random planar maps picked uniformly in certain classes. These asymptotic properties
are usually understood by proving the convergence of random maps in some sense when the size
goes to infinity. Two different notions of limits are commonly used: scaling and local limits.
Scaling limits, which we will not study in this work, consist in renormalizing the distances in
order to build continuous objects. In particular, many discrete models are known to have the
Brownian map as a scaling limit [23, 27, 26]. The theory of scaling limits of planar maps shares
deep links with other random geometry models such as Liouville Quantum Gravity [28]. On the
other hand, local limits, on which the present work focuses, study the neighbourhood of a typical
point in a map in order to obtain an infinite but discrete object in the limit. In the context of
planar maps, this was first considered by Angel and Schramm who proved the convergence of
large uniform triangulations towards the Uniform Infinite Planar Triangulation (UIPT) [5]. The
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study of the UIPT using Markovian explorations called peeling explorations was then initiated
by Angel [1]. More general models have followed since, such as general planar maps with Boltz-
mann weights on the face degrees [33]. The bipartite case, which will be of particular interest
for us, is investigated in [10, 11], see also [18] for a complete survey.

Maps of higher genus. It seems natural to try to extend the combinatorial and probabilistic
study of planar maps to maps of higher genus. On the combinatorial side, the enumeration of
maps with any genus is a very rich topic, with links to irreducible representations of the symetric
group and integrable hierarchies [29, 30]. In particular, double recursions on both the size and
the genus are known for the counting of maps, see [21] for triangulations and [24] for general
classes of bipartite maps. However, explicit enumeration formulas are lacking. Asymptotics can
be obtained when the genus is fixed and the size goes to infinity [6], but are still missing when
the genus goes to infinity as well.

Similarly, on the probabilistic side, higher genus versions of random surface models have
been constructed such as Brownian surfaces [8] or Liouville quantum gravity on complex tori
[19]. However, their behaviour when the genus goes to infinity is still poorly understood. Finally,
a regime that is much easier to handle is the regime where the genus is not constrained, and the
faces are simply glued uniformly at random [20, 16, 14]. In this case, the genus is concentrated
very close to its maximal possible value.

More recently, some progress was made in the study of high genus maps, namely when the
genus grows linearly in the size of the map. In this case, the Euler formula shows that maps
satisfy a discrete notion of "negative average curvature", which suggests that the neighbourhood
of a typical vertex should look hyperbolic. The first category of maps that was investigated in
this setting were uniform unicellular maps (i.e. maps with one face). See [2] for the proof of
local convergence to a supercritical Galton–Watson tree, and [31] for the study of more global
properties such as logarithmic diameter.

Shortly after, Curien introduced a one-parameter family of random hyperbolic triangulations
of the plane [17], following the work of Angel and Ray in the half-planar case [4]. More precisely,
random maps of this family are called Planar Stochastic Hyperbolic Triangulations (PSHT)
(Tλ)0<λ≤(12

√
3)−1 and they are the only random triangulations satisfying the following spatial

Markov property: for any finite triangulation t with |t| vertices in total and a hole of perimeter
p, we have

P (t ⊂ Tλ) = Cp(λ)λ|t|. (1)

In particular, such a triangulation exists if and only if λ ∈
(

0, 1
12
√

3

]
. Except for the critical case

λ = 1
12
√

3
(which corresponds to the UIPT), these objects exhibit hyperbolic properties [17, 13].

Benjamini and Curien conjectured in [17] that they are the local limits of uniform high genus
triangulations.

In a recent paper [15], the authors of the present work proved this conjecture. Asymptotics
for the enumeration of high genus triangulations up to subexponential factors were derived as a
byproduct.

Infinite Boltzmann Planar Maps. The goal of the present work is to generalize the re-
sults of [15] to a much wider family of models, where faces do not have to be triangles. For
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combinatorial reasons1, we will restrict ourselves to bipartite maps, which means that the face
degrees have to be even. The limiting objects appearing in the limits are the Infinite Boltzmann
Bipartite Planar Maps (IBPM) introduced in [12, Appendix C] as an analog of the PSHT for
bipartite maps. We also refer to [18, Chapter 8] for the study of basic properties of these objects.

The IBPM are characterized by a spatial Markov property similar to the one satisfied by the
PSHT. If m is a finite map with one hole, we write m ⊂M if M can be obtained by filling the
hole of m, possibly with a map with a nonsimple boundary2. Let q = (qj)j≥1 be a sequence
of nonnegative numbers. An infinite random planar map M is called a q-IBPM if there are
numbers (Cp)p≥1 such that, for any finite map m with one hole of perimeter 2p, we have

P (m ⊂M) = Cp ×
∏
f∈m

qdeg(f)/2,

where the product is over all internal faces of m. In particular, they generalize the infinite
critical bipartite Boltzmann maps defined and studied by Budd in [10]. It was proved in [12,
Appendix C] that there is at most one q-IBPM, that we denote by Mq. Moreover [12, Appendix
C] provides both necessary conditions and sufficient ones on q for the existence of Mq, but
no explicit characterization (these results are recalled in Section 2.4 below). The present work
improves on these results by giving an explicit parametrization of the weight families q for which
Mq exists. More precisely, as stated in Theorem 3 below, such families q can be parametrized
by the law of the degree of the root face of Mq, which may be any law on {2, 4, 6, . . .}, and an
additional hyperbolicity parameter ω ∈ [1,+∞). The critical maps of [10] correspond to the
case ω = 1, and are already known to be local limits of planar maps. On the other hand, the
case ω > 1 has a hyperbolic flavour.

Local limits of high genus bipartite maps. The main result of this work is that uniform
maps with high genus and prescribed face degrees converge locally to the q-IBPM when the size
goes to infinity. This can be seen as a universality result in the domain of high genus maps, in
the sense that regardless of the precise model of maps, the same phenomenon is observed.

More precisely, we will use the notation f = (fj)j≥1 for face degree sequences (i.e. fj ≥ 0 for
all j, and fj = 0 eventually). For such a sequence f , we set |f | =

∑
j≥1 jfj , which describes the

number of edges of a map with fj faces of degree 2j for all j ≥ 1. For g ≥ 0, we also write

v(f , g) = 2− 2g +
∑
j≥1

(j − 1)fj . (2)

By the Euler formula, a bipartite map with genus g and face degrees described by f exists if and
only if v(f , g) ≥ 2, and in this case v(f , g) is the number of vertices of such a map. For such f

and g, we denote by Mf ,g a uniform bipartite map with genus g and fj faces of degree 2j for all
j ≥ 1.

Theorem 1. Let (fn)n≥1 be a sequence of face degree sequences, and let (gn) be a sequence such
that v(fn, gn) ≥ 2 for all n ≥ 1. We assume that |fn| → +∞ when n→ +∞ and that

fnj
|fn| → αj

1More precisely, the enumeration results in the planar case are simpler for bipartite maps, and the recursion
of [24] holds only for bipartite maps.

2More precisely, we use the sense introduced by Budd in [10], i.e. the sense corresponding to the "lazy" peeling
process, as opposed to the one introduced by Angel in [1]. See Section 2.1 for precise definitions.
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for all j ≥ 1, where
∑

j≥1 jαj = 1. We also assume gn
|fn| → θ, where 0 ≤ θ < 1

2

∑
j≥1(j − 1)αj .

Finally, assume that
∑

j≥1 j
2αj < +∞.

Then we have the convergence in distribution

Mfn,gn

(d)−−−−−→
n→+∞

Mq

for the local topology, where the weight sequence q depends only on θ and (αj)j≥1, in an injective
way.

Let us now make a few comments on the various assumptions of the main theorem.

• We first note that the assumption that
∑

j≥1 jαj = 1 means that the proportion of the
edges that are incident to a face with degree larger than A goes to 0 as A→ +∞, uniformly
in n. This is equivalent to saying that the root face stays almost surely finite in the limit,
so this assumption is necessary to obtain a local limit with finite faces. If this assumption
is waived, we expect to obtain different limit objects with infinitely many infinite faces.

• The assumption θ < 1
2

∑
j≥1(j − 1)αj means that the number of vertices is roughly pro-

portional to |fn|, so that the average degree of the vertices stays bounded. Therefore, it is
also necessary in order to have a proper local limit with finite vertex degrees. Note that
this assumption also implies α1 < 1, i.e. it is not possible that almost all faces are 2-gons.

• The assumption
∑

j≥1 j
2αj < +∞ means that the expected degree of the root face stays

finite in the limit. We do not expect this assumption to be necessary. However, one of the
steps of our proof (the "two-holes argument" of Section 5.1) crucially requires a bound on
the tail of the degrees of the faces.

Finally, the application associating the weight sequence q given by Theorem 1 to
(
θ, (αj)j≥1

)
is surjective in the sense that every IBPM Mq for which the degree of the root face has finite
expectation can be obtained as a local limit through Theorem 1.

The heavy tail case. Although we could not remove the assumption
∑

j≥1 j
2αj in Theorem 1,

most of the steps of the proof do not require this assumption. In particular, we can still obtain
the following partial result in the general case.

Theorem 2. Let (fn)n≥1 be a sequence of face degree sequences, and let (gn) be a sequence such
that v(fn, gn) ≥ 2 for all n ≥ 1. We assume that |fn| → +∞ when n→ +∞ and that

fnj
|fn| → αj

for all j ≥ 1, where
∑

j≥1 jαj = 1. We also assume gn
|fn| → θ, where 0 ≤ θ < 1

2

∑
j≥1(j − 1)αj .

Then the sequence of random maps (Mfn,gn)n≥1 is tight for the local topology. Moreover, all
its subsequential limits are of the form MQ, where Q is a random Boltzmann weight sequence.

A parametrization of Infinite Bipartite Boltzmann Planar Maps. As explained briefly
above, we also provide a new parametrization of the Boltzmann weight families q associated to
an IBPM: instead of directly using the Boltzmann weights qj , we parametrize them according
to the law of the degree of the root face.

Theorem 3. Let α be a probability measure on N∗. Then the set of IBPM for which the half-
degree of the root face has law α forms a one parameter family

(
Mq(ω)

)
ω≥1

. Moreover, q(ω) is

critical if and only if ω = 1, and the vertex degrees in Mq(ω) go to infinity when ω → +∞.
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In particular, the existence of hyperbolic Boltzmann maps with arbitrarily heavy-tailed face
degrees answers a question from [18], that was not settled by the results of [12, Appendix C].
Moreover, we can think of q(ω) as interpolating between a critical non-hyperbolic map, and a
degenerate map with infinite vertex degrees.

Asymptotic enumeration. Like for triangulations, the most natural way to try to prove
Theorem 1 would be to obtain precise asymptotics on the counting of maps with prescribed
genus and face degrees, in order to mimic classical arguments going back to [5]. However, such
asymptotics are not available and seem difficult to obtain. On the other hand, just like in [15]
for triangulations, once Theorem 1 is proved, applying the arguments of [5] "backwards" allows
to obtain a result about convergence of the ratio when we add one face of fixed degree. We
denote by βg(f) the number of bipartite maps of genus g with face degrees prescribed by f .

Corollary 1. Let (fn)n≥0 and (gn)n≥0 be such that gn
n → θ and

fnj
|fn| → αj for all j ≥ 1. We

assume that
∑
jαj = 1, that 0 ≤ θ < 1

2

∑
(j − 1)αj and that

∑
j2αj < +∞. We recall that by

Theorem 1, there is a weight sequence q such that Mfn,gn converges locally to Mq. Then for all
j ≥ 1, we have

βgn(fn − 1j)

βgn(fn)
−−−−−→
n→+∞

C2(q)qj . (3)

We also believe that the following is true:

Conjecture 2. Let (fn)n≥1 be a sequence of face degree sequences, and let (gn) be a sequence
such that v(fn, gn) ≥ 2 for all n ≥ 1. We assume that |fn| → +∞ when n → +∞ and that
fnj
|fn| → αj for all j ≥ 1, where

∑
j≥1 jαj = 1. We also assume gn

|fn| → θ, where 0 ≤ θ ≤
1
2

∑
j≥1(j − 1)αj . Finally, assume that

∑
j≥1 j

2αj < +∞. Then

βgn(fn) = |fn|2gn exp
(
ϕ
(
θ, (αj)j≥1

)
|fn|+ o (|fn|)

)
,

where ϕ is some function.

More precisely, in [15], the proof consists of first using the analog of Corollary 1 to estimate
the ratio between triangulations with any genus and triangulations with a genus close to maximal
(say with ε|f | vertices). To count such triangulations, we contracted a spanning tree to reduce
the problem to triangulations with only one vertex, for which explicit formulas are known. This
"contraction" is the step that is difficult to extend to our setting here: while for triangulations
we simply obtained a triangulation with less faces, here the impact on the face degrees may
become much more complex. This is why we leave the question as open.

Sketch of the proof of Theorem 1: common points and differences with the triangular
case. The proof is a combination of combinatorial and probabilistic ideas. It follows the same
global strategy as in [15], which shows the robustness of the approach of [15]. However, new
difficulties arise at each of the steps, which makes the overall proof much longer.

More precisely, the first step consists of showing the tightness of Mfn,gn . This follows from a
bounded ratio lemma (Lemma 13), stating that under certain assumptions the ratio βg(f+1j)

βg(f) is
bounded. As in [15], this lemma is established using surgery operations to remove a face, but this
surgery can affect a larger region than in the triangular case, which makes it more elaborated.
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The second step is to prove that any subsequential limit is planar and one-ended. This relies
on the recurrence proved by the second author in [24], and only requires minor adaptations
compared to [15]. We then notice that any subsequential limit enjoys a weak spatial Markov
property, which implies that it must be of the form MQ, for some random weight sequence Q.
This part is also similar to [15], although additional technicalities arise. All these arguments do
not use any assumption on the tail of the degrees of the faces, and prove Theorem 2.

The end of the proof consists in showing that Q is actually deterministic. As in [15], this step
relies on a surgery argument called the two holes argument, for which we need to explore two
pieces of maps with the exact same boundary length. This is where the assumption

∑
j2αj <

+∞ is crucial: without it, when we explore a piece of map "face by face", the perimeter makes
large positive jumps and misses too many values. Another major difference with [15] is in the
last step, where we match the average degree in finite models (computed with the Euler formula)
and in infinite ones. In particular, we need to argue that a weight sequence q is determined
by the law of the root face of Mq and the average vertex degree. While for triangulations we
were able to obtain an explicit formula for the average vertex degree, this is not the case here.
Therefore, we need to develop new arguments making use of the local limit results obtained
earlier in the paper. This is also the reason why the link between θ, (αj) and q in Theorem 1 is
not explicit.

Weakly Markovian bipartite maps. Just like in [15], the argument showing that a subse-
quential limit is a mixture of IBPM is a result of independent interest, so we give its statement
here. LetM be a random infinite, one-ended, bipartite planar map. We callM weakly Markovian
if for any finite map m with one hole, the probability m ⊂M only depends on the perimeter of
m and on the family of degrees of its internal faces. We denote by Qh the set of weight sequences
q for which Mq exists, and by Qf ⊂ Qh the set of those q for which the expected degree of the
root face in Mq is finite (this will be useful to handle the last assumption in Theorem 1).

Theorem 4. Let M be a weakly Markovian infinite, one-ended, bipartite random planar map.
Then there is a random weight sequence Q ∈ Qh such that M has the same distribution as MQ.
Moreover, if the degree of the root face of M has finite expectation, then Q ∈ Qf almost surely.

Structure of the paper. In Section 2, we review basic definitions on maps, and previous
combinatorial results that will be used in all the paper. We also introduce the IBPM and
describe various parametrizations of the set of IBPMs, and in particular prove Theorem 3. In
Section 3, under the assumptions of Theorem 2 (i.e. without the assumption on the tail of
face degrees), we prove that the maps Mfn,gn are tight for the local topology, and that any
subsequential limit is a.s. planar and one-ended. Section 4 is devoted to the proof of Theorem 4,
which implies that any subsequential limit of Mfn,gn is an IBPM with random parameters. This
is sufficient to prove Theorem 2. In Section 5, we conclude the proof of Theorem 1 by showing
that the parameters are deterministic and depend only on θ and (αj)j≥1. In Section 6, we deduce
the combinatorial estimate of Corollary 1 from Theorem 1. Finally, the Appendices contain the
proofs of some technical results.
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Index of notations

In general, we will we will use lower case letters such as m to denote deterministic objects or
quantities, upper case letters such as M for random objects and mathcal letters such asM for
sets of objects. We will use mathbf characters such as q for sequences, and normal characters
such as qj for their terms.

• f = (fj)j≥1: denotes a face degree sequence (F will denote a random face degree sequence).

• g: will denote the genus.

• Bg(f): set of finite bipartite maps with genus g and fj faces of degree 2j for all j ≥ 1.

• βg(f): cardinality of Bg(f).

• Mf ,g: uniform random map in Bg(f).

• |f | =
∑

j≥1 jfj (i.e. the number of edges of a map in Bg(f)).

• v(f , g) = 2− 2g +
∑

j≥1(j − 1)fj (i.e. the number of vertices of a map in Bg(f)).

• B: space of finite or infinite bipartite maps with finite vertex degrees, equipped with the
local distance dloc.

• B∗: space of finite or infinite bipartite maps with finite or infinite vertex degrees, equipped
with the dual local distance d∗loc.

• θ: limit value of g
|f | when |f | → +∞.

• q = (qj)j≥1: denotes a weight sequence (Q denotes a random weight sequence).

• Mq: the infinite bipartite Boltzmann planar map with weight sequence q.

• Wp(q): partition function of finite Boltzmann bipartite maps of the 2p-gon with weights
q.

• Q = [0, 1]N
∗ .

• Q∗ = {q = (qj)j≥1 ∈ Q|∃j ≥ 2, qj > 0}.

• Qa: set of admissible families of Boltzmann weights q, i.e. such that Wp(q) < +∞.

• Qh: set of Boltzmann weights for which Mq exists. We have Qh ⊂ Qa ∩Q∗.

• Qf : set of Boltzmann weights q ∈ Qh for which the expectation of the degree of the root
face of Mq is finite.

• cq: for q ∈ Qa, denotes the solution of the equation

∑
j≥1

qj
1

4j−1

(
2j − 1

j − 1

)
cj−1
q = 1− 4

cq
.
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• νq(i) =

{
qi+1 c

i
q if i ≥ 0,

2W−1−i(q) ciq if i ≤ −1.
. Step distribution of the random walk associated

to the perimeter process of a finite q-Boltzmann planar map.

• ωq ≥ 1: for q ∈ Qh, denotes the solution (other than 1, unless q is critical) of∑
i∈Z

ωiνq(i) = 1.

• ν̃q(i) = ωiqνq(i). Step distribution of the random walk on Z associated to the peeling
process of Mq.

• Cp(q): for q ∈ Qh and p ≥ 1, constants such that

P (m ⊂Mq) = Cp(q)×
∏
f∈m

qdeg(f)/2

for every finite map m with one hole of perimeter 2p.

• hp(ω) =
∑p−1

i=0 (4ω)−i
(

2i
i

)
. We have Cp(q) = (cqωq)p−1hp(ωq). Also, the perimeter process

associated to a peeling exploration of Mq is a Doob transform of the ν̃q-random walk by
the harmonic function (hp(ωq))p≥1.

• aj(q) = 1
jP (the degree of the root face of Mq is 2j) for all j ≥ 1.

• αj : denotes a possible value of aj(q), or the limit of the ratio fj
|f | when |f | → +∞. We will

always have
∑

j≥1 jαj = 1 and α1 < 1.

• q(ω): once (αj)j≥1 has been fixed, denotes the weight sequence for which ωq = ω, and the
law of the degree of the root face is described by (αj)j≥1.

• A: denotes a peeling algorithm.

• EAt (m): explored map after t filled-in peeling steps on the map m using algorithm A. This
is a finite map with holes.

• Pt, Vt: denote respectively the perimeter (i.e. the half-length of the boundary of the hole)
and the volume (i.e. the total number of edges) of the explored map after t steps during
a peeling exploration.

• d(q) = E
[
(degree of the root vertex in Mq)−1

]
.

• rj(q) = (cqωq)j−1 qj = limt→+∞
1
t

∑t−1
i=0 1Pi+1−Pi=j−1 for q ∈ Qh and j ≥ 1, where P is

the perimeter process associated to a peeling exploration of Mq (see Proposition 8).

• r∞(q) =
(√ωq−

√
ωq−1)

2

2
√
ωq(ωq−1)

= limn→+∞
Vn−2Pn

n for q ∈ Qh and j ≥ 1, where P and V

are the perimeter and volume processes associated to a peeling exploration of Mq (see
Proposition 8).
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Figure 1: A map (in black) and its dual (in blue). The arrows mark the roots.

2 Preliminaries

Our purpose in this section is to recall basic definitions related to maps, local topology and
peeling explorations as well as combinatorial results from previous works, and to introduce
precisely the infinite objects that will appear in this paper.

2.1 Definitions: maps and local topology

Maps. A (finite or infinite) map M is a way to glue a finite or countable collection of finite
oriented polygons, called the faces, along their edges in a connected way. By forgetting the faces
of M and looking only at its vertices and edges, we obtain a graph G (if M is infinite, then G
may have vertices with infinite degree). The maps that we consider will always be rooted, i.e.
equipped with a distinguished oriented edge called the root edge. The face on the right of the
root edge is the root face, and the vertex at the start of the root edge is the root vertex.

The dual map of a map m is the map m∗ whose vertices are the faces of m, and whose edges
are the dual edges to those of m. We root m∗ at the oriented edge crossing the root edge of m
from left to right (see Figure 1). If the number of faces is finite, thenM is always homeomorphic
to an orientable topological surface, so we can define the genus ofM as the genus of this surface.
In particular, we call a map planar if it has genus 0.

A bipartite map is a rooted map where it is possible to color every vertex in black or white
without any monochromatic edge. By convention, we may assume that the root is always
oriented from white to black, and each edge of the map has a natural orientation from white to
black. In a bipartite map, all faces have an even degree. In what follows, we will only deal with
bipartite maps (except when dealing with dual maps). Therefore, we will not always specify
that the map we consider is bipartite.

For every f = (fj)j≥1 and g ≥ 0, we will denote by Bg(f) the set of bipartite maps of genus
g with exactly fj faces of degree 2j for all j ≥ 1. A map of Bg(f) has |f | =

∑
j≥1 jfj edges,∑

j≥1 fj faces and v(f , g) = 2− 2g+
∑

j≥1(j− 1)fj vertices by the Euler formula. In particular,
such a map exists if and only if v(f , g) ≥ 2. We will denote by βg(f) the cardinality of Bg(f).

Maps with boundaries. We will need to consider two different notions of bipartite maps
with boundaries, that we call maps with holes and maps of multi-polygons. Roughly speaking,
the first ones will be used to describe a small neighbourhood of the root in a larger map, and the
second ones to describe the complement of this neighbourhood. Note that, since we will only
consider bipartite maps in this work, we assume in both definitions that the maps are bipartite.

Definition 3. A map with holes is a finite, bipartite map with a set of marked faces (called

10



holes) such that:

• the boundary of each hole is a simple cycle,

• the boundaries of the different holes are vertex-disjoint,

• the adjacency graph of the internal faces (i.e. the faces that are not holes) is connected,

• the root edge may be any oriented edge of the map.

By convention, the map consisting of two vertices joined by a single edge is a map with one hole
and no internal face. If m is a map with holes, we denote by ∂m its boundary, i.e. the union of
the boundaries of its holes.

Definition 4. Let ` ≥ 1 and p1, p2, . . . , p` ≥ 1. A map of the (2p1, . . . , 2p`)-gon is a finite or
infinite bipartite map with ` marked oriented edges (ei)1≤i≤`, such that:

• e1 is the root edge,

• the faces on the right of the ei are distinct,

• for all 1 ≤ i ≤ `, the face on the right of ei has degree 2pi.

The faces on the right of the marked edges are called external faces, and the other ones
are called the internal faces. We denote by B(p1,p2,...,p`)

g (f) the set of bipartite maps of the
(2p1, 2p2, . . . , 2p`)-gon of genus g with interior faces given by f. We also denote by β(p1,p2,...,p`)

g (f)

its cardinal, with the convention that β(0)
g (f) is 1 if g = 0 and f = 0, and 0 otherwise.

Note that, in this second definition, we do not ask that the boundaries are simple or disjoint.
The convention for the 0-gon can be interpreted as saying that the only map of the 0-gon is the
map with 1 vertex, no edge and no internal face.

Map inclusion. Given a map m, let m∗ be its dual map. Let e be a finite, connected subset
of edges of m∗ such that the root vertex of m∗ is incident to e. To e, we associate the map me

that is obtained by gluing the faces of m corresponding to the vertices of m∗ incident to e along
the dual of the edges of e (see Figure 2). Note that me, once rooted at the root edge of m, is a
map with holes. We will refer to me as the submap of m spanned by e.

If m′ is a map with holes and m is a (finite or infinite) map, we write

m′ ⊂ m

if m′ can be obtained from m by the procedure described above. By convention, we also write
m′ ⊂ m if m′ is the trivial map with two vertices and one edge, or if m′ consists of a simple
cycle with the same perimeter as the root face of m (which corresponds to the case e = ∅).

Equivalently, we have m′ ⊂ m if m can be obtained from m′ by gluing one or several maps of
multipolygons in the holes of m′. We highlight that this definition of map inclusion is taken from
[18] and is tailored for the lazy peeling process of [10]. More precisely, maps of multipolygons
may not have simple nor disjoint boundaries, so if m′ ⊂ m, it is possible that two boundary
edges of m′ actually coincide in m.

11



⊂

Figure 2: Inclusion of bipartite maps, on an example. On the right, the map m and, in red, the
set of dual edges e. On the left, the map me.

Local convergence and dual local convergence. The goal of this paragraph is to recall
the definition of local convergence in a setting that is not restricted to planar maps. We denote
by B the set of finite or infinite bipartite maps in which all the vertices have finite degrees. A
map m is naturally equipped with a graph distance dm on the set of its vertices. If m ∈ B, for
every r ≥ 1, we denote by Br(m) the submap of m spanned by the duals of those edges of m
which have an endpoint at distance dm at most r − 1 from the root vertex. The map Br(m) is
then a map with holes. We also write B0(m) for the trivial bipartite map consisting of only one
edge.

For any two maps m,m′ ∈ B, we write

dloc(m,m
′) =

(
1 + max{r ≥ 0|Br(m) = Br(m

′)}
)−1

.

This is the local distance on B. As in the planar case, the space B is a Polish space and is the
completion of the space of finite bipartite maps for dloc. However, this space is not compact,
since B1(m) may take infinitely many values.

In our tightness argument, it will be more convenient to first work with a weaker notion
of convergence which we call the dual local convergence. We denote by B∗ the set of finite or
infinite bipartite maps (regardless of whether vertex degrees are finite or not). Let m ∈ B∗, and
let dm∗ be the graph distance on its dual. For r ≥ 1, we denote by B∗r (m) the submap of m
spanned by those edges of m∗ which are incident to a face of m lying at distance dm∗ at most
r − 1 from the root face of m. By convention, let also B∗0(m) be the map consisting of a simple
cycle with the same length as the boundary of the root face. Like Br(m), the "ball" B∗r (m) is
a finite map with holes. For any m,m′ ∈ B∗, we write

d∗loc(m,m
′) =

(
1 + max{r ≥ 0|B∗r (m) = B∗r (m′)}

)−1
.

We call d∗loc the dual local distance. Then B∗ is a Polish space for d∗loc and is the completion of
the set of finite bipartite maps.

The reason why we introduced d∗loc is that it will be very easy to obtain tightness for this
distance. This will allow us to work directly on infinite objects and deduce tightness for dloc

later. Tightness for d∗loc will be deduced from the next result.

Lemma 5. Let A(·) be a function from (0, 1) to N and let r ≥ 1. There is a function Ar(·) from
(0, 1) to N with the following property. Let G be a stationary (for the simple random walk)

12



random graph such that, for all ε > 0, we have

P (degG(ρ) > A(ε)) ≤ ε,

where ρ is the root vertex. Then for all ε > 0, we have

P
(

max
x∈Br(G)

degG(x) > Ar(ε)

)
≤ ε,

where Br(G) is the ball of radius r centered at the root vertex in G.

Proof. This result goes back to [5]. More precisely, although not stated explicitely as such, it
is proved by induction on r in the proof of tightness of uniform triangulations for the local
topology [5, Lemma 4.4]. See also [7, Theorem 3.1] for a general statement with minimal
assumptions.

From here, we easily obtain tightness for d∗loc in our setting.

Lemma 6. Let fn be face degree sequences such that 1
|fn|
∑

j>A jf
n
j → 0 as A→ +∞ uniformly

in n, and let (gn) be any sequence such that Bgn(fn) 6= ∅ for every n. Recall that Mfn,gn is a
uniform map in Bgn(fn). Then (Mfn,gn) is tight for d∗loc.

Proof. Let M∗fn,gn be the dual map of (Mfn,gn). Since Mfn,gn is invariant under rerooting at

a uniform edge, the probability that the root vertex of M∗fn,gn has degree 2j is equal to
jfnj
|fn| .

Therefore, it follows from the assumption of the lemma that the root degree of M∗fn,gn is tight.
MoreoverM∗fn,gn is invariant by rerooting along the simple random walk. Therefore, by Lemma 5,
for every r ≥ 1, the maximal degree in the ball of radius r centered at the root in M∗fn,gn is
tight. This implies tightness for d∗loc.

Finally, as in [15], tightness for dloc will be deduced from tightnesss for d∗loc using the following
result (the proof is the same as for triangulations, and is therefore omitted).

Lemma 7. Let (mn) be a sequence of maps of B. Assume that

mn
d∗loc−−−−−→

n→+∞
m,

with m ∈ B (i.e. with finite vertex degrees). Then mn → m for dloc as n→ +∞.

2.2 The lazy peeling process of bipartite maps

We now recall the definition of the lazy peeling process of maps introduced in [10] (see also [18]
for an extensive study). We will make heavy use of this notion in our proofs.

A peeling algorithm is a function A that takes as input a finite bipartite map m with holes,
and that outputs an edge A(m) on ∂m (i.e. on the boundary of one of the holes). Given
an infinite, planar, one-ended bipartite map m and a peeling algorithm A, we can define an
increasing sequence

(
EAt (m)

)
t≥0

of maps with one hole, such that EAt (m) ⊂ m for every t, in
the following way. First, the map EA0 (m) is the trivial map consisting of the root edge only. For
every t ≥ 0, we call the edge A

(
EAt (m)

)
the peeled edge at time t. Let Ft be the face of m on

the other side of this peeled edge (i.e. the side incident to a hole in EAt (m)). There are two
possible cases, as summed up on Figure 3:

13



or

Figure 3: The lazy peeling on an example. The peeled edge is in red. Either a new face is
discovered (center case), or the chosen edge is glued to another boundary edge (right case, the
glued edge is in blue and the filled part in pink).

• either Ft doesn’t belong to EAt (m), and then EAt+1(m) is the map obtained from EAt (m) by
gluing a simple face of size deg(Ft) along A

(
EAt (m)

)
;

• or Ft belongs to EAt (m). In that case, by planarity, there exists an edge et ∈ EAt (m) on
the same hole as A

(
EAt (m)

)
such that et and A

(
EAt (m)

)
are actually identified in m. The

map EAt+1(m) is then obtained from EAt (m) by gluing A
(
EAt (m)

)
and et together and, if

this creates a finite hole, by filling it in the same way as in m.

Such an exploration is called filled-in, because all the finite holes are filled at each step.
Let us now discuss two different ways to define peeling explorations on finite or nonplanar

maps. We first note that, if we do not fill the region in the second case, then the definition of a
peeling exploration still makes sense for any finite or infinite map, with the only difference that
the explored part may now have several holes. This is what we will call a non-filled-in peeling
exploration, and this will only be used briefly in Section 3.4.

Finally, for a finite map m, we define a filled-in exploration using the following convention.
Assume that the peeled edge at time t is glued to another boundary edge of EAt (m) and forms
two holes:

• if these two holes are connected in m\EAt (m) (which may occur if m is not planar), we
stop the exploration at time t;

• if not, we obtain EAt+1(m) by filling completely the hole which contains the smallest number
of edges in m.

Note that with these conventions, the map EAt (m) always have exactly one hole. This definition
will be used to compare peeling explorations of finite and infinite maps in Section 5. At this
point, the local planarity results from Section 3 will allow us to assume that with high probability,
the explorations are not stopped too early.

2.3 Combinatorial enumeration

Partition functions for Boltzmann planar maps. Before describing infinite Boltzmann
models in detail, we recall well-known enumeration results in the finite, planar case. We write
Q = [0, 1]N

∗ . Fix a sequence q ∈ Q. The partition function of bipartite, planar maps of the
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2p-gon with Boltzmann weights q is defined as

Wp(q) =
∑
m

∏
f∈m

qdeg(f)/2,

where the sum spans over all planar bipartite maps m of the 2p-gon, and the product is over
internal faces of m. We also denote by W •p (q) the pointed partition function, i.e. the sum
obtained by multiplying the weight of a map m by its total number of vertices. Note thatW1(q)

can also be interpreted as the partition function of maps of the sphere.
We recall from [25] the classical necessary and sufficient condition for the finiteness of these

partition functions. Given a weight sequence q ∈ Q, let

fq(x) =
∑
j≥1

qj

(
2j − 1

j − 1

)
xj−1.

If the equation

fq(x) = 1− 1

x
(4)

has a positive solution Zq we call q admissible, and write cq = 4Zq. Then by results from [25],
for all p ≥ 1, the partition functions Wp(q) and W •p (q) are finite if and only if q is admissible.
Moreover, in this case, for p ≥ 0, we have

W •p (q) = cpq ×
1

4p

(
2p

p

)
. (5)

It is also possible to derive simple integral formulas for Wp(q) in terms of cq but this will not be
needed here, see [18] for more details. We denote by Qa the set of admissible weight sequences.

Finally, let Q∗ be the set of those q = (qj)j≥1 ∈ Q for which there exists j ≥ 2 such that
qj > 0 (which ensures Wp(q) > 0 for all p ≥ 1). For q ∈ Q∗ ∩ Qa, we define the Boltzmann
distribution with weights q on finite planar bipartite maps of the 2p-gon as

P(m) =
1

Wp(q)

∏
f∈m

qdeg(f)/2

for all bipartite planar map m of the 2p-gon.

A general recursion for bipartite maps. As in [15], we are lacking precise asymptotics
on the enumeration of maps when both the genus and the size go to infinity. The following
recurrence formula, proved in [24], will play the same role as the Goulden–Jackson formula for
triangulations [21]. We set the convention βg(0) = 0 for all g. Then, for every g ≥ 0 and every
face degree sequence f , we have(
|f |+ 1

2

)
βg(f) =

∑
h(1)+h(2)=f

g(1)+g(2)+g∗=g

(1+|h(1)|)
(
v
(
h(2), g(2)

)
2g∗ + 2

)
βg(1)(h(1))βg(2)(h(2))+

∑
g∗≥0

(
v (f , g) + 2g∗

2g∗ + 2

)
βg−g∗(f),

(6)
where we recall that |f | =

∑
j≥1 jfj and v(f , g) = 2− 2g +

∑
j(j − 1)fj (i.e. it is the number of

vertices of a map with face degrees f and genus g).
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2.4 Infinite Boltzmann bipartite planar maps

Definition of the models. Our goal here is to recall the definition of infinite Boltzmann
bipartite planar maps introduced in [12, Appendix C] (and earlier in [10] in the critical case).
We also refer to [18, Chapter 8] for some basic properties of these objects that we will state
below.

Let q = (qj)j≥1 be a sequence of nonnegative real numbers that we will call the Boltzmann
weights. A random infinite bipartite planar map M is called q-Boltzmann if there are constants
(Cp(q))p≥1 such that, for every finite bipartite map m with one hole of perimeter 2p, we have

P (m ⊂M) = Cp(q)
∏
f∈m

qdeg(f)/2,

where the product is over all internal faces of m.
We will see that given q, such a map does not always exist, but when it does, it is unique,

i.e. the constants Cp(q) are determined by q, which justifies the notation Cp(q). More precisely,
as noted in [12, Appendix C], if a q-Boltzmann map exists, then the partition function of maps
of a 2-gon with Boltzmann weights q must be finite, which is equivalent to the admissibility
criterion (4). Moreover, with the notation of Section 2.1, we call q critical if f ′q(Zq) = 1

Z2
q
and

subcritical if this is not the case.
Finally, we define a measure νq on Z as follows:

νq(i) =

{
qi+1 c

i
q if i ≥ 0,

2W−1−i(q) ciq if i ≤ −1.
(7)

As noted in [10], this is the step distribution of the random walk on Z describing the evolution
of the perimeter of a finite q-Boltzmann map with a large perimeter (see also [18, Chapter 5.1]).
Then previous results about the existence of q-IBPM can be summed up as follows.

Theorem 5. 1. If a q-IBPM exists, it is unique (in distribution), so we can denote it by Mq.

2. If q /∈ Q∗ ∩Qa, then Mq does not exist.

3. If q ∈ Q∗ ∩Qa is critical, then Mq exists and Cp(q) = cp−1
q × 2p

4p

(
2p
p

)
.

4. If q ∈ Q∗ ∩Qa is subcritical, then Mq exists if and only if the equation∑
i∈Z

νq(i)ωi = 1 (8)

has a solution ωq > 1.

5. In this case, the solution ωq is unique and, for every p ≥ 1, we have

Cp(q) = (cqωq)p−1
p−1∑
i=0

(4ωq)−i
(

2i

i

)
. (9)

The third point is from [10], and the others are from [12, Appendix C]3. When it exists,
we will call the map Mq the q-IBPM (for Infinite Boltzmann Planar Map). We denote by

3We have fixed a small mistake from [12, Appendix C], where cq was omitted in the formula for Cp(q).
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Qh ⊂ Q∗ ∩Qa the set of weight sequences q for which Mq exists. We also note that the formula
for Cp(q) in the critical case is a particular case of the subcritical one where ω = 1. Since this
function will appear many times later, for ω ≥ 1 and p ≥ 1, we write:

hp(ω) =

p−1∑
i=0

(4ω)−i
(

2i

i

)
. (10)

In particular, if ω = 1, then hp(ω) = 2p
4p

(
2p
p

)
∼ 2√

π

√
p as p→ +∞. If ω > 1, then hp(ω)→

√
ω
ω−1

as p→ +∞.

The random walk ν̃q. To study the q-IBPM, we define the measure ν̃q on Z by ν̃q(i) =

ωiqνq(i), where ωq is given by (8) if q is subcritical, and ω = 1 if q is critical. The random walk
with step distribution ν̃q plays an important role when studying Mq. We first note that, if q is
not critical, then this walk has a positive drift. Indeed, denoting by Fq the generating function
of νq, we have ∑

i∈Z
i ν̃q(i) = F ′q(ωq) > 0,

since Fq is convex and takes the value 1 both at 1 and at ωq > 1. Note also that it is possible
that the drift is +∞.

Lazy peeling explorations of the q-IBPM. We now perform a few computations related
to lazy peeling explorations of the q-IBPM. For this, we fix a peeling algorithm A, and consider
a filled-in exploration of Mq according to A. We recall that EAt (Mq) is the explored region after
t steps, and we denote by (Ft)t≥0 the filtration generated by this exploration. We denote by Pt
(resp. Vt) the half-perimeter (resp. total number of edges) of EAt (Mq). We will call P and V
the perimeter and volume processes associated to a peeling exploration of Mq.

It follows from the definition of Mq that (Pt, Vt)t≥0 is a Markov chain on N2 and that its
law does not depend on the algorithm A. More precisely P is a Doob transform of the random
walk with step distribution ν̃q, i.e. it has the following transitions:

P (Pt+1 = Pt + i|Ft) = ν̃q(i)
hPt+i(ωq)

hPt(ωq)
, (11)

where hp(ω) is given by (10). As noted in [18], this implies that (hp(ωq))p≥1 is harmonic on
{1, 2, . . .} for the random walk with step distribution ν̃q, and that for q subcritical P has the
distribution of this random walk, conditioned to stay positive (if q is critical, the conditioning
is degenerate, but this can still be made sense of).

IBPM with finite expected degree of the root face. We denote by Qf the set of q ∈ Qh
such that the degree of the root face of Mq has finite expectation. Since our Theorem 1 only
holds if the expected degree of the root face is finite in the limit, we will need to gather a few
consequences of this assumption on q and the peeling process of Mq. Note that, for all q ∈ Qh,
the degree of the root face is determined by the first peeling step on Mq. More precisely, by
(11), we have for all j ≥ 1:

P (the root face of Mq has degree 2j) =
hj(ωq)

h1(ωq)
ν̃q(j − 1) =

hj(ωq)

h1(ωq)
(cqωq)j−1 qj . (12)
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If q is critical, the right hand-side is equivalent to 2√
π

√
jcj−1

q qj as j → +∞, so q ∈ Qf if and
only if ∑

j≥1

j3/2cjqqj < +∞. (13)

On the other hand, we recall (see e.g. [18, Chapter 5.2]) that a critical weight sequence q is
called of type 5

2 , or critical generic, if∑
j≥1

(j − 1)(j − 2)

(
2j − 1

j − 1

)
qj

(cq
4

)j−3
< +∞,

which is clearly equivalent to (13). In the subcritical case, by (12), q ∈ Qf is equivalent to∑
j≥1

jν̃q(j) < +∞,

i.e. the drift of ν̃ is finite. To sum up:

• In the critical case, q ∈ Qf if and only if q is critical generic, which means that the
perimeter process (Pn) converges to a 3/2-stable Lévy process with no positive jump,
conditioned to be positive (see [18, Theorem 10.1]). This basically means that q-Boltzmann
finite maps for q ∈ Qf lie in the domain of attraction of the Brownian map [25].

• In the subcritical case, q ∈ Qf if and only if the measure ν̃ has finite expectation. Since
the perimeter process P has the law of a ν̃-random walk conditioned on an event of positive
probability, this means that P has linear growth (instead of super-linear if the expectation
of ν̃ was infinite).

2.5 Four ways to describe Boltzmann weights

Four parametrizations of Qh. In this work, we will make use of four different "coordinate
systems" to navigate through the spaces Qh and Qf , each with its own advantages. The goal
of this section is to define these parametrizations and to establish some relations between them.
In particular, we will prove Theorem 3.

Our first coordinate system, already used in the last pages, consists in using directly the
Boltzmann weights qj for j ≥ 1. It is the simplest way to define the model Mq and gives the
simplest description of its law.

The second parametrization we will use is the one given by Proposition 8 below: we describe
q by parameters rj(q) ∈ [0, 1) for j ≥ 1 and r∞(q) ∈ (0,+∞]. Here rj(q) describes the
proportion of peeling steps where we discover a face of degree 2j during a peeling exploration
of Mq, and r∞(q) comes from a comparison between the volume and perimeter growths. The
advantage of these parameters is that they allow to "read" q as an almost sure observable on a
peeling exploration of the map Mq. This will be useful in Section 5.1.

The third parametrization consists in using on the one hand the law of the root face, and on
the other hand the average degree of the vertices. More precisely, for j ≥ 1, we write

aj(q) =
1

j
P (the root face of Mq has degree 2j) .
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We note that
∑

j≥1 jaj(q) = 1 and that a1(q) < 1 since a map consisting only of 2-gons would

have vertices with infinite degrees. We also write d(q) = E
[

1
degMq

(ρ)

]
, where ρ is the root

vertex. The advantage of this parametrization is that the analogues of these quantities are easy
to compute if we replace Mq by a finite uniform map with prescribed genus and face degrees.
These parameters are our only way to link the finite and infinite models, and will therefore be
useful in the end of the proof of Theorem 1. However, it is not obvious at all that (aj(q))j≥1

and d(q) are sufficient to characterize q. We will actually prove this in the end of the paper,
only for q ∈ Qf , as a consequence of local convergence arguments (Proposition 36).

Finally, the fourth coordinate system is the one from Theorem 3: it is a variant of the third
one where we replace d(q) by ωq, which makes it easier to handle. This one is useful as an
intermediate step towards the third one. Moreover, contrary to the third one, we can prove
rather quickly (Theorem 3) that it provides a nice parametrization of the whole space Qh.

Recovering q from explorations of Mq. We now describe more precisely our second
parametrization of Qh. The next result basically states that we can recover the weight se-
quence q by just observing the perimeter and volume processes defined above (we recall that
the volume is measured by the total number of edges).

Proposition 8. Let q ∈ Qh, and let P and V be the perimeter and volume processes associated
to a peeling exploration of Mq. We have the following almost sure convergences:

1

t

t−1∑
i=0

1Pi+1−Pi=j−1
a.s.−−−−→

t→+∞
(cqωq)j−1 qj =: rj(q) ∈ [0, 1) (14)

for every j ≥ 1, and

Vt − 2Pt
t

a.s.−−−−→
t→+∞

(√
ωq −

√
ωq − 1

)2
2
√
ωq(ωq − 1)

=: r∞(q) ∈ (0,+∞]. (15)

Moreover, the weight sequence q is a measurable function of the numbers rj(q) for j ∈ N∗∪{∞}.

Proof. In the subcritical case, the second convergence is Proposition 10.12 of [18]. In the critical
case, we have ωq = 1 so the right-hand side of (15) is infinite, and the result follows from Lemma
10.9 of [18].

Let us now prove the first convergence. For this, we first note that we have Pt → +∞ almost
surely as t→ +∞. Indeed, this again follows from [18, Proposition 10.12] in the subcritical case
and from [18, Lemma 10.9] in the critical case. On the other hand, given the asymptotics for
hp(ω) right after (10), for any fixed j ≥ 1, we have hp+j−1(ωq)

hp(ωq) → 1 as p→ +∞. It follows that

P (Pt+1 − Pt = j − 1|Ft)
a.s.−−−−→

t→+∞
ν̃q(j − 1) = (cqωq)j−1 qj ,

and the first convergence follows by the law of large numbers.

Finally, the function ω → (
√
ω−
√
ω−1)

2

2
√
ω(ω−1)

is a decreasing homeomorphism from [1,+∞) to

(0,+∞], so ωq is a measurable function of r∞(q). Moreover, by the definition of cq (4), we have

1− 4

cq
=
∑
j≥1

(
2j − 1

j − 1

)
qj

(cq
4

)j−1
=
∑
j≥1

1

4j

(
2j − 1

j − 1

)
rj(q)

ωj−1
q

,

which implies that cq is a measurable function of ωq and the numbers rj(q) for j ∈ N∗. Finally,
given cq and the rj(q), we easily recover the qj from (14).
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Weight sequences corresponding to a given distribution of the root face. We now
prove Theorem 3 by showing that our fourth parametrization is indeed bijective. We first
state the precise version of Theorem 3. We recall that for q ∈ Qh, the numbers aj(q) satisfy∑

j≥1 jaj(q) = 1 and α1 < 1, and we have ωq ≥ 1.

Proposition 9. Let (αj)j≥1 be such that
∑

j≥1 jαj = 1 and α1 < 1, and let ω ≥ 1. Then there
is a unique q ∈ Qh such that

ωq = ω and ∀j ≥ 1, aj(q) = αj .

Moreover, this weight sequence q is given by

qj =
jαj

ωj−1hω(j)

(
1−

∑
i≥1

1
4i−1

(
2i−1
i−1

)
iαi

ωi−1hω(i)

4

)j−1

. (16)

Proof of Proposition 9. We start with uniqueness. We note that

aj(q) =
1

j
Cj(q)qj =

1

j
(cqωq)j−1 hj(ωq)qj , (17)

so qj can be obtained as a function of aj(q) = αj , ωq and cq. Moreover, by the definition (4) of
cq, we have

1− 4

cq
=
∑
i≥1

1

4i−1

(
2i− 1

i− 1

)
qic

i−1
q =

∑
i≥1

1

4i−1

(
2i− 1

i− 1

)
iai(q)

ωi−1
q hi(ωq)

, (18)

so cq, and therefore qj for all j ≥ 1, can be deduced from ωq and (aj(q))j≥1. More precisely, we
obtain the formula (16), which in particular proves the uniqueness.

To prove the existence, it is enough to check that, for all ω ≥ 1 and (αj)j≥1 with
∑
jαj = 1

and α1 < 1, the sequence q given by (16) is indeed in Qh, with ωq = ω and aj(q) = αj for all
j. Following (18), we first write

c =
4

1−
∑

i≥1
1

4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

, (19)

and check that q is admissible with cq = c. First ωi−1hi(ω) is a polynomial in ω with nonnegative
coefficients so ωi−1hi(ω) ≥ hi(1) = 2i

4i

(
2i
i

)
. From here, we get

∑
i≥1

1

4i−1

(
2i− 1

i− 1

)
iαi

ωi−1hi(ω)
≤
∑
i≥1

αi <
∑
i≥1

iαi = 1

because α1 < 1. Therefore, the numbers qj are nonnegative and c > 0, and we can rewrite (16)
as

qj =
jαj

(ωc)j−1hj(ω)
.

From here, we get ∑
i≥1

1

4i−1

(
2i− 1

i− 1

)
qic

i−1 = 1− 4

c

immediately by the definition of c, which proves q ∈ Qa and cq = c. Also, we know that α1 < 1

so there is j ≥ 2 with αj > 0, which implies qj > 0, so q ∈ Q∗.
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We now prove q ∈ Qh with ωq = ω, which is equivalent to proving∑
i∈Z

νq(i)ωi = 1,

where we recall that νq is defined by (7). For this, inspired by similar arguments in the critical
case (see e.g. [18, Lemma 5.2]), the basic idea will be to show that

(
ωihi(ω)

)
i≥1

is harmonic for
νq. More precisely, the equality

∑
i≥1 iαi = 1 can be interpreted as a harmonicity relation at 1:

setting hi(ω) = 0 for i ≤ −1, we have∑
i∈Z

hi+1(ω)ωiνq(i) =
∑
j≥1

ωj−1hj(ω)cj−1qj =
∑
j≥1

jαj = 1 = h1(ω), (20)

where in the beginning we do the change of variables j = i + 1. On the other hand, we know
that hp(ω) =

∑p−1
i=0 ω

−iu(i), where u(i) = 1
4i

(
2i
i

)
for i ≥ 0 (and we set the convention u(i) = 0

for i ≤ −1). But the same function u plays an important role in the description of the law of
the peeling process of finite Boltzmann maps. In particular, we know that u is νq-harmonic on
positive integers for any admissible weight sequence q (this can be found in the proof of Lemma
5.2 in [18]). That is, for all j ≥ 1, we have

u(j) =
∑
i∈Z

νq(i)u(i+ j).

Multiplying by ω−j and summing over 1 ≤ j ≤ p− 1, we get, for all p ≥ 1:

hp(ω)− h1(ω) =
∑
i∈Z

ωiνq(i) (hp+i(ω)− hi+1(ω)) .

Summing this with (20) and dividing by hp(ω), we obtain∑
i∈Z

ωiνq(i)
hp+i(ω)

hp(ω)
= 1.

for all p ≥ 1. When p→ +∞, we have that hp(ω) has a positive limit if ω > 1 and is equivalent
to 2√

π

√
p if ω = 1, so hp+i(ω)

hp(ω) → 1 in every case. Therefore, by dominated convergence, we get∑
i∈Z

νq(i)ωi = 1,

where the domination
∑

i∈Z νq(i)ωi < +∞ is immediate for negative values of i since ω ≥ 1,
and comes from the convergence of the sum (20) for positive values of i. This proves q ∈ Qh
with ωq = ω, and from here aj(q) = αj is immediate using (17).

Proof of Theorem 3. It is clear from Proposition 9 that weight sequences with a given root face
distribution are parametrized by ω ∈ [1,+∞). We denote by q(ω) the unique weight sequence
for which the law of the root face is given by (αj)j≥1 and for which ωq(ω) = ω. Then q(1) is
critical by definition. Moreover, using (16) and (19), we get for i ≥ 0:

ν̃q(ω)(i) = q
(ω)
i+1ω

ici
q(ω) −−−−−→

ω→+∞
(i+ 1)αi+1. (21)

The sum over i ≥ 0 of the right-hand side is equal to 1, so ν̃q(ω) ((−∞,−1]) → 0 as ω → +∞.
By (11), this means that the probability of peeling cases decreasing the perimeter goes to 0.
Since these are the cases creating cycles in the dual, the dual of Mq(ω) becomes close to a tree
when ω → +∞, and the vertex degrees in Mq(ω) go to infinity.
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Two technical results on the dependance in ω. We conclude this section with two tech-
nical results that we will need in the end of the proof (Section 5.4). Both deal with the way
that some quantities depend on the parameter ω. We fix (αj)j≥1 such that

∑
j≥1 jαj = 1 and

α1 < 1. By Proposition 9, we can denote by q(ω) the unique weight sequence for which the law
of the root face is given by (αj)j≥1 and ωq(ω) = ω.

The first technical lemma states that we can recover q from the law of the root face (αj)j≥1

and a single weight qj , provided j ≥ 2.

Lemma 10. For every j ≥ 1, the function ω → q
(ω)
j is nonincreasing. Moreover, if j ≥ 2 and

αj > 0, this function is decreasing.

Since the proof is not particularly enlightening, we postpone it to Appendix A.1.
Our second technical lemma is a reinforcement of a part of Proposition 8 above. It states

that the second convergence result (15) is uniform in ω as long as ω is bounded away from 1

and +∞.

Lemma 11. Let
(
P

(ω)
t

)
t≥0

and
(
V

(ω)
t

)
t≥0

denote respectively the perimeter and volume pro-

cesses associated to a peeling exploration of Mq(ω) . The convergence in probability

V
(ω)
t − 2P

(ω)
t

t

P )−−−−→
t→+∞

(√
ω −
√
ω − 1

)2
2
√
ω(ω − 1)

is uniform in ω over any compact subset K of (1,+∞) in the sense that for all ε > 0, there is
t0 > 0 such that, for all t ≥ t0 and ω ∈ K:

P

(∣∣∣∣∣V (ω)
t − 2P

(ω)
t

t
−
(√
ω −
√
ω − 1

)2
2
√
ω(ω − 1)

∣∣∣∣∣ > ε

)
< ε.

The proof of Lemma 11 is an adaptation of the proof of (15) in [18], but using a uniform
weak law of large numbers. It is delayed to Appendix A.4.

3 Tightness, planarity and one-endedness

In all this section, we will work in the general setting of Theorem 2, i.e. we do not assume∑
j≥1 j

2αj < +∞.

Proposition 12. Let (fn, gn)n≥1 be as in Theorem 2. Then the sequence (Mfn,gn)n≥1 is tight
for dloc, and every subsequential limit is a.s. planar and one-ended.

Our strategy to prove Proposition 12 will be similar to [15], and in particular relies on a
Bounded ratio Lemma (Lemma 13). Sections 3.1, 3.2 and 3.3 are devoted to the proof of the
Bounded ratio Lemma, which is significantly more complicated than in [15]. In Section 3.4, we
prove that any subsequential limit of (Mfn,gn)n≥1 for d∗loc (which exist by Lemma 6) is planar
and one-ended. Finally, in Section 3.5, we finish the proof of Proposition 12 using Lemma 7 and
the Bounded ratio Lemma.

22



3.1 The Bounded ratio Lemma

The Bounded ratio Lemma below means that, as long as the faces are not too large and the
number of vertices remains proportional to the number of edges (i.e. basically under the as-
sumptions of Theorem 2), removing a face of degree 2j0 changes the number of maps by at most
a constant factor, provided the faces of degree 2j0 represent a positive proportion of the faces.
We recall from (2) that |f | and v(f , g) are respectively the number of edges and of vertices of
a map with genus g and face degrees given by f . For j ≥ 1, we denote by 1j the face degree
sequence consisting of a single face of degree 2j, i.e. (1j)i is 1 if i = j and 0 otherwise.

Lemma 13 (Bounded ratio Lemma). We fix κ, δ > 0 and a function A : (0, 1]→ N. Let f be a
face degree sequence, and let g ≥ 0. We assume that

v(f , g) > κ|f | and ∀ε > 0,
∑
i>A(ε)

ifi < ε|f |. (22)

Let also j0 ≥ 1 be such that j0fj0 > δ|f |. Then the ratio

βg(f)

βg(f − 1j0)

is bounded by a constant depending only on δ, κ and the function A.

We will not try to obtain an explicit constant. As in [15], we will use the Bounded ratio
Lemma to estimate the probability of certain events during peeling explorations, so we will need
versions with a boundary. Here are the precise versions that we will need later in the paper.

Corollary 14. Let κ, δ > 0 and A(·) be as in Lemma 13. Then there is a constant C such that
the following holds.

1. Let p, p′, j ≥ 1. Then there is N such that, for all f and g satisfying (22) and jfj > δ|f |
and |f | > N , we have

β
(p,p′)
g (f)

β
(p,p′)
g (f − 1j)

< C

and in particular
β

(p)
g (f)

β
(p)
g (f − 1j)

< 2C. (23)

2. Let p1, p2 ≥ 1 and i1, i2 ≥ 0. Then there is N such that, for all f and g satisfying (22) and
|f | > N , we have

β
(p1+i1,p2+i2)
g (f)

β
(p1,p2)
g (f)

< Ci1+i2 .

Since this will be very important later, we highlight that the constant C does not depend
on p, p′, j but that N does. The inequality (23) will be used in the tightness argument just like
in [15], whereas the statements with two boundaries will be needed in the two hole argument
(Section 5.2).
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p1 + 1 = 3 p1 = 2

Figure 4: Reducing the size of a boundary by 2 by adding a 2j-gon (here, the boundary is in
blue, and j = 3).

Proof. We first claim that we have the identity

β(p,p′)
g (f) =

2p(fp + 1)p′(fp′ + 1p6=p′)

2(|f |+ p+ p′)
βg(f + 1p + 1p′). (24)

Indeed, the factor p(fp + 1) corresponds to the number of ways to add a second root to a map
of Bg(f + 1p) such that this second root has a face of degree 2p on its right (with respect to
the canonical white to black orientation of edges). The factor p′(fp′ + 1p6=p′) corresponds to the
number of ways of adding a third root next to a face of degree 2p′ so that the two root faces
are distinct. The (|f | + p + p′) in the denominator corresponds to forgetting the original root.
Moreover, if (f , g) satisfy the assumptions of Lemma 13 for δ, κ,A(·) and |f | is large enough,
then (f + 1p + 1p′ , g) also satisfies the assumptions of Lemma 13 for δ

2 ,
κ
2 , A

( ·
2

)
. Therefore, the

first point of the corollary follows from Lemma 13 and (24). To deduce (23), just take p′ = 1

and use the identity β(p,1)
g (f) = |f |β(p)

g (f) (adding a 2-gon is equivalent to marking an edge) and
the fact that |f | is large enough.

For the second point, we first note that it is sufficient to prove it for {i1, i2} = {0, 1}. Since
C does not depend on (p1, p2), the general case easily follows by induction on i1 + i2. Without
loss of generality, we assume i1 = 1, i2 = 0.

We now note that there is δ, j1 > 0 depending only on A(·) such that, if (22) is satisfied,
then there is 2 ≤ j ≤ j1 such that jfj > δ|f | (we can assume j ≥ 2 because if there are too
many 2-gons, then the number of vertices cannot be macroscopic). We fix such a j. Then, by
the injection that consists in gluing a 2j-gon on the first boundary as on Figure 4, we have

β(p1+1,p2)
g (f) ≤ β(p1,p2)

g (f + 1j) ≤ Cβ(p1,p2)
g (f),

where the last inequality uses the first item of the Corollary. This proves the second point.

Outline of the proof of Lemma 13. The general idea is the same as in [15], namely building
an injection that removes a small piece of a map (here, we would like to remove a face of degree
2j0). Just like in [15], this implies to merge vertices, so we will try to bound the degrees of
the vertices involved, so that the number of ways to do the surgery backwards is not too high.
However, since we work in a more general setting, several new constraints appear. First, the
degrees of the faces are not bounded, so we must make sure that our surgery operations do not
involve faces of huge degrees. This is the purpose of finding "very nice edges" in Section 3.2
below. Also, we will not always be able to remove a face of degree exactly 2j0. We will therefore
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remove either a face with degree higher than 2j0, or several faces which combined are "larger"
than a face of degree 2j0. We will then use the two (easy) Lemmas 15 and 16 to conclude.

Lemma 15. If p ≥ j0 ≥ 1, then

|f |βg (f − 1j0) ≥ j0fj0 βg (f − 1p) .

In particular, if j0fj0 ≥ δ|f |, then

βg(f − 1j0) ≥ δβg(f − 1p) (25)

Proof. The second point is immediate from the first. For the first point, the right-hand side
counts maps in Bg (f − 1p) with a marked edge such that the face on its right has degree 2j0.
The left-hand side counts maps in Bg (f − 1j0) with a marked edge, so it is enough to build an
injection from the first set to the second. Take a map m in Bg (f − 1p) and mark an edge e of
m with a face of degree 2j0 on its right. We glue a path of p− j0 edges to the starting point of
e, just on the right of e as on Figure 5. One obtains a map of Bg (f − 1j0) with a marked edge,
and going backwards is straightforward.

Figure 5: The injection of Lemma 15 (here with j0 = 3 and p = 5). The marked edge is in red.

Lemma 16. If 1 < d1, d2, . . . , dk < j0 and
∑k

i=1(di − 1) ≥ j0 − 1, then

2|f |βg (f − 1j0) ≥ 2j0fj0βg

(
f −

k∑
i=1

1di

)
.

In particular, if j0fj0 ≥ δ|f |, then

βg (f − 1j0) ≥ δβg

(
f −

k∑
i=1

1di

)
. (26)

Proof. The proof is very similar to Lemma 15. This time, consider a mapm in Bg
(
f −

∑k
i=1 1di

)
with a marked oriented edge e that has a face of degree 2j0 on its right. Let d = 1+

∑k
i=1 (di − 1),

and note that d ≥ j0. If d > j0, transform the face of degree 2j0 into a face of degree 2d by
adding a path of d − j0 edges like in the previous proof. Then tessellate this face of degree 2d

as on Figure 6. We obtain a map of Bg (f − 1j0) with a marked edge, and this operation is also
injective.
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Figure 6: The injection of Lemma 16 (here with j0 = 5 and (d1, d2, d3) = (2, 3, 3)).

3.2 Good sets of edges

The injection we will build to prove the Bounded ratio Lemma takes as input a pair (m,E),
where m is a map and E is a set of edges of m satisfying the properties we will need to perform
some surgery around E. We will call such a set a good set. Our goal in this subsection is to define
a good set and to prove that any map contains a linear number of good sets (Proposition 22).
We recall that we consider that the edges are oriented from white to black, and therefore it
makes sense to define the left or right side of an edge.

Throughout this section, we work under the assumptions of Lemma 13. Let m ∈ Bg(f). Let
A1 := 2A

(
min

(
κ
32 , δ

))
.

Remark 17. We will have several different constants (depending on A(·), δ and κ) defined
in terms of each other in this subsection. To help convince the reader there is no circular
dependency between them, we provide a "causal graph" of all the involved constants.

A(·)

δ

κ

r A2

D

A1

We say that an edge e of m is nice if it is not incident to a face of degree larger than 2A1.

Fact 18. At least
(
1− κ

16

)
|f | of the edges in m are nice.

Proof. Draw an edge e of m uniformly at random. The face f sitting to the right of e is drawn
at random with a probability proportional to its degree. By the second assumption of (22), the
probability that f has degree larger than 2A1 is less than κ

32 . The same is true for the face
sitting to the left of e.

We will need to bound the degrees not only of the faces incident to an edge, but also of the
faces close to this edge for the dual distance. More precisely, we will define the dual distance
between two edges e1, e2 of m as the dual distance between the face on the right of e1 and the
face on the right of e2. We fix a value r (depending on A1 and κ) that we will specify later. Let
Ar be the function given by Lemma 5 for A(·) and r, and let A2 = Ar

(
κ
16

)
. We will call an edge

e of m very nice if it is nice and no edge at dual distance r or less from e is incident to a face
of degree larger than 2A2. By applying Lemma 5 to the stationary random graph obtained by
rooting the dual map m∗ at a uniform edge, the proportion of edges of m at dual distance r or
less from a face larger than 2A2 is at most κ

16 . Hence, we get the following observation.

26



Fact 19. At least
(
1− κ

8

)
|f | of the edges of m are very nice.

Let D = 4
κ . By the first assumption of (22), we know that D is larger than twice the average

vertex degree in m. Since at most half of the vertices have degree at least twice the average
degree, and since there are more than κ|f | vertices, we have the following.

Fact 20. There are at least κ
4 |f | vertices of the same colour with degree less than D in m.

Without loss of generality, assume that this colour is white (we recall that the vertices are
coloured black and white so that each edge joins two vertices of different colours and the root
is oriented from white to black). We say that a white vertex is fine if it has degree at most D,
and that an edge is fine if it is incident to a fine white vertex and the face on its right is not of
degree 2. By the previous fact, and since every vertex is incident to at least a face of degree > 2,
there are at least κ

4 |f | fine edges in m, incident to κ
4 |f | distinct white vertices. An edge is said

to be good if it is both very nice and fine. Summing up the last results, we have the following.

Lemma 21. There are at least κ
8 |f | good edges in m, incident to κ

8 |f | distinct white vertices.

We now fix the value of r at r = 16A1
κ + 1 (which is possible since A1 does not depend on

r, see Remark 17 above). We call a set S of A1 edges of m a good set if all the edges of S are
good, they are incident to distinct white vertices and they are all at dual distance less than 2r

from each other. Our next goal is to find a large number of good sets in the map m. Note that
these good sets do not need to be disjoint.

Proposition 22. There are at least κ
16 |f | good sets of edges in m.

Proof. The proof follows the argument from [15]. Let G be a set of κ8 |f | good edges incident to
distinct white vertices given by Lemma 21. In this proof, the balls B∗r (e) that we will consider
will be for the dual distance. We can assume that for every e ∈ G, the ball B∗r (e) does not
contain all the edges of m, since otherwise the proposition is obviously true.

In that case, for all e ∈ G, since m∗ is connected we must have |B∗r (e)| > r. We are going to
find a collection of distinct good sets (Si). For this, we build by induction a decreasing sequence
of sets of good edges (Gi), such that for each i, the set Gi+1 is obtained from Gi by removing
one element. We set G0 = G. Let 0 ≤ i < κ

16 |f |, and assume that we have built G0, G1, . . . , Gi.
Then |Gi| = |G| − i, so ∑

e∈Gi

|B∗r (e)| > (|G| − i) r > κ

16
|f |r > A1|f |

by our choice of r. Therefore, there must be an "A1-overlap", i.e. there exist A1 edges whose balls
of radius r have a nonempty intersection. Thus they are all at distance at most 2r of each other,
and we just found a good set Si+1. Choose ei+1 ∈ Si+1 arbitrarily, and let Gi+1 = Gi \ {ei+1}.
This way we can build Gi and Si for 1 ≤ i < κ

16 |f |, which proves the lemma.

3.3 Proof of the Bounded ratio Lemma: the injection

We now prove the Bounded ratio Lemma (Lemma 13). We start with the easy case j0 = 1: a
marked digon can be contracted into a marked edge (see Figure 7), and if f1 > δ|f |, we have

|f |βg(f − 11) > δ|f |βg(f)
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Figure 7: Contraction of a digon.

which yields the result.
We can now assume that j0 > 1 and j0fj0 > δ|f |. The injection we will build takes as input

a map of Bg(f) with a marked good set of edges, and outputs a map of Bg(f̃) with a marked
edge and some finite information (i.e. with values in a finite set whose size depends only on δ, κ
and the function A), with f̃ of the form:

(i) either
f̃ = f − 1p where j0 ≤ p < A1, (27)

(ii) or

f̃ = f −
k∑
i=1

1di where k ≤ A1 and 1 < di < j0 for all i but
k∑
i=1

di ≥ j0 + k − 1. (28)

Since the number of possibilities for f̃ is bounded in terms of A1, by (25) and (26), such an
injection will prove Lemma 13.

The surgery operation is quite complicated and, contrary to [15], some intermediate steps
affect the topology of the map (although the genus remains unchanged in the end). It is broken
down into four steps for better understanding.

Before describing this operation in details, we first need to give a few definitions. Consider
a map m with a good set S of edges, and a distinguished edge e∗ ∈ S called the anchor (the
way to choose e∗ will be specified later). For e ∈ S \ {e∗}, let pe be the leftmost shortest path4

in the dual m∗ from the face on the right of e∗ to the face on the right of e. We denote by P (S)

the union of all the paths pe for e ∈ S \{e∗} (see the left of Figure 8). With this definition P (S)

forms a tree. Since the edges of S are at dual distance at most 2r from each other, we also know
that the number of dual edges in P (S) satisfies |P (S)| < 2A1r.

We will now describe four injective operations (four "steps"). To make things less cumber-
some, we will use the term finite in lieu of "bounded by a constant that depends only on δ, κ
and the function A" (without trying to make the bounds explicit). These steps will involve
marked faces of possibly high but finite degree that we will call megafaces. Since one of the
steps might temporarily disconnect the map, we also precise that by a possibly non-connected
map, we mean a finite gluing of polygons which is not necessarily connected, and where only
one of the connected components bears a root edge.

After having defined the four steps, we will explain how to apply them to a map of Bg(f)
with a marked good set to obtain the desired injection. In particular, some of the steps depend
on additional parameters (such as the anchor edge in the good set S for step 1), and the way to
choose the parameters will be specified in the end.

4the leftmost shortest path is constructed by, at each step, taking the leftmost face that gets strictly closer to
the target.
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Step 1: Carving. This step inputs a map m ∈ Bg(f), with a distinguished good set S, anchored
at some edge e∗, and outputs a map m1 of genus g with a marked face of finite degree, A1

distinguished fine vertices incident to this face, and some finite information.
Start from a map m ∈ Bg(f), with a distinguished good set S, anchored at some edge e∗.

Draw P (S) on m∗ and cut each edge of m that is crossed by P (S). For every such edge, mark
the two corners corresponding to the ends of this edge (see Figure 8). The tree structure of
P (S) ensures that the map m1 that we obtain is still connected and has genus g. Moreover m1

has a distinguished face called the megaface, resulting from merging several faces of m. The A1

white vertices incident to the edges of S will be the A1 distinguished vertices output by Step 1.
These vertices are fine (i.e. have degree less than 4

κ) by definition of a good set.
Moreover, we claim that there are at most 2A1r marked corners of each colour in the

megaface, and that the megaface is of degree less than 4A1A2r. Indeed, each time an edge
is deleted, two faces merge, and the megaface is the consequence of the mergings of the faces
created by cutting edges. The number of marked corners is twice the number of edges cut, which
is less than |P (S)|. Let 2j1, 2j2, . . . , 2j` be the degrees of the faces of m that were merged in
the carving process. Then the megaface of m1 has degree 2F = 2(j1 + j2 + . . . + j` − ` + 1).
By definition of a good set, ` ≤ |P (S)| + 1 ≤ 2A1r, and also for all i, we have ji < A2, which
implies 2F < 4A1A2r. Therefore, given the map m1 and its megaface, the number of ways to
choose the marked corners is bounded by

(
4A1A2r

2A1r

)
, so the marked corners are finite information,

which will allow us to forget about them in the next steps.
Finally, note that step 1 is injective up to finite information: given the map m1, its megaface

and the marked corners, there is a finite number of ways to pair the marked corners in a planar
way inside the megaface.

Figure 8: The carving operation, from m (on the left) to m1 (on the right). The good set S of
edges is in purple with the anchor in red), and the paths P (S) are in blue. Marked corners in
m1 are represented as dangling half-edges.

Step 2: Vertex deletion. This step inputs a map m1 of genus g, with a marked face of finite
degree and A1 distinguished fine vertices incident to this face, as well as a number d < A1. It
outputs (together with some finite information) a possibly disconnected map m2 with K connected
components, of total genus g′ ≤ g with g− g′ finite, with v(f , g)− d vertices in total and with M
marked faces of finite total degree, such that there is at least one marked face in each connected
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component, and we have
M ≤ (g − g′) +K. (29)

Start with a map m1 of genus g, with a marked megaface to which A1 marked fine vertices
are incident, as well as a number5 d < A1. Pick d of the marked good vertices arbitrarily, and
delete them as well as all their incident edges (see Figure 9). We obtain a map m2 that might
be disconnected (see right before Step 1 for a definition).

1

2

4

3

Figure 9: Deleting a vertex.

We now precise which are the marked faces. Everytime an edge is deleted in the process,
three cases may happen:

• two faces are merged,

• or a face is split in two and the genus decreases by one,

• or a face is split in two and the number of connected components increases by one.

The marked faces (or megafaces) of m2 are then the result of the consecutive splittings
and mergings. In particular, the last two cases explain (29). Moreover, in the third case, if a
connected component is split in two, the marked face gets split between both components, so in
the end there is at least one marked face on each connected component.

We now bound the total degree of the megafaces. The edges incident to the megafaces of
m2 come from the megaface of m1, plus the "small" faces we merged with it in the process.
By definition of a good set, all these small faces were of degree A2 or less, and the number of
mergings is bounded by the total number of edges deleted in the operation, which itself is at
most DA1 (d < A1 vertices of degree bounded by D were deleted). Hence the total degree of
the megafaces is bounded by DA1A2 + 2F , where 2F is the degree of the megaface of m1. In
particular, this total degree is finite. On the other hand, the genus variation g − g′ is bounded
by the number of removed edges, so it is finite as well.

Finally, we argue that this step is injective up to finite information. To go back to m1, one
only needs to recreate the white vertices and reattach them to the right black corners. The
number of edges to add back is finite (bounded by DA1), and the black corners to which we
may attach them are on the megafaces, so their number is also finite. Therefore, up to adding
finite information in the output, Step 2 is injective.

Step 3: Reconstruction. This step inputs a possibly disconnected map m2 with v(f , g) − d
vertices in total for some d, of genus g′ ≤ g with g− g′ finite, with K connected components and
M marked faces of finite total degree, satisfying (29) and such that there is at least one marked
face in each connected component. It outputs a connected map m3 with v(f , g)− d+ 1 vertices,

5the number d is a parameter that will be fixed when defining the injection.
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of genus g, with one marked face of finite degree and a marked edge lying in that face, plus some
finite information.

We start with a map m2 as above, and denote by 2F the total degree of its megafaces. We
create one new white vertex v, select arbitrarily a black corner in each megaface f of m2, and
draw an edge between v and these black corners (see the left part of Figure 10). We keep track
of one of these newly created edges and call it the special edge. We obtain a map m′2 that is now
connected and has a unique megaface of degree at most 2F + 2M (because we added M edges).
This megaface is incident to the vertex v and to the special edge. Let g′′ be the genus of m′2.
We note that when we add one by one the edges joining v to the megafaces of m2, the genus
increases by one everytime we connect a megaface which is not the first one in its connected
component of m2. Hence g′′ − g′ = M −K, so (29) implies g′′ ≤ g. If g′′ = g, we set m3 = m′2.
If g′′ < g, we attach a pair of edges to the right of the special edge as on the right of Figure 10.
Now the resulting map has still only one megaface and is of genus g′′ + 1. Repeat if necessary
to obtain a map m3 of genus g with one megaface of degree bounded by 2F + 2K + 4(g − g′)
(because we added at most 2(g − g′) edges to recover the genus). Using (29) again, the degree
of the megaface is bounded by 2F + 4M ≤ 6F so it is finite. Moreover, the only vertex we have
added is v, so m3 has v(f , g)− d+ 1 vertices.

Figure 10: The reconstruction. Left: reconnecting the map. The megafaces are in pink, and the
rest of the map is in turquoise. Marked corners are represented as dangling half-edges. Right:
recovering the genus. The special edge is in red, and the added pair of edges is in blue.

Finally, to recover m2 from m3, one only has to remember the value of g− g′′. This is finite
information since g − g′′ ≤ g − g′ is finite. We can then simply remove the 2(g − g′′) edges
on the right of the special edge to recover m′2, and then delete the vertex v (i.e. the white
vertex incident to the marked edge of m3), together with all its incident edges, to recover m2.
Therefore, Step 3 is injective up to finite information.

Step 4: Filling of the megaface. This step inputs a map m3 in Bg(f ′) for some f ′ with a
marked face of finite degree 2F and a marked edge incident to that face. We also assume that f ′

satisfies the following assumptions:

1. we have f ′ = f + 1F − 1j1 − 1j2 − . . .− 1j` , where
∑`

i=1 ji is finite;

2. v(f ′, g) = v(f , d)− d+ 1 for some finite d ≥ 1;

3. there is an index k < ` such that

(j1 − 1) + (j2 − 1) + . . .+ (jk − 1) = d− 1. (30)

It outputs a map m4 ∈ Bg(f̃) with a marked edge, where f̃ ≤ f and
∣∣∣f − f̃

∣∣∣ is finite.
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We start with a map m3 ∈ Bg(f ′) as above, and let d and j1, . . . , j` be as in the assumptions
on f ′. By the Euler formula on f and f ′, we must have

F − 1 = (j1 − 1) + (j2 − 1) + . . .+ (j` − 1)− (d− 1). (31)

Combining this with the assumption (30), we obtain

F − 1 = (ik+1 − 1) + (ik+2 − 1) + . . .+ (i` − 1).

Hence, we can tessellate the megaface of degree 2F into faces of degrees 2jk+1, . . . , 2j` as in the
proof of (15). We obtain a map m4 (keeping the same marked edge) with face degrees given by
f̃ = f −

∑k
i=1 1ji , in an injective way.

Now we can describe our injection in terms of the different operations mentioned above.
Roughly speaking, we will successively apply our four steps. We will specify the choice of some
of the parameters in the first three steps in such a way that the face degree distribution f ′

after Step 3 satisfies all the assumptions required by Step 4, and the face degree distribution f̃

obtained after Step 4 is of one of the two forms given by (27) and (28).
More precisely, we start with a map m ∈ Bg(f) with a marked good set S. For all e ∈ S, let

de be the half-degree of the face sitting on the right of e. We treat two cases separately (which
will in the end correspond to (27) and to (28)).

Case 1: Assume there exists e∗ in S such that de∗ ≥ j0. Take e∗ as the anchor, and apply
Step 1. Note that the face of degree 2de∗ sitting to the right of e∗ is one of the faces that have
been destroyed. We then apply Step 2 with d = de∗ , i.e. we remove d good vertices, including
the one that was incident to e∗. We then apply Step 3 to obtain a map m3, and denote by f ′ the
face degree sequence of m3. Note that m3 has d− 1 vertices less than m, which ensures that the
d as defined in the assumptions of Step 4 is the same as the one used in Step 2 and 3. Moreover,
it follows from Steps 1, 2 and 3 that f ′ is of the form f + 1F − 1j1 − 1j2 − . . . − 1j` , where 2F

is the degree of the megaface, and 2j1, . . . , 2j` are the degrees of the faces destroyed in Step 1.
In particular

∑`
i=1 ji is finite and, up to reordering the ji’s, we may assume j1 = d = de∗ . This

implies that (30) is satisfied for k = 1, so we can apply Step 4 to obtain a map m4. Finally, the
face degree sequence of m4 is f̃ = f − 1d, where d = de∗ ≥ j0, and d < A1 by definition of a nice
edge. Hence f̃ is of the form given by (27).

Case 2: We now assume de < j0 for all e ∈ S. Take any arbitrary ordering e1, e2, . . . , eA1 of
the edges of S, and for all i let di = dei be the half-degree of the face on the right of ei. We first
claim that there is an index k such that

j0 − 1 <

k∑
i=1

(di − 1) < A1 − 1 (32)

Indeed, by definition of a fine edge, we have di ≥ 2 for all i so
∑A1

j=1(dj − 1) ≥ A1 > j0 − 1.
Therefore, we can consider the first index k such that

∑k
i=1(di − 1) > j0 − 1. Then we have

dk < j0 by assumption, so
∑k

i=1(di − 1) < 2j0 − 1. Finally, by definition of A1, we have
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A1 ≥ 2A(δ) ≥ 2j0 (the second inequality follows from the assumption j0fj0 > δ|f |), so (32) is
indeed satisfied for this k.

We now choose the anchor of S arbitrarily, and apply Step 1. We then apply Step 2 with d =

1+
∑k

i=1(di−1), i.e. we delete d good vertices, including the ones incident to e1, . . . , ek. Note that
at this point, all the faces that were incident to the edges e1, . . . , ek have been destroyed. We then
apply Step 3 and obtain a map m3 with face degree sequence f ′. The first two assumptions on f ′

in Step 4 are satisfied for the same reason as in Case 1, with f ′ of the form f +1F −1j1− . . .−1j` .
Moreover, since the faces incident to e1, . . . , ek have been destroyed previously, up to reordering
the ji’s, we may assume ji = di for 1 ≤ i ≤ k. Therefore, by our choice of d, the third
assumption (30) of Step 4 is also satisfied. After applying Step 4, we obtain a map m4 with face
degree sequence

f̃ = f −
k∑
i=1

di.

Finally, we have 1 < di < j0 for all i by the assumption of Case 2, and
∑k

i=1 di ≥ j0 + k − 1

by (32), so f̃ is of the form given by (28).

Conclusion of the proof of Lemma 13. Consider the injection that we have just built. By Propo-
sition 22, the number of inputs m is at least κ

16 |f |βg(f), whereas the number of outputs m4 is at
most

∑
f̃ |̃f |βg(f̃), where the sum is over face degree sequences f̃ of the form either (27) of (28).

When we apply successively Steps 1, 2, 3 and 4, we note that each step is injective up to
finite information. This means that there is a constant c depending only on δ, κ and A(·) such
that

κ

16
|f |βg(f) ≤ c

∑
f̃

|̃f |βg(f̃) ≤ c|f |
∑
f̃

βg(f̃),

where the second inequality uses f̃ ≤ f . Moreover, the number of possible sequences f̃ is bounded
in terms of δ, κ and A(·). Hence, there is a sequence f̃ of the form (27) or (28) such that

βg(f) ≤ c′βg(f̃),

where c′ depends only on δ, κ and A(·). We can finally conclude using Lemma 15 if f̃ is of the
form (27), or Lemma 16 if f̃ is of the form (28).

3.4 Planarity and One-Endedness

We fix (fn)n≥1 and (gn)n≥1 satisfying the assumptions of Theorem 2. We recall that by Lemma 6
(Mfn,gn) is tight for d∗loc. In all this subsection, we will denote by M a subsequential limit in
distribution. Since |fn| → +∞, it must be an infinite map. To prove Proposition 12, we will
first prove that M is a.s. planar and one-ended (Corolaries 24 and 26). Like in [15], the proofs
will rely heavily on a recursion counting maps. More precisely, the formula (6) proved in [24]
will play the role of the Goulden–Jackson formula in [15]. This step of the proof only differs
from [15] by minor adaptations, so we will not give the full details. The proofs of Lemmas 23
and 25 using (6) can be found in the Appendix A.2.

As in [15], to establish planarity, we want to bound, for any non-planar finite map m,
the probability P (m ⊂Mfn,gn) for n large. For this, we will need the following combinatorial
estimate.
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Lemma 23. We fix (fn)n≥1 and (gn)n≥1 which satisfy the assumptions of Theorem 2. We also
fix h(0) a face degree sequence such that h(0) ≤ fn for n large enough. Let k ≥ 2, numbers
`1, `2, . . . , `k and perimeters pji for 1 ≤ j ≤ k and 1 ≤ i ≤ `j . Then

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn−1−
∑
j(`j−1)

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)

g(j) (h(j)) = o (βgn(fn))

as n→∞.

Corollary 24. Let (fn)n≥1 and (gn)n≥1 satisfy the assumptions of Theorem 2. Then every
subsequential limit M of (Mfn , gn) for d∗loc is a.s. planar.

Proof. The proof is basically the same as [15, Corollary 7], with the exception of the assumption
h(0) ≤ fn in Lemma 23 (this assumption was automatically satisfied in [15]). More precisely, it
is sufficient to prove P (m ⊂M) = 0 for every finite map m with holes and of genus 1. We fix
such a map m.

We also note that almost surely, for every face f of M , we have αdeg(f)/2 > 0. Indeed, this
is true for the root face since the root face of M has degree j with probability jαj for all j ≥ 1,
and this can be extended to all faces using stationarity with respect to the simple random walk
on the dual of M . Therefore, if m has a face of degree 2j with αj = 0, then P (m ⊂M) = 0.

If not, let h(0) be the internal face degree sequence of m. Then fnj → +∞ as n → +∞ for

every j such that h(0)
j > 0, so h(0) ≤ fn for n large enough. In particular, we are in position to

use Lemma 23. The proof is now exactly the same as in [15]: we use the fact that P (m ⊂M)

can be expressed using the number of ways to fill the holes of m with maps of multipolygons,
which is given by the left-hand side of Lemma 23.

We now move on to one-endedness. The proof is quite similar, and relies on the following
estimate.

Lemma 25. We fix (fn)n≥1 and (gn)n≥1 which satisfy the assumptions of Theorem 2. We also
fix h(0) a face degree sequence such that h(0) ≤ fn for n large enough.

• Let k ≥ 1, numbers `1, `2, . . . , `k not all equal to 1 and perimeters pji for 1 ≤ j ≤ k and
1 ≤ i ≤ `j . Then

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn−
∑
j(`j−1)

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)

g(j) (h(j)) = o (βgn(fn))

as n→∞.

• Let k ≥ 1 and perimeters p1, . . . , pk. There is a constant C (that may depend on everything
above) such that for every a and n large enough we have

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn
|h(1)|,|h(2)|>a

k∏
j=1

β
(pj)
gj (h(j)) ≤ C

a
βgn(fn).
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Corollary 26. Let (fn)n≥1 and (gn)n≥1 satisfy the assumptions of Theorem 2. Every subse-
quential limit M of (Mfn , gn) for d∗loc is a.s. one-ended in the sense that, for every finite map m
with holes such that m ⊂M , only one hole of m is filled with infinitely many faces6.

Proof. The proof given Lemma 25 is exactly the same as [15, Corollary 9], except for the ad-
ditional assumption in Lemma 25 that h(0) ≤ fn for n large enough. We take care of it in the
same way as in the proof of Corollary 24.

3.5 Finiteness of the root degree

We now finish the proof of tightness for dloc (Proposition 12). Let M be a subsequential limit
of (Mfn,gn) for d∗loc. By Lemma 7, to get tightness for dloc, we need to show that almost surely,
all the vertices of M have finite degree. Our argument is now very similar to [15] and inspired
by [5]: we will first study the degree of the root vertex by using the Bounded ratio Lemma, and
then extend finiteness by using invariance under the simple random walk.

Lemma 27. The root vertex of M has a.s. finite degree.

Proof. Following the approach of [5], we perform a filled-in lazy peeling exploration of M . Note
that we already know by Corollary 24 that the explored part will always be planar, so no
peeling step will merge two different existing holes. Moreover, by Corollary 26, if a peeling step
separates the boundary into two holes, then one of them is finite and will be filled with a finite
map. Therefore, at each step, the explored part will have only one hole.

The peeling algorithm A that we use is the following: if the root vertex ρ belongs to ∂m,
then A(m) is the edge on ∂m on the left of ρ. If ρ /∈ ∂m, then the exploration is stopped. Let τ
be the time at which the exploration is stopped. Since only finitely many edges incident to ρ are
added at each step, it is enough to prove τ < +∞ a.s.. We recall that EAt (M) is the explored
part at time t.

We will prove that at each step, conditionally on EAt (M), the probability to swallow the root
and finish the exploration in a bounded amount of time is bounded from below by a positive
constant. We fix j∗ ≥ 2 with αj∗ > 0. Note that such a j∗ exists because of the assumption
θ < 1

2

∑
j≥1(j − 1)αj . For every map m with one hole such that ρ ∈ ∂m, we denote by m+ the

map constructed from m as follows (see Figure 11):

• we first glue a "face" of degree 2j∗ to m along the edge of ∂m on the left of ρ;

• we then glue together the two edges of the boundary incident to ρ together;

• during the next j∗ − 2 steps, at each step, we pick two consecutive edges of the boundary
according to some fixed convention and glue them together.

Note that m+ is a planar map with the same perimeter as m but one more face (of degree
2j∗). By the choice of our peeling algorithm, if we have τ ≥ t and EAt (M)+ ⊂M , then we have
τ ≤ t+ 2. Hence it is enough to prove that the quantity

P
(
m+ ⊂M |m ⊂M

)
6This is a "weak" definition of one-endedness. For example, it does not prevent m to be the dual of a tree.

However, once we will have proved thatM has finite vertex degrees, this will be equivalent to the usual definition.
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ρ ρ ρ ρ

Figure 11: The construction of m+ from m. In gray, the map m. In red, the root vertex. In
blue, the new face. Here, |∂m| = j∗ = 3.

is bounded from below over finite, planar maps m with one hole such that ρ ∈ ∂m.
We fix such an m, with half-perimeter p and internal face degrees given by h. Along some

subsequence, we have Mfn,gn → M in distribution (for d∗loc). Along the same subsequence, it
holds that

P
(
m+ ⊂M |m ⊂M

)
= lim
n→+∞

P (m+ ∈Mfn,gn)

P (m ∈Mfn,gn)
= lim
n→+∞

β
(p)
gn (fn − h− 1j∗)

β
(p)
gn (fn − h)

.

By our choice of j∗, we have fnj∗ ≥
αj∗

2 |f
n| for n large enough, so we can apply the Bounded

ratio Lemma, which concludes the proof.

Proof of Proposition 12. LetM be a subsequential limit of (Mfn,gn). We recall that for all n, the
map (Mfn,gn) is stationary for the simple random walk on its vertices. Therefore, by Lemma 27
and the same argument as in [5] (see also the proof of Lemma 6 above), almost surely all the
vertices of M have finite degree. By Lemma 7, this guarantees that (Mfn,gn) is tight for dloc.

The a.s. planarity of M is proved in Corollary 24. Finally, it easy to check that for maps
with finite vertex degrees, the weak version of one-endedness proved in Corollary 26 implies the
usual one. Indeed, if V is a finite set of vertices of M , one can consider a finite, connected
submap of M containing all the faces and edges incident to vertices of V . Then Corollary 24
ensures that this submap does not separate M into two infinite maps.

4 Weakly Markovian bipartite maps

Our goal in this Section is to prove Theorem 4.

Weakly Markovian bipartite maps. For a finite, bipartite map m with one hole, we denote
by |∂m| the half-perimeter of the hole of m. For all j ≥ 1, we also denote by vj(m) the number
of internal faces of m with degree 2j.

Definition 28. Let M be a random infinite, one-ended, bipartite planar map. We say that M
is weakly Markovian if for every finite map m with one hole, the probability P (m ⊂M) only
depends on |∂m| and (vj(m))j≥1.

Let V be the set of sequences v = (vj)j≥1 such that vj = 0 for j large enough. If M is
weakly Markovian and v ∈ V, we will denote by apv the probability P (m ⊂M) for a map m
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with |∂m| = p and vj(m) = vj for all j. Note that this only makes sense if there is such a map
m, which is equivalent to

p ≤ 1 +
∑
j≥1

(j − 1)vj . (33)

Therefore, if p ≥ 1, we will denote by Vp ⊂ V the set of those v satisfying (33). Note that
V1 = V. In particular, by definition, for q ∈ Qh, the q-IBPM is weakly Markovian, and the
corresponding constants apv are:

apv(q) := Cp(q)qv,

where qv :=
∏
j≥1 q

vj
j . Therefore, if M is of the form MQ for some random weight sequence Q,

we have apv = E[Cp(Q)Qv].

Sketch of the proof of Theorem 4. We first note that the second point of Theorem 4 is
immediate once the first point is proved. Indeed, let us write Rootface(m) for the degree of the
root face of a map m. If Rootface(M) has finite expectation, then

E [E [Rootface(MQ)|Q]] = E [Rootface(MQ)] < +∞,

so E [Rootface(MQ)|Q] < +∞ a.s., so Q ∈ Qf a.s..
The first point of Theorem 4 is the natural analogue of Theorem 2 of [15], where triangulations

are replaced by more general maps. The proof will rely on similar ideas: we fix a weakly
Markovian map M with associated constants apv, and we would like to find a random Q such
that apv = E[Cp(Q)Qv] for all p and v. We will use peeling equations to establish inequalities
between the apv, and the existence ofQ will follow from the Hausdorff moment problem. However,
compared to [15], two new difficulties arise:

• the random weights q form a family of real numbers instead of just one real number;

• in the triangular case, with the notations of Definition 28, it was immediate that all the
numbers apv are determined by the numbers a1

v. This is not true anymore.

The first issue can be handled by using the multi-dimensional version of the Hausdorff moment
problem. The second one, on the other hand, will make the proof a bit longer than in [15].
More precisely, the Hausdorff moment problem will now provide us, for every p ≥ 1, a σ-finite
measure µp on the set of weight sequences, which describes apv for all v. We will then use the
peeling equations to prove that all the µp are actually determined by µ1.

Because of the condition (33), we will need to find a measure with suitable v-th moments for
all v ∈ Vp, which is slightly different than the usual Hausdorff moment problem where v ∈ V.
Therefore, we first need to state a suitable version of the moment problem, which will follow
from the usual one. This is done in the next subsection.

4.1 The incomplete Hausdorff moment problem

To state our version of the moment problem (Proposition 29 below), we will need to consider
the space of sequences (uv)v∈Vp . For j ≥ 1, we denote by ∆j the discrete derivation operator
on the j-th coordinate on this space. That is, if u = (uv), we write

(∆ju)v = uv − uv+1j .
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It is easy to check that the operators ∆j commute with each other. For all k = (kj)j≥1 such
that kj = 0 for j large enough (say for j ≥ j0), we define the operator ∆k by

∆ku = ∆k1
1 ∆k2

2 . . .∆
kj0
j0
u.

In other words, we have

∆ku =
∑
i

∏
j≥1

(−1)ij
(
kj
ij

)uv+i,

where the sum is over families i = (ij)j≥1, and the terms with a nonzero contribution are those
for which 0 ≤ ij ≤ kj for every j ≥ 1. The "usual" Hausdorff moment problem is then the
following.

Theorem 6. Let (uv)v∈V be such that, for any v ∈ V and any k ≥ 0, we have

∆kuv ≥ 0.

Then there is a unique measure µ on Q = [0, 1]N
∗ (equipped with the product σ-algebra) such

that, for all v ∈ V, we have

uv =

∫
qvµ(dq).

In particular µ is finite, with total mass u0.

More precisely, this is the infinite-dimensional Hausdorff moment problem, which can be
deduced immediately from the finite-dimensional one by the Kolmogorov extension theorem.

For p ≥ 1, we recall that Vp ⊂ V is the set of v ∈ V that satisfy
∑

j≥1(j − 1)vj ≥ p− 1. We
also denote by V∗p the set of v ∈ Vp for which there is j ≥ 2 such that vj > 0 and v − 1j ∈ Vp.
In other words V∗p can be thought of as the "interior" of Vp. Finally, we recall that

Q∗ = {q ∈ [0, 1]N
∗ |∃j ≥ 2, qj > 0}.

Proposition 29. Fix p ≥ 1, and let (uv)v∈Vp be a family of real numbers. We assume that for
all v ∈ Vp and all k ≥ 0, we have

∆kuv ≥ 0.

Then there is a σ-finite measure µ on Q∗ such that, for all v ∈ V∗p , we have

uv =

∫
qvµ(dq).

Moreover, if p = 1, then µ is finite and µ(Q∗) ≤ u0.

Note that this version is "weaker" than Theorem 6 in the sense that it is not always possible
to have uv =

∫
qvµ(dq) for v ∈ Vp\V∗p . A simple example of this phenomenon in dimension

one is that the sequence (1i=1)i≥1 has all its discrete derivatives nonnegative. However, there is
no measure on [0, 1] with first moment 1 and all higher moments 0. On the other hand, we can
assume an additional property of our measure µ, namely it is supported by Q∗ instead of Q in
Theorem 6.
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Proof. We start with the case p = 1. Then V1 = V, so by Theorem 6, there is a measure µ̃ on
Q such that, for all v ∈ V1, we have

uv =

∫
Q
qvµ̃(dq).

Let µ be the restriction of µ̃ to Q∗. If v ∈ V∗1 and q ∈ Q\Q∗, then there is j ≥ 2 such that
vj > 0 but qj = 0, so qv = 0. It follows that, for all v ∈ V∗1 , we have∫

Q∗
qvµ(dq) =

∫
Q
qvµ̃(dq) = uv.

Moreover, the total mass of µ is not larger than the total mass of µ̃, so it is at most u0.
We now assume p ≥ 2. Let v ∈ Vp. Then v + w ∈ Vp for all w ∈ V, so the sequence

(uv+w)w∈V satisfies the assumptions of Theorem 6. Therefore, there is a finite measure µv on
Q such that

uv+w =

∫
qwµv(dq)

for all w ∈ V. Now let v,v′ ∈ Vp. For all w, we have∫
qv′qwµv(dq) = uv+v′+w =

∫
qvqwµv′(dq).

In other words, the measures qv′µv(dq) and qvµv′(dq) have the same moments, so by uniqueness
in Theorem 6

qv′µv(dq) = qvµv′(dq). (34)

In particular, for all v ∈ Vp, we can consider the σ-finite measure

µ̃v(dq) =
µv(dq)

qv

defined on {qv > 0}. Then (34) implies that, for any v,v′ ∈ Vp, the measures µ̃v and µ̃v′

coincide on {qv > 0} ∩ {qv′ > 0}. Therefore, there is a measure µ on
⋃

v∈Vp{q
v > 0} = Q∗

such that, for all v ∈ Vp, we have

µv(dq) = qvµ(dq) on {qv > 0}. (35)

Since µ is finite on {qj > ε} for all ε > 0 and j ≥ 2, the measure µ is σ-finite. We would now
like to extend the equality (35) to all Q∗ under the condition v ∈ V∗p .

For this, let v ∈ V∗p , and let j ≥ 2 be such that vj > 0 and v − 1j ∈ Vp. We have p1j ∈ Vp,
so we can apply (34) to v and p1j . We obtain, on {qj > 0}:

µv(dq) = qvµp1j (dq)

qpj
= qvµ(dq),

using also (35) for p1j . In other words, (35) holds on {qj > 0}.
On the other hand, for v and v−1p, we can obtain a stronger version of (34). More precisely,

for all w, we have ∫
qjq

wµv−1j (dq) = uv+w =

∫
qwµv(dq),

so the measures qjµv−1j (dq) and µv(dq) have the same moments, so they coincide. But the
first one is 0 on {qj = 0}, so it is also the case for the second. Therefore, (35) holds on {qj = 0},
with both sides equal to 0.

Therefore, we have proved that (35) holds on Q. By integrating over Q∗ and using that the
total mass of µv is uv and is supported by Q∗, we get the result.
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4.2 Proof of Theorem 4

As in [15], we start by writing down the peeling equations, which are linear equations between
the numbers apv together. For every p ≥ 1 and v ∈ Vp, we have

apv =
∑
j≥1

ap+j−1
v+1j

+ 2

p−1∑
i=1

∑
w∈V

β
(i−1)
0 (w)ap−iv+w, (36)

where we recall that β(i−1)
0 (w) is the number of planar, bipartite maps of the 2(i− 1)-gon with

exactly wj internal faces of degree 2j for all j ≥ 1. These equations, together with the facts
that a1

0 = 1 and apv ≥ 0, characterize the families (apv) of numbers that may arise from a weakly
Markovian map. In order to be able to use the Hausdorff moment problem, we now need to
check that the discrete derivatives of (apv) are nonnegative.

Lemma 30. Let M be a weakly Markovian bipartite map, and let (apv) be the associated
constants. For every k ≥ 0, p ≥ 1 and v ∈ Vp, we have(

∆kap
)
v
≥ 0.

Proof. The proof is similar to the proof of Lemma 16 in [15], with the following modification: in
[15], it was useful that in the same peeling equation, we had apv appearing on the left and apv+1

on the right. However, in (36) apv+1j
does not appear in the right-hand side (this is because we

are using the lazy peeling process of [10] instead of the simple peeling of [1]). Therefore, instead
of using directly the peeling equation, we will need to use the double peeling equation, which
corresponds to performing two peeling steps, instead of one in (36).

More precisely, the peeling equation (36) gives an expansion of apv. The double peeling
equation is obtained from (36) by replacing all the terms in the right-hand side by their expansion
given by (36). Note that this indeed makes sense because if v ∈ Vp, then v + 1j ∈ Vp+j−1 for
all j ≥ 1, and v + w ∈ Vp−i for all i ≥ 1 and w ∈ V.

The equation we obtain is of the form

apv =
∑

i∈Z,w∈V
cp,iv,wa

p+i
v+w, (37)

where the coefficients cp,iv,w are nonnegative integers. An explicit formula for these could be
computed in terms of the β(i)

0 (w), but this will not be needed. Here are the facts that will be
useful:

1. the coefficients cp,iv,w actually do not depend on v, so we can write them cp,iw ,

2. we have cp,2j−2
2·1j = 1 for every j ≥ 1,

3. we have cp,01j
≥ 1 for every j ≥ 2.

The first item follows from the fact that at each time, the available next peeling steps do not
depend on the internal face degrees of the explored region. The second item expresses the fact
that, for a given peeling algorithm, there is a unique way to obtain a map with half-perimeter
p + 2j − 2 with internal faces v + 2 · 1j in two peeling steps. This way is to discover a unique
face of degree 2j at both steps. The third item means that it is possible (not necessarily in a
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Step 1 Step 2

Figure 12: In two peeling steps, the perimeter stays constant and one face with degree 2j is
added (here j = 3).

unique way) to obtain in two peeling steps a map with the same perimeter but one more face of
degree 2j. This is achieved by discovering a new face of degree 2j at the first step, and gluing
all but two sides of this face two by two at the second step (see Figure 12).

We now prove the lemma by induction on |k| =
∑

j≥1 kj . First, the case |k| = 0 just means
that apv ≥ 0 for all p ≥ 1 and v ∈ Vp, which is immediate. Let us now assume that the lemma is
true for k and prove it for k + 1j , where j ≥ 1. We will first treat the case where j ≥ 2. Using
the double peeling equation (37) for (p,v + i) for different values of i, we have(

∆kap
)
v

=
∑

i∈Z,w∈V
cp,iw

(
∆kap+i

)
v+w

.

Therefore, using the induction hypothesis and Item 2 above, we can write

0 ≤
(

∆kap+2j−2
)
v+2·1j

= cp,2j−2
2·1j

(
∆kap+2j−2

)
v+2·1j

=
(

∆kap
)
v
−

∑
(i,w) 6=(2j−2,2·1j)

cp,iw

(
∆kap+i

)
v+w

.

Using the induction hypothesis again, we can remove all the terms in the last sum except the
one where (i,w) = (0,1j). Moreover, by Item 3 above, we can replace the coefficient cp,01j

by 1.
We obtain

0 ≤
(

∆kap
)
v
−
(

∆kap
)
v+1j

=
(

∆k+1jap
)
v
,

which proves the induction step for j ≥ 2. If j = 1, Item 3 is not true anymore (it is not possible
to add only one face of degree 2 in 2 steps without changing the perimeter). Therefore, instead
of (37), we use the simple peeling equation (36) like in [15]. More precisely, in the induction
step, we fix j′ ≥ 2 and write, using (36):

0 ≤
(

∆kap+j
′−1
)
v+1j′

=
(

∆kap
)
v
−
∑
j′′ 6=j′

(
∆kap+j

′′−1
)
v+1j′′

− 2

p−1∑
i=0

∑
w

β
(i−1)
0 (w)

(
∆kap−i

)
v+w

.

Each term in the two sums is nonnegative by the induction hypothesis, so we can remove the
second sum and keep only the term j′′ = 1 in the first one to obtain

0 ≤
(

∆kap
)
v
−
(

∆kap
)
v+11

=
(

∆k+11ap
)
v
.
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This concludes the proof of the lemma.

By Lemma 30 and Proposition 29, for all p ≥ 1, there is a σ-finite measure µp on Q∗ such
that, for all v ∈ V∗p ,

apv =

∫
Q∗

qvµp(dq) (38)

and furthermore µ1(Q∗) ≤ a1
0 = 1. We now replace apv by this expression in the peeling equation

(36). We get∫
qv µp(dq)=

∑
j≥1

∫
qv+1j µp+j−1(dq) + 2

p−1∑
i=1

∑
w∈V

β
(i−1)
0 (w)

∫
qv+w µp−i(dq)

=

∫
qv

∑
j≥1

qj µp+j−1(dq) + 2

p−1∑
i=1

Wi−1(q)µp−i(dq)

 ,

where we recall that Wi−1(q) is the partition function of Boltzmann bipartite maps of the
2(i − 1)-gon with Boltzmann weights q. In particular, the right-hand side for i = 2 must be
finite, which means that µp is supported by the set Qa of admissible weight sequences. Moreover,
the last display means that the two measures

µp(dq) and νp(dq) =
∑
j≥1

qj µp+j−1(dq) + 2

p−1∑
i=1

Wi−1(q)µp−i(dq)

have the same v-th moment for all v ∈ V∗p . In particular, if we fix j ≥ 2, this is true as soon
as vj ≥ p, so the measures qpjµp(dq) and qpj νp(dq) have the same moments so they are equal,
so µp and νp coincide on {qj > 0}. Since this is true for all j ≥ 2 and µp, νp are defined on
Q∗ =

⋃
j≥2{qj > 0}, the measures µp and νp are the same, that is,

µp(dq) =
∑
j≥1

qj µp+j−1(dq) + 2

p−1∑
i=1

Wi−1(q)µp−i(dq). (39)

We now note that this equation is very similar to the one satisfied by the constants Cp(q) used to
define the q-IBPM. More precisely, we fix a finite measure µ such that all the µp are absolutely
continuous with respect to µ (take e.g. µ(dq) =

∑
p≥1

gp(q)µp(dq)
2p , where gp(q) > 0 is such that

the total mass of gp(q)µp(dq) is at most 1). We denote by fp(q) the density of µp with respect
to µ. Then (39) becomes

fp(q) =
∑
j≥1

qjfp+j−1(q) + 2

p−1∑
i=1

Wi−1(q)fp−i(q)

for µ-almost every q ∈ Q∗. In other words, (fp(q))p≥1 satisfies the exact same equation as
(Cp(q))p≥1 in [12, Appendix C]. These equations have a nonzero solution if and only if q ∈ Qh,
so the measures µp are actually supported by Qh. Moreover, by uniqueness of the solution (up
to a multiplicative constant), we have

fp(q) =
Cp(q)

C1(q)
f1(q) = Cp(q)f1(q)
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for µ-almost every q, so µp(dq) = Cp(q)µ1(dq). Now let α ≤ 1 be the total mass of the measure
µ1, and let Q be a random variable with distribution α−1µ. We then have, for all p ≥ 1 and
v ∈ V∗p , if m is a map with half-perimeter p and face degrees v:

P (m ⊂M) = apv =

∫
qvµp(dq) = αE [Cp(Q)Qv] = αP (m ⊂MQ) . (40)

Note that Q is not well-defined if α = 0, but in this case µp = 0 for all p so (40) remains true for
any choice of Q. To conclude that M has the law of MQ, all we have left to prove is that α = 1

and that (40) can be extended to any v ∈ Vp. For this, we will show that, when we explore
M via a peeling exploration, the perimeter and volumes of the explored region at time t satisfy
v ∈ V∗p for t large enough.

More precisely, if A is a peeling algorithm, we recall that EAt (M) is the explored part of M
after t steps of a filled-in peeling exploration according to A. We denote by Pt the half-perimeter
of the hole of EAt (M) and by Vt the sequence of degrees of its internal faces (that is, Vt,j is the
number of internal faces of EAt (M) with degree 2j). Since M is weakly Markovian, the process
(Pt,Vt)t≥0 is a Markov chain whose law does not depend on the peeling algorithm A.

Lemma 31. We have
P
(
Vt ∈ V∗Pt

)
−−−−→
t→+∞

1.

Proof. Since the probability in the lemma does not depend on A, it is sufficient to prove the
result for a particular peeling algorithm. Therefore, we can assume that A has the following
property: if the root face of m and its hole have a common vertex m, then the peeled edge A(m)

is incident to such a vertex. We will prove that for this algorithm, we have a.s. Vt ∈ V∗Pt for t
large enough.

More precisely, since the vertex degrees of M are a.s. finite and by definition of A, all the
vertices incident to the root face will eventually disappear from the boundary of the explored
part. Therefore, for t large enough, no vertex incident to the root face is on ∂EAt (M). We now
fix t with this property. If we denote by Inn(m) the number of internal vertices of a map m with
a hole and by 2J the degree of the root face of M , this implies Inn

(
EAt (M)

)
≥ 2J for t large

enough.
On the other hand, the total number of edges of EAt (M) is p +

∑
j≥1 jVt,j , so by the Euler

formula

Inn
(
EAt (M)

)
= 2 +

Pt +
∑
j≥1

jVt,j

−
1 +

∑
j≥1

Vt,j

− 2Pt

= 1− Pt +
∑
j≥1

(j − 1)Vt,j .

Taking t large enough to have Inn
(
EAt (M)

)
≥ 2J , we obtain∑

j≥1

(j − 1)Vt,j

− (J − 1) ≥ (2J + Pt − 1)− (J − 1) = Pt + J > Pt − 1,

so Vt,J > 0 and V − 1J ∈ VPt . This proves Vt ∈ V∗Pt for t large enough.
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We now conclude the proof of Theorem 4 from (40). We consider a finite map m0 with a
hole and a peeling algorithm A that is consistent with m0 in the sense that m0 is a possible
value of EAt0 for some t0 ≥ 0. We note that EAt0 (M) = m0 if and only if m0 ⊂ M . Indeed, the
direct implication is immediate. The indirect one comes from the fact that, if m0 ⊂M , then all
the peeling steps until time t0 must be consistent with m0, so m0 ⊂ M determines the first t0
peeling steps. We now take t ≥ t0. We sum (40) over all possible values m of EAt (M) such that
m0 ⊂ m and the half-perimeter p and internal face degrees v of m satisfy v ∈ V∗p . We get

P
(
m0 ⊂M and Vt ∈ V∗Pt

)
= αP

(
m0 ⊂MQ and VQ

t ∈ V∗PQ
t

)
,

where PQ
t and VQ

t are the analogues of Pt and Vt for MQ instead of M . Since MQ is weakly
Markovian, we can apply Lemma 31 to both M and MQ. Therefore, letting t→ +∞ in the last
display, we get

P (m0 ⊂M) = αP (m0 ⊂MQ)

for all m0. In particular, if m0 is the trivial map consisting only of the root edge, we get α = 1,
so M and MQ have the same law. This proves Theorem 4.

Proof of Theorem 2. By Proposition 12, any subsequential limit M of (Mfn,gn) is planar and
one-ended. Moreover, let m be a map with one hole of half-perimeter p and vj faces of degree
2j for all j ≥ 1. Then

P (m ⊂M) = lim
n→+∞

P (m ⊂Mfn,gn) = lim
n→+∞

β
(p)
gn (fn − v)

βgn(fn)
,

where the limits are along some subsequence. In particular, the dependence in m is only in p
and v, so M is weakly Markovian and the result follows by Theorem 4.

5 The parameters are deterministic

5.1 Outline

Our goal is now to prove Theorem 1. We fix face degree sequences fn and genuses gn for
n ≥ 0 satisfying the assumptions of Theorem 1 (in particular, we now assume

∑
j j

2αj < +∞
until the end of the paper). By Theorem 2, up to extracting a subsequence, we can assume
Mfn,gn converges to MQ, where Q is a random variable with values in Qh. Moreover, the law
of the degree of the root face in Mfn,gn converges in distribution to (jαj)j≥1, which has finite
expectation. By the last point of Theorem 4, we have Q ∈ Qf a.s.. To prove Theorem 1, it is
enough to prove that Q is deterministic, and only depends on (αj)j≥1 and θ.

Sketch of the end of the proof. Since we will follow similar ideas, let us first recall the
strategy of [15]. If en is the root edge of Mfn,gn , the parameters Q can be observed on a
large neighbourhood of en inMfn,gn for n very large. The first step of the proof (Proposition 32)
roughly consists of showing that onceMfn,gn is picked, the weightsQ do not depend on the choice
of en. This is proved by the two holes argument : if e1

n and e2
n are two roots chosen uniformly on

Mfn,gn , we swap two large neighbourhoods of e1
n and e2

n in Mfn,gn . We then remark that if the
weights observed around the two roots are too different, then the map obtained after swapping
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does not look like a map of the form MQ. The second step consists of noticing that the average
value over all choices of the root of some functions of Q is fixed by (αj)j≥1 and θ (Corollary 33).
Finally, in the third step we prove that these functions are sufficient to characterizeQ completely
(Proposition 36).

However, two important difficulties appear here compared to [15]:

• in the first step, we need to find two large pieces around e1
n and en2 with the exact same

perimeter, in order to be able to swap them. This was easy for triangulations since
the perimeter process associated to a peeling exploration takes all values. This is not
true anymore in our general setting. This part will make crucial use of the assumption∑

j j
2αj < +∞ (this is actually the only place in the paper where we will use it). A

consequence of this difficulty is that instead of performing the swapping operation with
high probability, we will perform it with positive probability.

• In the third step, one of the parameters that we control is the average vertex degree. For
triangulations, it followed from an explicit formula that the average degree characterizes
Q. We do not have such a formula here, so our argument will be more involved, and rely
on the partial results obtained so far in the present paper.

Intermediate results. Let
(
Mn, e

1
n, e

2
n

)
be a uniform, bi-rooted map with face degrees fn and

genus gn (i.e. e1
n and e2

n are picked uniformly and independently among the edges of Mn). We
highlight that we will write Mn instead of Mfn,gn in this section to make notations lighter. Up
to extracting a subsequence, we can assume the joint convergence(

(Mn, e
1
n), (Mn, e

2
n)
) (d)−−−−−→
n→+∞

(
M1

Q1 ,M2
Q2

)
for the local topology, where Q1 and Q2 have the same distribution as Q. Moreover, by the
Skorokhod representation theorem, we can assume this joint convergence is almost sure. We will
stay in this setting in Section 5.2 and 5.3. The first step of the proof will consist of proving the
following.

Proposition 32. We have Q1 = Q2 almost surely.

From here, the second step will be to deduce the next result. For q ∈ Qh, we recall that
jaj(q) is the probability that the root face of Mq has degree 2j, and that d(q) = E

[
1

degMq
(ρ)

]
.

Corollary 33. Under the assumptions of Theorem 1, let MQ be a subsequential limit. Then
almost surely, we have

d(Q) =
1

2

(
1− 2θ −

∑
i

αi

)
and, for all j ≥ 1, aj(Q) = αj .

Structure of the section. In Section 5.2, we will address the issue of finding two large
neighbourhoods of the two roots with exactly the same perimeters. In Section 5.3, we use this
to prove Proposition 32 and Corollary 33. Finally, Section 5.4 is devoted to the end of the
proof of Theorem 1, and consists mostly of showing that d(q) and (aj(q))j≥1 are sufficient to
characterize q.
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5.2 Finding two pieces with the same perimeter

As explained above, given the uniform bi-rooted map
(
Mn, e

1
n, e

2
n

)
, we want to find two neigh-

bourhoods of e1
n and e2

n with the same large perimeter 2p. For this, we will perform a peeling
exploration around the two roots and stop it when the perimeter of the explored region is exactly
2p. However, since the perimeter process has a positive drift, it can make large positive jumps,
we cannot guarantee that both perimeters will hit the value p with high probability. We will
therefore show a weaker result: roughly speaking, the probability that the perimeter processes
around e1

n and e2
n both hit p is bounded from below, even if we condition on Q1 and Q2.

More precisely, we fix a deterministic peeling algorithm A, and let p, v0 ≥ 1. We recall from
the end of Section 2.2 that we can make sense of a filled-in peeling exploration on the finite map
Mn around e1

n or e2
n. We perform the following exploration:

• we explore the map Mn around e1
n according to the algorithm A until the number of edges

in the explored region is larger than v0, or the perimeter of the explored region is exactly
2p, and denote by τ1

n the time at which we stop;

• we do the same thing around e2
n and denote by τ2

n the stopping time.

We write Sn,p,v0 for the event where both τ1
n and τ2

n occur because the perimeter hits 2p, and
where the two regions explored around e1

n and e2
n are face-disjoint (the dependence of S in A

will stay implicit). We note right now that (Mn, e
1
n) has a planar, one-ended local limit. Hence,

with probability 1 − o(1) as n → +∞, the exploration is not stopped before τ1
n or τ2

n for the
reason stated in the end of Section 2.2.

The goal of this subsection is to prove the next result. We recall that the functions rj(q) for
j ∈ N∗ ∪ {∞} and q ∈ Qh are defined in Proposition 8.

Proposition 34. Let (Mn, e
1
n, e

n
2 ) and Q1,Q2 be as in Section 5.1. We fix j ∈ N∗ ∪ {∞}, and

ε > 0. Then there is δ > 0 with the following property. For every p ≥ 1 large enough, there is
v0 such that, for n large enough:

if P
(
|rj(Q1)− rj(Q2)| > ε

)
≥ ε,

then P
(
|rj(Q1)− rj(Q2)| > ε

2
and (Mn, e

1
n, e

2
n) ∈ Sn,p,v0

)
≥ δ.

We recall that we have used the Skorokhod theorem to couple the finite and infinite maps
together, so the last event makes sense.

Here is why Proposition 34 seems reasonable: we know that conditionally on (Q1,Q2), the
perimeters of the explored region along a peeling exploration of M1

Q1 and M2
Q2 are random walks

conditioned to stay positive. Moreover, since Q1,Q2 ∈ Qf , these random walks do not have a
too heavy tail, so each of them have a reasonable chance of hitting exactly p. However, there
is no reason a priori why M1

Q1 and M2
Q2 should be independent conditionally on Q1 and Q2,

so it might be unlikely that both processes hit p. Therefore, the sketch of the proof will be the
following:

• we fix a large constant C > 0 (C will be much smaller than p),

• we prove that both walks have a large probability to hit the interval [p, p+ C] before the
explored volume exceeds v0(p) (Lemma 35),
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• once both perimeter processes around e1
n and e2

n in Mn have hit [p, p + C], we use the
Bounded ratio Lemma (Lemma 13, item 2) to show that, with probability bounded from
below by roughly e−C , both perimeters fall to exactly p in at most C steps. This will prove
the proposition with δ ≈ εe−C and v0 = v0(p).

The point of replacing p by [p, p+C] is to deal with events of large probability, so that we don’t
need any independence to make sure that two events simultaneously happen.

For this, consider the peeling exploration of M1
Q1 according to A. We denote by σ1,∞

[p,p+C]

the first time at which the half-perimeter is in [p, p+ C] (this stopping time might be infinite).
We define σ1,n

[p,p+C] (resp. σ
2,∞
[p,p+C], σ

2,n
[p,p+C]) as the analogue quantity for the exploration in Mn

around e1
n (resp. in M2

Q2 , in
(
Mn, e

2
n

)
).

Lemma 35. We have
lim

C→+∞
lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
)

= 1.

Proof. We know that Q1 ∈ Qf a.s.. Hence, it is enough to prove that, for any q ∈ Qf , we have

lim
C→+∞

lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
∣∣Q = q

)
= 1. (41)

The lemma then follows by taking the expectation and using Fatou’s lemma. Conditionally on
Q1 = q, the law of M1

Q1 is the law of Mq. In particular, the process P describing the half-
perimeter of the explored region has the law of X conditioned to stay positive, where X is a
random walk with step distribution ν̃q.

To prove (41), we distinguish two cases: the case where q is critical, and the case where it
is not. We start with the second one. Then by the results of Section 2.4, the walk X satisfies
E [|X1|] < +∞ and E [X1] > 0, so the conditioning to stay positive is non degenerate. Therefore,
it is enough to prove

lim
C→+∞

lim inf
p→+∞

P (X hits [p, p+ C]) = 1. (42)

This follows from standard renewal arguments: if we denote by (Hi)i≥0 the ascending ladder
heights of P , then (Hi) is a renewal set with density E[H1] = 1

E[X1] > 0. Let Ip be such that
HIp < p ≤ HIp+1 . Then the law of HIp+1 −HIp converges as p → +∞ to the law of H1 biased
by its size, so

P (P does not hit [p, p+ C]) ≤ P
(
HIp+1 /∈ [p, p+ C]

)
≤ P

(
HIp+1 −HIp > C

)
−−−−→
p→+∞

E [H11H1>C ]

E[H1]
,

and this last quantity goes to 0 as C → +∞.
We now tackle the case where q is critical, which by the results in the end of 2.4 implies∑
i≥1 i

3/2ν̃q(i) < +∞. This case is more complicated since renewal arguments are not available
anymore, and the conditioning is now degenerate, so absolute continuity arguments between P
and X become more elaborate. On the other hand, the growth is now slower and the noncon-
ditionned walk X with step distribution ν̃q is now recurrent, so it seems more difficult to jump
over a large interval. And indeed, we will prove

lim
p→+∞

P (P hits p) = 1,

which is a much stronger version of (42).
For this, our strategy will be the following: let χp be the first time at which P is at least p.
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• The scaling limit of P is a process with no positive jump, so Pχp = p+ o(p) in probability
as p→ +∞.

• Between time χp and τp + o(p2/3), the process P looks a lot like a nonconditioned random
walk X started from Pτp .

• If X is started from p+ o(p), the time it takes to first hit P is o(p2/3). This is a stronger
version of the recurrence of X, and will follow from a local limit theorem for random walks.

Let us now be more precise. By Theorem 3 of [10] (see also [18, Chapter 10]), we have the
convergence (

Pnt

n2/3

)
t≥0

(d)−−−−−→
n→+∞

(
bqS

+
t

)
t≥0

for the Skorokhod topology, where S+ is a 3/2-stable Lévy process with no positive jump con-
ditioned to stay positive, and bq > 0 (the precise value will not matter here). Since this limiting
process has no positive jump, we have Pτp − p = o(p) in probability. Hence, there is a determin-
istic function f(p) with f(p)

p → 0 when p→ +∞ such that, for any ε > 0,

P
(
Pτp − p ≥ εf(p)

)
−−−−→
p→+∞

0.

We now fix ε > 0, and condition on Pτp = p′ for some p ≤ p′ ≤ p + εf(p). We claim that then(
Pτp+i − p′

)
0≤i≤f(p)3/2 can be coupled with (Xi)0≤i≤f(p)3/2 in such a way that both processes

are the same with probability 1− o(1). For this, recall from (11) that P can be described as a
Doob h-transform of X, where h is given by (10). Hence, the Radon–Nikodym derivative of the
first process with respect to the second is

hp′+X
f(p)3/2

(1)

hp′(1)
. (43)

Since
X
f(p)3/2

f(p) converges in distribution, we have
X
f(p)3/2

p → 0 in probability. By using the fact

that p′

p → 0 uniformly in p′ and that h1(x) ∼ c
√
x for some c > 0 (see Section 2.4), we conclude

that (43) goes to 1 as p→ +∞, uniformly in p′ ∈ [p, p+ εf(p)]. This proves our coupling claim.
Note that under this coupling, the time where P hits exactly p is τp plus the time where X hits
p− p′.

We will now show that, if p is large enough, for any k ∈ [−εf(p), 0], we have

P
(
X hits k before time f(p)3/2

)
≥ 1− δ(ε), (44)

where δ(ε)→ 0 as ε→ 0. Together with our coupling result, this will imply that the probability
for P to hit p before time τp + f(p)3/2 is at least 1− δ(ε)− o(1) as p→ +∞. Since this is true
for any ε > 0, this will conclude the proof of Lemma 35 in the critical case.

The proof of (44) relies on the Local Limit Theorem (this is e.g. Theorem 4.2.1 of [22]).
This theorem (in the case α = 3/2) states that

sup
k∈Z

∣∣∣∣n2/3P(Xn = k)− g
(

k

n2/3

)∣∣∣∣ −−−−−→n→+∞
0,
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where g is a continuous function (the density of a 3/2-stable variable). On the other hand, let
us denote t = f(p)3/2. By the strong Markov property, for all k ∈ Z, we have

E0

[
t∑
i=0

1Xi=k

]
≤ P0 (X hits k before time t)Ek

[
t∑
i=0

1Xi=k

]

= P0 (X hits k before time t)E0

[
t∑
i=0

1Xi=0

]
.

Therefore, using the local limit theorem, we can write, for −εf(p) ≤ k ≤ 0 and p large (the o
terms are all uniform in k):

P0 (X hits k before t) ≥
∑t

i=0 P0 (Xi = k)∑t
i=0 P0 (Xi = 0)

=

∑t
i=1

(
1
i2/3

g
(

k
i2/3

)
+ o

(
1
i2/3

))
1 +

∑t
i=1

(
1
i2/3

g(0) + o
(

1
i2/3

))
≥
−εt1/3 +

∑t
i=εt

(
1
i2/3

min[−ε1/3,0] g + o
(

1
i2/3

))
3t1/3g(0) + εt1/3

≥
−2εt1/3 +

(
3t1/3 − 3ε1/3t1/3

)
min[−ε1/3,0] g

(3g(0) + ε) t1/3

=
−2ε+ 3(1− ε1/3) min[−ε1/3,0] g

3g(0) + ε
,

where the third line uses that, for any index i ≥ εt, we have

0 ≥ k

i2/3
≥ − εf(p)

(εt)2/3
= −ε1/3.

We obtain a lower bound that goes to 1 as ε→ 0, so this proves (44), and Lemma 35.

Proof of Proposition 34. The subtlety in the proof is that we would like to say something about
the finite maps Mn conditionally on the values of Q1 and Q2, but Q1 and Q2 are defined
in terms of the infinite limits. However, we can condition on the maps explored at the time
when the perimeters of the explored parts hit [p, p + C] for the first time. Then Proposition 8
guarantees that from these explored parts, we can get good approximations of Q1 and Q2 if p
is large enough.

In this proof, we will use a shortened notation for our peeling explorations. For i ∈ {1, 2}
and t ≥ 0, we will write En,it = EAt

(
Mn, e

i
n

)
and E∞,it = EAt

(
Mi

Qi

)
.

We fix ε > 0. By Lemma 35, let C be a constant (depending only on ε) such that

lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
)
> 1− ε

20
.

For p large enough (where "large enough" may depend on ε), there is v0 = v0(p) such that

P
(
σ∞,1[p,p+C] ≤ v0 and

∣∣∣∣E∞,1σ∞,1
[p,p+C]

∣∣∣∣ ≤ v0

)
> 1− ε

20
, (45)
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where |m| is the number of edges of a map m. On the other hand, let us fix j ∈ N∗ ∪ {∞}.
Proposition 8 provides a function r̃j on the set of finite maps with a hole such that r̃j(E∞,1t )→
rj(Q

1) almost surely as t → +∞. Let η < 1 be a small constant, which will be fixed later and
will only depend on ε. For p large enough, we have

P
(
σ∞,1[p,p+C] ≤ v0(p) but

∣∣∣∣r̃j (E∞,1σ∞,1
[p,p+C]

)
− rj(Q1)

∣∣∣∣ ≥ ε

8

)
< η

ε

20
. (46)

From now on, we take p large enough so that both (45) and (46) hold. By almost sure local
convergence and (45), for n large enough (where "large enough" may depend on ε and p), we
have

P
(
σn,1[p,p+C], σ

n,2
[p,p+C] ≤ v0 and

∣∣∣∣En,1σn,1
[p,p+C]

∣∣∣∣ , ∣∣∣∣En,2σn,2
[p,p+C]

∣∣∣∣ ≤ v0

)
> 1− ε

10
.

By the assumption that |rj(Q1)−rj(Q2)| > ε with probability at least ε and by (46), we deduce
that

P

 σn,1[p,p+C], σ
n,2
[p,p+C] ≤ v0 and

∣∣∣∣En,1σn,1
[p,p+C]

∣∣∣∣ , ∣∣∣∣En,2σn,2
[p,p+C]

∣∣∣∣ ≤ v0

and
∣∣∣∣r̃j (E∞,1σ∞,1

[p,p+C]

)
− r̃j

(
E∞,2
σ∞,2

[p,p+C]

)∣∣∣∣ ≥ 3
4ε

 >
4

5
ε.

Note that if this last event occurs but the two regions En,1
σn,1

[p,p+C]

and En,2
σn,2

[p,p+C]

have a common

face, then the dual graph distance between the two roots is bounded by 2v0. However, by
Proposition 12, the volume of the ball of radius 2v0 around e1

n is tight as n → +∞, so the
probability that this happens goes to 0 as n→ +∞. Hence, for n large enough:

P

 En,1
σn,1

[p,p+C]

, En,2
σn,2

[p,p+C]

are well-defined, face-disjoint, have at

most v0 edges and
∣∣∣∣r̃j (E∞,1σ∞,1

[p,p+C]

)
− r̃j

(
E∞,2
σ∞,2

[p,p+C]

)∣∣∣∣ ≥ 3
4ε

 >
4

5
ε. (47)

Now assume that this last event occurs and condition on the σ-algebra Fσ generated by the

pair
(
En,1
σn,1

[p,p+C]

, En,2
σn,2

[p,p+C]

)
of explored regions. Then, let I1, I2 ∈ [0, C] be such that the perimeters

of the two explored regions are 2p+2I1 and 2p+2I2. Then the complementary map is a uniform
map of the (2p+ 2I1, 2p+ 2I2)-gon with genus gn and face degrees given by F̃n as follows. If
Fnj is the number of internal faces of degree 2j in En,1

σn,1
[p,p+C]

∪ En,2
σn,2

[p,p+C]

, then F̃nj = fnj − Fnj .

We now perform I1 peeling steps according to A around En,1
σn,1

[p,p+C]

, followed by I2 peeling steps

according to A around En,2
σn,2

[p,p+C]

. We call a peeling step nice if it consists of gluing together two

boundary edges, which decreases the perimeter by 2. The number of possible values of the map

Mn\
(
En,1
σn,1

[p,p+C]

∪ En,2
σn,2

[p,p+C]

)
is

β(p+I1,p+I2)
g (F̃n).

On the other hand, if the I1 + I2 additional peeling steps are all good and the regions around
e1
n and e2

n are still disjoint after these steps, the number of possible complementary maps is

β(p,p)
g (F̃n).

It follows that

P (the I1 + I2 peeling steps are all nice|Fσ) =
β

(p,p)
g (F̃n)

β
(p+I1,p+I2)
g (F̃n)

.
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Since |Fn| is bounded by v0(p), for n large enough (where "large enough" may depend on p), the
Bounded ratio Lemma applies to F̃n. Therefore, by the Bounded ratio Lemma (more precisely,
by Corollary 14, item 2), the last ratio is always larger than a constant η depending on ε. More
precisely η may depend on I1 and I2, but 0 ≤ I1, I2 ≤ C(ε), so (I1, I2) can take finitely many
values given ε, so η only depends on ε (and not on p). This is the value of η that we choose for
(46). For i ∈ {1, 2}, we write τn,ip = σn,i[p,p+C] + Ii. If the last I1 + I2 peeling steps are nice, then
after they are performed, both explored regions have perimeter 2p. Therefore, it follows from
the last computation and from (47) that, for n large enough, we have

P

 En,1
τn,1p

and En,2
τn,2p

are both face-disjoint, have perimeter 2p

and volume ≤ v0, and
∣∣∣∣r̃j (E∞,1σ∞,1

[p,p+C]

)
− r̃j

(
E∞,2
σ∞,2

[p,p+C]

)∣∣∣∣ ≥ 3
4ε

 ≥ 4

5
εη.

Finally, we can use (46) to replace back the approximations r̃j
(
E∞,i
σ∞,i

[p,p+C]

)
by rj(Qi). We obtain

P

(
E1,n

τn,ip
and E2,n

τn,2p
are both face-disjoint, have perimeter 2p

and ≤ v0 edges, and
∣∣rj(Q1)− rj(Q2)

∣∣ ≥ 1
2ε

)
≥ 3

5
εη.

On this event, we have (Mn, e
1
n, e

2
n) ∈ Sn,p,v0 . Therefore, this concludes the proof of the propo-

sition, with δ = 3
5ηε.

5.3 The two holes argument: proof of Proposition 32 and Corollary 33

Now that we have Proposition 34, the proof of Proposition 32 is basically the same as two holes
argument in [15] (i.e. the proof of Proposition 18). Therefore, we will not write the argument
in full details, but only sketch it. We first stress two differences:

• The first one is that the involution obtained by (possibly) swapping the two explored parts
is now non-identity on a relatively small set of maps (but still on a positive proportion).
The only consequence is that in the end, instead of contradicting the almost sure conver-
gence of Proposition 8 on an event of probability ε, we will contradict it on an event of
probability δ < ε, where δ is given by Proposition 34.

• The other difference is that in [15], the only observable we were using to approximate the
Boltzmann weights was the ratio between perimeter and volume, which corresponds to
our function r∞. Here we also need to deal with the functions rj for j ∈ N∗. For this,
we simply need the observation that, if q is much larger than p, the proportion of peeling
steps before τq where we discover a new face of perimeter 2j depends almost only on the
part of the exploration between τp and τq.

Sketch of proof of Proposition 32. Fix j ∈ N∗ ∪ {∞}. Let ε > 0, and assume

P
(
|rj(Q1)− rj(Q2)| > ε

)
> ε. (48)

Let δ > 0 be given by Proposition 34. Consider p large (depending on ε) and let v0 be given by
Proposition 34. We assume that the peeling algorithm A that we work with has the property
that the edge peeled at time t for t ≥ τp only depends on EAt (m)\EAτp(m) (see [15] for a more
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careful description of this property). This is not a problem since Proposition 34 is independent
of the choice of A.

We define an involution Φn on the set of bi-rooted maps with genus gn and face degrees fn

as follows: if m ∈ Sn,p,v0 , then Φn(m) is obtained from m by swapping the two regions E1,n

τ1,n
p

and

E2,n

τ2,n
p

. If m /∈ Sn,p,v0 , then Φn(m) = m. Note that Φn(Mn, e
1
n, e

2
n) is still uniform on bi-rooted

maps with prescribed genus and face degrees. This map rooted at en1 converges to a map M̂ ,
with either

M̂ = M1
Q1

or
EAτ1
p
(M̂) = E1

τ1
p

and M̂\EAτ1
p
(M̂) = M2

Q2\E2
τ2
p
.

Moreover, by Proposition 34, if p has been chosen large enough, then with probability at
least δ, we are in the second case and furthermore |rj(Q1)− rj(Q2)| > ε

2 . Now assume that this
last event occurs and that q � p� 1. Then we have

r̃j

(
EAτ1
p
(M̂)

)
≈ rj(Q1) and r̃j

(
EAτ̂q(M̂)

)
≈ rj(Q2), (49)

where τ̂q is the first step where the perimeter of the explored part of M̂ is at least q. The
approximations of (49) can be made arbitrarily precise if p and q were chosen large enough, so
for p large enough and q large enough (depending on p), we have

P
(∣∣∣r̃j (EAτ1

p
(M̂)

)
− r̃j

(
EAτ̂q(M̂)

)∣∣∣ > ε

4

)
≥ δ. (50)

On the other hand M̂ is a local limit of finite uniform maps, so by Theorem 2 it has to be a
mixture of Boltzmann infinite planar maps. But then (50) contradicts the almost sure conver-
gence of Proposition 8, so (48) cannot be true. Therefore, we must have rj(Q1) = rj(Q

2) a.s..
Since this is true for all j ∈ N∗ ∪ {∞}, by the last point of Proposition 8, we have Q1 = Q2,
which concludes the proof.

The passage from Proposition 32 to Corollary 33 does also not require any new idea compared
to [15], so we do not write it down completely.

Sketch of the proof of Corollary 33. The proof is basically the same as the end of the proof of
the main theorem in [15]. The only difference is that we could not prove directly that d(q) and
(aj(q))j≥1 are sufficient to characterize the weight sequence q, so the result that we obtain is
only Corollary 33 and not Theorem 1.

More precisely, by the Euler formula, any map with genus gn and face degrees fn has exactly
|fn| edges and |fn|−

∑
j≥1 f

n
j +2−2gn vertices, so, by invariance ofMn under uniform rerooting,

we have

E
[

1

degMn
(ρ)

]
=
|fn| −

∑
j≥1 f

n
j + 2− 2gn

2|fn|
−−−−−→
n→+∞

1

2

1− 2θ −
∑
j

αj

 .

By the exact same argument as in [15], we deduce from Proposition 32 that if Mn →MQ, then
d(Q) = 1

2

(
1− 2θ −

∑
j αj

)
a.s.. Similarly, by invariance under rerooting, for all j ≥ 1, we have

P (the root face of Mn has degree 2j) =
2jfnj
2n
−−−−−→
n→+∞

jαj .

By the same argument as for the mean vertex degree, we obtain aj(Q) = αj a.s..
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5.4 Monotonicity of the mean inverse degree

To conclude the proof of the main theorem, given Corollary 33, it is enough to show that if∑
j≥1 j

2aj(q) < +∞, the weight sequence q is completely determined by (aj(q))j≥1 and d(q).
For all this subsection, we fix a sequence (αj)j≥1 such that

∑
j jαj = 1 and

∑
j j

2αj < +∞ and
α1 < 1. We recall from Proposition 9 that the weight sequences q such that aj(q) = αj for all
j ≥ 1 form a one-parameter family

(
q(ω)

)
ω≥1

given by

q
(ω)
j =

jαj
ωj−1hj(ω)

c
−(j−1)

q(ω) , where cq(ω) =
4

1−
∑

i≥1
1

4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

.

To prove Theorem 1, it is sufficient to prove the following.

Proposition 36. Under the assumption
∑

j≥1 j
2αj < +∞, the function ω → d(q(ω)) is strictly

decreasing.

Since we were not able to establish this result by a direct argument, we will prove it using
Corollary 33.

5.4.1 Basic properties of the mean inverse degree function

Before moving on to the core of the argument, we start with some basic properties of the function
ω → d(q(ω)).

Lemma 37. • The function ω → d(q(ω)) is continuous on [1,+∞) and analytic on (1,+∞).

• We have d(q(ω)) > 0 for all ω and limω→+∞ d(q(ω)) = 0.

• We have d(q(ω)) ≤ 1−
∑

j≥1 αj for all ω ≥ 1, with equality if and only if ω = 1.

Proof. The proof of the analyticity and continuity on (1,+∞) is a bit long and delayed to
Appendix A.3. The third item will follow from results of Angel, Hutchcroft, Nachmias and
Ray [3]. The other properties are quite easy.

We start with the continuity statement in the first item. The analyticity proved in Ap-
pendix A.3 implies continuity on (1,+∞) so it is sufficient to prove the continuity at ω = 1. By
the monotone convergence theorem, the function ω → cq(ω) is continuous at ω = 1, so q(ω)

j is
continuous at ω = 1 for all j. Therefore, for every finite map m with one hole, we have

P
(
m ⊂Mq(ω)

)
−−−→
ω→1

P
(
m ⊂Mq(1)

)
,

so Mq(ω) → Mq(1) in distribution for the local topology. Since the inverse degree of the root
vertex is bounded and continuous for the local topology, the function ω → d(q(ω)) is continuous
at 1.

We now prove the second item: d(q(ω)) > 0 is immediate by finiteness of vertex degrees and
d(q(ω))→ 0 is equivalent to proving degM

q(ω)
(ρ)→ +∞ in probability when ω → +∞. For this,

we notice (see (21) above) that when ω → +∞, we have hi(ω)→ 1 for all i ≥ 1 and

ν̃q(ω)(i) −−−−−→
ω→+∞

{
0 if i ≤ −1,

(i+ 1)αi+1 if i ≥ 0.
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In other words, the probability of any peeling step swallowing at least one boundary vertex goes
to 0 when ω → +∞. Therefore, if we perform a peeling exploration where we peel the edge on
the right of ρ whenever it is possible, the probability to complete the exploration of the root in
less than k steps goes to 0 for all k. It follows that the root degree goes to +∞ in probability.

Finally, we move on to the third item. Since Mq is stationary, if we denote by Muni
q a map

with the law of Mq biased by the inverse of the root vertex degree, then Mq is unimodular. A
simple computation shows that d(q) ≤ 1 −

∑
j≥1 αj is equivalent to E

[
κMuni

q
(ρ)
]
≥ 0 where, if

v is a vertex of a map m:

κm(v) = 2π −
∑
f

deg(f)− 2

deg(f)
π,

and the sum is over all faces that are incident to v in m, counted with multiplicity. Moreover,
we have equality if and only if E[κMuni

q
(ρ)] = 0. The fact that E[κMuni

q
(ρ)] ≥ 0 is then a conse-

quence of [3, Theorem 1]. Moreover, [3] shows the equivalence between 17 different definitions of
hyperbolicity. In particular, we have E[κMuni

q
(ρ)] > 0 (Definition 1 in [3]) if and only if pc < pu

with positive probability for bond percolation on Muni
q . This is equivalent to P (pc < pu) > 0 for

bond percolation on Mq, which is equivalent to q being critical (i.e. ω = 1) by [18, Theorem
12.9]7.

5.4.2 Proof of Proposition 36

Sketch of the argument. Roughly speaking, the idea behind the proof of Proposition 36 is
the following observation. We fix j ≥ 2 and recall that Mf ,g stands for a uniform map in Bg(f).
If f is a face degree sequence with fj ≥ 1, we write f− = f − 1j . We can describe the law
of Mf−,g in terms of the law of Mf ,g. Indeed, let m0

j be the map of Figure 13 with a hole of
perimeter 2 and only one internal face which has degree 2j. Then Mf−,g has the law of Mf ,g\m0

j

conditioned on m0
j ⊂Mf ,g, where the two boundary edges have been glued together.

Therefore, if we know for some suitable face degree sequences fk that Mfk,gk
converges to

an infinite map of the form MQ, we can deduce that Mfk,−,gk converges to a map MQ− and
express Q− in terms of Q. A simple computation (Equation 60 below) shows that Q− has the
law of Q biased by Qj . By Lemma 10, this means that if Q is not deterministic, then Q− is
"strictly less hyperbolic" than Q (in the sense that ωQ− < ωQ). On the other hand, the maps
Mfk,gk

and Mfk,−,gk have the same genus but the second one is smaller, so it would be natural
to expect it to be "more hyperbolic" than the first. We will derive a contradiction from this
paradox by considering, for a fixed genus g, the smallest value k0(g) of k such that the expected
ω corresponding to Mfk,gk

is smaller than a certain threshold.
To make this sketch precise, we need to define precisely several objects. We will first build

the face degree sequences fk, then explain how to approximate ωQ on finite maps, and finally
give the precise definition of k0(g) (which will actually depend on an additional parameter t).

7More precisely [18, Theorem 12.9] is about half-plane supercritical maps. Here is a way to extend it to
full-plane maps: there is a percolation regime on the half-plane version of Mq such that with positive probability,
there are infinitely many infinite clusters. For topological reasons, at most two of them intersect the boundary
infinitely many times. Hence, by changing the colour of finitely many edges, with positive probability there are
two infinite clusters that do not touch the boundary. Since there is a coupling in which the half-plane version of
Mq is included in the full-plane version, we have with positive probability two disjoint infinite clusters in Mq in
a certain bond percolation regime, so pc < pu with positive probability.
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j − 1 vertices

Figure 13: The map m0
j .

The face degree sequences Fk. Since we want our face degree sequences to respect the
proportions (αj), it makes sense to build the face degree sequences fk randomly, by adding at
each step a face of degree 2j with probability proportional to αj . This roughly means that we
take j random in the sketch above. More precisely, we build our family (Fk)k≥0 of face degree
sequences as follows: let (Jk)k≥1 be i.i.d. random variables on N∗ with

P (Jk = j) =
αj∑
i≥1 αi

.

We write F kj =
∑k

i=1 1Ji=j , so that Fk is a random face degree sequence with k faces in total.

Approximating ω on finite maps. In order to define k0(g), we would like to build variables
Ωk,g such that if MFk,g is close to Mq(Ω) for the local topology, then Ωk,g is close to Ω. For this,
we will rely on Lemma 11. We fix an arbitrary peeling algorithm A throughout this section. We
recall that Lemma 11 gives the convergence

V
(ω)
t − 2P

(ω)
t

t

(P )−−−−→
t→+∞

r(ω),

where V (ω)
t =

∣∣∣EAt (Mq(ω)

)∣∣∣ and P (ω)
t =

∣∣∣∂EAt (Mq(ω)

)∣∣∣ are respectively the half-perimeter and

the total number of edges of EAt
(
Mq(ω)

)
, and r(ω) =

(
√
ω−
√
ω−1)

2

2
√
ω(ω−1)

is a homeomorphism from

(1,+∞] to [0,+∞). Therefore, for k, g ≥ 0 and t ≥ 1, we define

Ωt
k,g = r−1

(∣∣EAt (MFk,g

)∣∣− 2
∣∣∂EAt (MFk,g

)∣∣
t

)
,

with the convention Ωt
k,g = +∞ if MFk,g does not exist or if the peeling exploration of MFk,g

using A is stopped before time t. Note that with this definition we always have Ωt
k,g ∈ [1,+∞].

Defining kt0(g). We now fix 1 < ω0 < ω1 < +∞. As explained above, for g ≥ 0 we want to
consider the smallest k for which the average value of Ωt

k,g is smaller than ω0. Because we will
need the uniform convergence of Lemma 11 which holds only for ω bounded away from 1 and
+∞, we first exclude artificially the values of k that are too small or too large. More precisely,
let ε > 0 be small enough to satisfy

ε < min
ω≥min(ω0,ω1)

(
d(q(1))− d(q(ω))

)
and ε < min

1≤ω≤max(ω0,ω1)
d(q(ω)). (51)

55



Note that the existence of such an ε is guaranteed by the second and third items of Lemma 37.
For g ≥ 0, we write

kmin(g) =
2
∑

j≥1 αj

1− ε−
∑

j≥1 αj
g and kmax(g) =

1

ε

∑
j≥1

αj

 g.

Since ε will be fixed until the end, we omit the dependence in ε in the notation. These values
were chosen so that a map with face degrees Fkmin(g) and genus g has average degree of order 1

ε

(in particular such a map exists), whereas in a map with face degrees Fkmax(g) and genus g the
genus is about ε times the size.

We now set, for t ≥ 1 and g ≥ 0:

kt0(g) = min
{
k ∈ [kmin(g), kmax(g)]

∣∣E [(Ωt
k,g

)−1
]
≥ ω−1

0

}
, (52)

kt1(g) = min
{
k ∈ [kmin(g), kmax(g)]

∣∣E [(Ωt
k,g

)−1
]
≥ ω−1

1

}
.

The only reason why we use ω−1
0 instead of ω0 in the definition is to have a bounded quantity

in the expectation, and pass easily from convergences in distribution to convergences of the
expectation later. We first prove that this definition indeed makes sense and that the map
M

Fk
t
0(g),g

is well-defined with high probability.

Lemma 38. There is t0 depending only on ω0, ω1 such that for all t ≥ t0:

1. for g large enough the number kt0(g) is well defined;

2. for g large enough we have kt0(g) > kmin(g);

3. with probability 1− o(1) as g → +∞, we have v
(
Fk

t
0(g), g

)
≥ ε

2

∣∣∣Fkt0(g)
∣∣∣, and the same is

true with kt0(g)− 1 instead of kt0(g).

Moreover, the same is true if we replace kt0(g) with kt1(g).

Proof. We first recall that

v
(
Fk, g

)
= 2− 2g +

∑
j≥1

(j − 1)F kj .

Moreover, by the law of large numbers and the definition of Fk, we have

1

k

∑
j≥1

(j − 1)F kj
a.s.−−−−→

k→+∞

1∑
i≥1 αi

∑
j≥1

(j − 1)αj and
1

k

∣∣∣Fk∣∣∣ a.s.−−−−→
k→+∞

1∑
i≥1 αi

.

From here, by the choice of kmin(g), it follows easily that almost surely, for g large enough, we
have v

(
Fk, g

)
≥ ε

2

∣∣Fk∣∣ for all k ≥ kmin(g). In particular, the third item of the Lemma will
follow from the first and the second.

We now prove the first item. We need to prove that the minimum in the definition of kt0(g)

is over a nonempty set, so it is enough to prove that, if t is larger than some t0, we have

E
[(

Ωt
kmax(g),g

)−1
]
> ω−1

0 (53)
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for g large enough. We know that v
(
Fk, g

)
≥ ε

2

∣∣Fk∣∣ for g large enough, so by Theorem 2 and
Corollary 33, up to extracting a subsequence in g, we have the local convergence

MFkmax(g),g

(d)−−−−→
g→+∞

Mq(Ωmax) , (54)

where Ωmax is a random variable on (1,+∞). On the other hand, by the law of large numbers
and the definition of kmax(g), we have

1

g
v
(
Fkmax(g), g

)
a.s.−−−−→

g→+∞
−2 +

1

ε

∑
j≥1

(j − 1)αj and
1

g

∣∣∣Fkmax(g)
∣∣∣ a.s.−−−−→
g→+∞

1

ε
.

Therefore, the average degree in MFkmax(g),g tends to −ε + 1
2

(
1−

∑
j αj

)
= d

(
q(1)

)
− ε. By

Corollary 33, we must have
d
(
q(Ωmax)

)
= d

(
q(1)

)
− ε (55)

almost surely. By the first inequality in our choice (51) of ε, this implies Ωmax < ω0 a.s., so
E
[
Ω−1

max

]
> ω−1

0 .
On the other hand, let t ≥ 1. Since the explored map at time t of a peeling exploration is a

local function, the convergence (54) implies

Ωt
kmax(g),g

(d)−−−−→
g→+∞

r−1

(
V

(Ωmax)
t − 2P

(Ωmax)
t

t

)
. (56)

Moreover, by the third item and the continuity in Lemma 37, we also get that Ωmax is supported
on a compact subset of (1,+∞) depending only on ε (and not on the subsequence in g that we
are working with). Therefore, by the uniform convergence result of Lemma 11, the right-hand
side of (56) converges in probability to Ωmax as t → +∞, at a speed independent from the
subsequence. Hence, remembering E

[
Ω−1

max

]
> ω−1

0 , there is t0 depending only on ε such that
for t ≥ t0, we have

E

r−1

(
V

(Ωmax)
t − 2P

(Ωmax)
t

t

)−1
 > ω−1

0 .

Combined with (56), this implies E
[(

Ωt
kmax(g),g

)−1
]
> ω−1

0 for g large enough. We have proved

that for t ≥ t0, every subsequence in g contains a subsubsequence along which (53) holds for g
large enough, so (53) holds for g large enough. This proves the first item of the lemma.

To prove the second item, we need to show that there is t′0 such that if t ≥ t′0, then

E
[(

Ωt
kmin(g),g

)−1
]
< ω−1

0

for g large enough. The proof is very similar to the proof of (53), so we do not write it in full
details. The only difference is the computation of the average degree: this time, if Ωmin plays
the role of Ωmax for the first item, using the definition of kmin(g) we get d

(
q(Ωmin)

)
= ε

2 a.s..
Hence, by the second inequality of (51), this implies Ωmin > ω0, and the end of the proof is the
same.
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Proof of Proposition 36. Let t be larger than the t0 from Lemma 38. By the third item of
Lemma 38 and Theorem 2, we know that

(
M

Fk
t
0(g),g

)
g≥0

is tight and any subsequential limit is

of the form MQ. Moreover by the law of large numbers, for all j ≥ 1 we have
Fkj

|Fkj |
→ αj a.s.

when k → +∞. Therefore, by Corollary 33, any subsequential limit MQ must satisfy aj(q) = αj
for all j ≥ 1, so Q is of the form q(Ω) for some random Ω. Moreover, the same holds if kt0(g) is
replaced by kt0(g)− 1, or kt1(g), or kt1(g)− 1. Therefore, for all t ≥ t0, we can fix a subsequence
St (depending on t) such that when g → +∞ along St the following convergences hold jointly:

M
Fk

t
0(g),g

(d)−−−−→
g→+∞

M
q(Ωt0) , M

Fk
t
1(g),g

(d)−−−−→
g→+∞

M
q(Ωt1) ,

M
Fk

t
0(g)−1,g

(d)−−−−→
g→+∞

M
q(Ω

t,−
0 )

, M
Fk

t
1(g)−1,g

(d)−−−−→
g→+∞

M
q(Ω

t,−
1 )

,

Ωt
kt0(g),g

(d)−−−−→
g→+∞

Ω̃t
0, Ωt

kt1(g),g

(d)−−−−→
g→+∞

Ω̃t
1,

Ωt
kt0(g)−1

(d)−−−−→
g→+∞

Ω̃t,−
0 , Ωt

kt1(g)−1

(d)−−−−→
g→+∞

Ω̃t,−
1 ,

g∣∣∣Fkt0(g)
∣∣∣ (d)−−−−→
g→+∞

θt0,
g∣∣∣Fkt1(g)
∣∣∣ (d)−−−−→
g→+∞

θt1,

where the first four convergences are for the local topology. We highlight that for our purpose
it is sufficient to consider one subsequence St, and that we will not try to understand all
subsequential limits. In what follows, we will always consider g in the subsequence St and
omit to precise it. Note that we have Ωt

0,Ω
t,−
0 ∈ [1,+∞) and Ω̃t

0, Ω̃
t,−
0 ∈ [1,+∞], since we

have no bound a priori on Ωt
kt0(g),g

. We also have θt0 ∈
[
ε, 1

2

(
1− ε−

∑
j αj

)]
by the inequality

kmin(g) ≤ kt0(g) ≤ kmax(g) and the law of large numbers to estimate Fkmin(g) and Fkmax(g). By
Corollary 33, we also know that almost surely

d
(
q(Ωt0)

)
= d

(
q(Ωt,−0 )

)
=

1

2

1− 2θt0 −
∑
j≥1

αj

 . (57)

In particular d
(
q(Ωt0)

)
and d

(
q(Ωt,−0 )

)
are bounded away from 0 and d(q(1)). By Lemma 37,

this implies that Ωt
0 and Ωt,−

0 take their values in a compact subset of (1,+∞) that depends
only on ε. Therefore, there is a subsequence S such that, when t → +∞ along S the following
convergences hold jointly:

Ωt
0

(d)−−−−→
t→+∞

Ω0, Ωt
1

(d)−−−−→
t→+∞

Ω1,

Ωt,−
0

(d)−−−−→
t→+∞

Ω−0 , Ωt,−
1

(d)−−−−→
t→+∞

Ω−1 ,

Ω̃t
0

(d)−−−−→
t→+∞

Ω̃0, Ω̃t
1

(d)−−−−→
t→+∞

Ω̃1,

Ω̃t,−
0

(d)−−−−→
t→+∞

Ω̃−0 , Ω̃t,−
1

(d)−−−−→
t→+∞

Ω̃−1 ,

θt0 −−−−→
t→+∞

θ0, θt1 −−−−→
t→+∞

θ1,

where Ω0,Ω
−
0 ∈ (1,+∞) and Ω̃0, Ω̃

−
0 ∈ [1,+∞] and θ0 ∈

[
ε, 1

2

(
1− ε−

∑
j αj

)]
. From now on,

we will always consider t ≥ t0 with t in this subsequence S, and we will omit to precise it.
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The rough sketch of the argument is to show that

E
[(

Ω̃−0

)−1
]
≤ ω−1

0 ≤ E
[(

Ω̃0

)−1
]

= E
[
(Ω0)−1

]
≤ E

[(
Ω−0
)−1
]

= E
[(

Ω̃−0

)−1
]
, (58)

and deduce from the equality in the third inequality that Ω0 is deterministic and therefore equal
to ω0.

More precisely, by definition of kt0(g) and since kt0(g) > kmin(g), we have

E
[(

Ωt
kt0(g)−1

)−1
]
< ω−1

0 ≤ E
[(

Ωt
kt0(g)

)−1
]
.

By letting g → +∞ (along St) and then t→ +∞ (along S), this implies

E
[(

Ω̃−0

)−1
]
≤ ω−1

0 ≤ E
[(

Ω̃0

)−1
]
, (59)

which are the first and second inequalities in (58).
On the other hand, the third inequality will be obtained by the argument sketched in the

beginning of this Subsection 5.4.2. Let us first look at the relation between MFk,g and MFk−1,g.
We recall that Fk = Fk−1 + 1Jk , where P(Jk = j) =

αj∑
i≥1 αi

for all j ≥ 1. If we condition on

Fk−1 and Fk, then the law of MFk−1,g is the law of MFk,g\m0
Jk
, conditioned on m0

Jk
⊂ MFk,g,

where m0
Jk

is the map with perimeter 2 of Figure 13. Therefore, for any map m with one hole,
we have

P
(
m ⊂MFk−1,g|Jk = j

)
= P

(
m+m0

j ⊂MFk,g|Jk = j, m0
j ⊂MFk,g

)
,

where m + m0
j is the map obtained from m by replacing the root edge of m by a copy of m0

j .
By summing over j, we obtain

P
(
m ⊂MFk−1,g

)
=

1∑
i≥1 αi

∑
j≥1

αj
P
(
m+m0

j ⊂MFk,g

)
P
(
m0
j ⊂MFk,g

) .

We now take k = kt0(g) and let g → +∞ (along St) to replaceMFk−1,g andMFk,g by respectively
M

q(Ω
t,−
0 )

and M
q(Ωt0) . We note that m0

j +m has the same perimeter as m but one more internal
face of degree 2j. We obtain, for every finite map m with one hole,

E

C|∂m| (q(Ωt,−0 )
) ∏
f∈m

q
(Ωt,−0 )

deg(f)/2

 =
1∑
i≥1 αi

∑
j≥1

αj
E
[
C∂m

(
q(Ωt0)

)
×
∏
f∈m q

(Ωt0)

deg(f)/2 × q
(Ωt0)
j

]
E
[
C1

(
q(Ωt0)

)
q

(Ωt0)
j

] .

This can be interpreted as a Radon–Nikodym derivative, i.e. the map M
q(Ω

t,−
0 )

has the law of
M

q(Ωt0) biased by

1∑
i≥1 αi

∑
j≥1

αj
q

(Ωt0)
j

E
[
q

(Ωt0)
j

] , (60)

using the fact that C1(q) = 1. Since Ω is a measurable function of the map Mq(Ω) by Proposi-
tion 8, it follows that Ωt,−

0 has the law of Ωt
0 biased by (60). In particular, we have

E
[(

Ωt,−
0

)−1
]

=
1∑
i≥1 αi

∑
j≥1

αj
E
[
q

(Ωt0)
j

(
Ωt

0

)−1
]

E
[
q

(Ωt0)
j

] .
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We can now let t→ +∞ (along S) to get

E
[(

Ω−0
)−1
]

=
1∑
i≥1 αi

∑
j≥1

αj
E
[
q

(Ω0)
j (Ω0)−1

]
E
[
q

(Ω0)
j

] . (61)

But by Lemma 10, we have E
[
q

(Ω0)
j (Ω0)−1

]
≥ E

[
q

(Ω0)
j

]
E
[
(Ω0)−1

]
for all j ≥ 1, so the last

display implies E
[(

Ω−0
)−1
]
≥ E

[
(Ω0)−1

]
, which is the third inequality of the sketch (58).

We now move on to the two equalities of (58). For this, we need to argue that Ω̃t
0 is a good

approximation of Ωt
0 for t large. By definition of Ω̃t

0 and by local convergence, we have (the
limits in g are along St)

E
[(

Ω̃t
0

)−1
]

= lim
g→+∞

E
[(

Ωt
kt0(g),g

)−1
]

= lim
g→+∞

E


r−1


∣∣∣EAt (MFk

t
0(g),g

)∣∣∣− 2
∣∣∣∂EAt (MFk

t
0(g),g

)∣∣∣
t

−1


= E

(r−1

(
V

(Ωt0)
t − 2P

(Ωt0)
t

t

))−1
 . (62)

When t → +∞ (along S), the left-hand side of (62) goes to E
[(

Ω̃0

)−1
]
. On the other hand,

we recall that (57) implies that Ωt
0 lies in a compact subset of (1,+∞) depending only on ε.

Since Ωt
0 → Ω0 along S, by Lemma 11 we have the convergence (along S)

V
(Ωt0)
t − 2P

(Ωt0)
t

t

(P )−−−−→
t→+∞

r(Ω0).

Therefore, when t→ +∞ (along S), the right-hand side of (62) goes to E
[
(Ω0)−1

]
. This proves

the first equality of (58). The second one is proved in the exact same way, using Ωt,−
0 , Ω̃t,−

0

instead of Ωt
0, Ω̃t

0.
We have therefore proved all of (58), so all the inequalities must be equalities. In particular,

(61) becomes

E
[
(Ω0)−1

]
=

1∑
i≥1 αi

∑
j≥1

αj
E
[
q

(Ω0)
j (Ω0)−1

]
E
[
q

(Ω0)
j

] .

However, we also know by Lemma 10 that E
[
q

(Ω0)
j (Ω0)−1

]
≥ E

[
q

(Ω0)
j

]
E
[
(Ω0)−1

]
for all j, so

for all j ≥ 1 we must have the equality

αjE
[
q

(Ω0)
j (Ω0)−1

]
= αjE

[
q

(Ω0)
j

]
E
[
(Ω0)−1

]
.

In particular, we fix j ≥ 2 such that αj > 0 (such a j exists because α1 < 1). Then
E
[
q

(Ω0)
j (Ω0)−1

]
= E

[
q

(Ω0)
j

]
E
[
(Ω0)−1

]
. Since ω → ω−1 and ω → q

(ω)
j are two decreasing

functions (by Lemma 10), this is only possible if Ω0 is deterministic. But then (58) yields
E
[
(Ω0)−1

]
= ω−1

0 , so Ω0 = ω0 a.s..

60



We can now finish the proof. By the exact same argument as for Ω0, we also have Ω1 = ω1

a.s.. We recall that ω0 < ω1. By letting t → +∞ (along S) in (57) and using the continuity
result of Lemma 37, we get

d
(
q(ω0)

)
=

1

2

1− 2θ0 −
∑
j≥1

αj

 (63)

and similarly

d
(
q(ω1)

)
=

1

2

1− 2θ1 −
∑
j≥1

αj

 . (64)

On the other hand, by the definition (52) of kt0(g) and kt1(g), since ω0 < ω1, we have

kt0(g) ≥ kt1(g)

for all t and g. Therefore, we have
∣∣∣Fkt0(g)

∣∣∣ ≥ ∣∣∣Fkt1(g)
∣∣∣. By letting g → +∞ (along St) we deduce

θt0 ≤ θt1. Letting t → +∞ (along S) we get θ0 ≤ θ1. Combining this with (63) and (64), this
proves d

(
q(ω0)

)
≥ d

(
q(ω1)

)
, so the function ω → d

(
q(ω)

)
is nonincreasing on (1,+∞). Since

it is nonconstant (for example by the second item of Lemma 37) and analytic (first item of
Lemma 37), it is decreasing on (1,+∞). Finally, we extend the result to [1,+∞) by continuity
at 1 (first item of Lemma 37).

6 Asymptotic enumeration: convergence of the ratio

Proof of Corollary 1. Fix j ≥ 1, and let m0
j be the map of Figure 13 with a hole of perimeter 2.

On the one hand, we have
P
(
m0
j ⊂Mq

)
= C2(q)qj .

On the other hand,

P
(
m0
j ⊂Mfn,gn

)
=
βgn(fn − 1j)

βgn(fn)
.

The last equality is proved by contracting m0
j in Mfn,gn into the root edge of a map with face

degrees given by fn − 1j . The corollary follows by letting n→ +∞.

A Appendices: proofs of technical lemmas

A.1 Monotonicity of q(ω)
j in ω

The goal of this appendix is to prove Lemma 10. Let us recall the context: we fix a sequence
(αj)j≥1 such that

∑
j≥1 jαj = 1. Following (16), for ω ≥ 1, we have

q
(ω)
j =

jαj
ωj−1hj(ω)

(
1−

∑
i≥1

1
4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

4

)j−1

,

where hi(ω) =
∑i−1

s=0
1

(4ω)s

(
2s
s

)
. We want to prove that q(ω)

j is nonincreasing in ω, and even
decreasing for j ≥ 2 provided αj > 0.
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Proof of Lemma 10. We first note that q(ω)
1 = α1 is constant, so the result is immediate for j = 1.

We now assume j ≥ 2. Let us write gi(ω) =
(2i−1
i−1 )

(4ω)i−1
∑i−1
p=0

1
(4ω)p (2p

p )
. This is a decreasing function

of ω ≥ 1, since the denominator is a polynomial with nonnegative coefficients. Moreover, we
have

dq
(ω)
j

dω
=

4j−2(
2j−1
j−1

)jαj (1−
∑

i≥1 iαigi(ω)

4

)j−2∑
i≥1

iαi
(
g′j(ω)− g′j(ω)gi(ω)− (j − 1)gj(ω)g′i(ω)

)
.

(65)
Therefore, we want to prove that for all i, j ≥ 1 and ω ≥ 1:

g′j(ω)− g′j(ω)gi(ω)− (j − 1)gj(ω)g′i(ω) ≤ 0. (66)

For i ≥ 1, we denote by Pi(ω) the polynomial in the denominator in the definition of gi(ω),

so that gi(ω) =
(2i−1
i−1 )
Pi(ω) . We also set the convention P0 = 0. We then have the recursion

Pi+1(ω) = 4ωPi(ω) +

(
2i

i

)
for all i ≥ 0. We can then rewrite (66) as Fi,j(ω) ≥ 0, where for i, j ≥ 0, we have defined

Fi,j(ω) := P 2
i (ω)P ′j(ω)−

(
2i− 1

i− 1

)(
P ′j(ω)Pi(ω) + (j − 1)P ′i (ω)Pj(ω)

)
.

We only need Fi,j(ω) ≥ 0 for i, j ≥ 1, but we will prove it for i ≥ 1 and j ≥ 0. For this, we
introduce

∆Fi,j(ω) := Fi,j+1(ω)− 4ωFi,j(ω)

= 4Pj(ω)P 2
i (ω)−

(
2i− 1

i− 1

)(
4Pj(ω)Pi(ω) + j

(
2j

j

)
P ′i (ω) + 4ωP ′i (ω)Pj(ω)

)
by the recursion. We also set

∆2Fi,j(ω) := ∆Fi,j+1(ω)− 4ω∆Fi,j(ω) (67)

= 4

(
2j

j

)
P 2
i (ω)−

(
2i− 1

i− 1

)
× 4

(
2j

j

)
Pi(ω)

(68)

−
(

2i− 1

i− 1

)(
(j + 1)

(
2(j + 1)

j + 1

)
− 4ω(j − 1)

(
2j

j

))
P ′i (ω)

≥
(

2j

j

)(
4P 2

i (ω)−
(

2i− 1

i− 1

)(
4Pi(ω) + 6P ′i (ω)

))
, (69)

where the last inequality just follows from ω ≥ 1.
Now let Gi(ω) := P 2

i (ω)−
(

2i−1
i−1

) (
Pi(ω) + 3

2P
′
i (ω)

)
. We will prove that for ω ≥ 1 and i ≥ 1,

we have Gi(ω) ≥ 0. On the one hand, since deg(Pi) = i − 1 and Pi has positive coefficients, it
is clear that for all k ≥ i:

[ωk]Gi ≥ 0.
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On the other hand, let k ≤ i− 2. Then

[ωk]Gi ≤ [ωk]P 2
i −

(
2i− 1

i− 1

)
[ωk]P ′i

=
∑
a+b=k

4k
(

2(i− 1− a)

i− 1− a

)(
2(i− 1− b)
i− 1− b

)
− 4k+1(k + 1)

(
2i− 1

i− 1

)(
2(i− 2− k)

i− 2− k

)
.

It is easily checked that the quantity
(

2(i−1−a)
i−1−a

)(2(i−1−b)
i−1−b

)
is maximal when a = k or b = k.

Finally, since we have

4

(
2i− 1

i− 1

)(
2(i− 2− k)

i− 2− k

)
≥
(

2(i− 1)

i− 1

)(
2(i− 1− k)

i− 1− k

)
,

we can conclude that
[ωk]Gi ≤ 0.

Therefore, we have proved that, starting from the highest order coefficients, the coefficients of
the polynomial Gi are all positive, then all negative. For i ≥ 2, since Gi is nonconstant, this
implies that Gi has a unique nonnegative real root ω∗, and Gi(ω) is positive for all ω > ω∗. We
now claim that ω∗ = 1. Indeed, it is easily checked that

Pi(1) =
i

2

(
2i

i

)
and P ′i (1) =

i(i− 1)

3

(
2i

i

)
,

so Gi(1) = 0 and ω∗ = 1. Therefore, if i ≥ 2, we have Gi(ω) ≥ 0 for ω ≥ 1. This is also true for
i = 1, since then Gi is constant and equal to 1.

Therefore, by (69), for all i, j ≥ 1 and ω ≥ 1, we have

∆2Fi,j(ω) ≥ 0.

But since ∆Fi,0 = 0, we have ∆Fi,j(ω) ≥ 0, and since Fi,0 = 0, we have

Fi,j(ω) ≥ 0.

This proves (66), and the nonincreasing statement in the lemma.
It remains to check that q(ω)

j is decreasing if j ≥ 2 and αj > 0. For this, note that if i ≥ 2,
then Gi is nonconstant so Gi(ω) > 0 for ω > 1. From here, we deduce ∆2Fi,j(ω) > 0 for i ≥ 2,
j ≥ 0 and ω > 1, so ∆Fi,j(ω) > 0 for i ≥ 2, j ≥ 1 and ω > 1, so Fi,j(ω) > 0 for i, j ≥ 2 and
ω > 1. Therefore (66) is strict for i, j ≥ 2 and ω > 1. By (65) and the fact that αj > 0, this

implies
dq

(ω)
j

dω < 0 for j ≥ 2 and ω > 1, so q(ω)
j is decreasing in ω for j ≥ 2.

A.2 Estimation lemmas for planarity and one-endedness

Our goal here is to prove Lemmas 23 and 25. We first restate the recursion (6) of [24], which
will be our main tool:

(
|f |+ 1

2

)
βg(f) =

∑
h(1)+h(2)=f

g(1)+g(2)+g∗=g

(1+|h(1)|)
(
v
(
h(2), g(2)

)
2g∗ + 2

)
βg(1)(h(1))βg(2)(h(2))+

∑
g∗≥0

(
v (f , g) + 2g∗

2g∗ + 2

)
βg−g∗(f).

(70)
We start with a few easy but useful consequences of (70).
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Lemma 39. Fix κ > 0 and assume that v(f , g) ≥ κ|f |.

1. We have ∑
h(1)+h(2)=f
g(1)+g(2)=g

|h(1)|βg(1)(h(1))× |h(2)|βg(2)(h(2)) ≤ 16

κ2
|f |βg(f).

2. We have ∑
h(1)+h(2)=f
g(1)+g(2)=g

βg(1)(h(1))βg(2)(h(2)) ≤ 32

κ2
βg(f).

3. For every g∗ ≥ 0, there is a constant C > 0 such that, if |f | is large enough:

βg−g∗(f) ≤ C|f |−2g∗βg(f).

Proof. We start with the first item. By only keeping the terms with g∗ = 0 and v
(
h(2), g(2)

)
≥

v
(
h(1), g(1)

)
in the first sum of (70), we get:(

|f |+ 1

2

)
βg(f) ≥

∑
h(1)+h(2)=f
g(1)+g(2)=g

v(h(2),g(2))≥v(h(1),g(1))

(1 + |h(1)|)
(
v
(
h(2), g(2)

)
2

)
βg(1)(h(1))βg(2)(h(2)). (71)

Since v
(
h(2), g(2)

)
+ v

(
h(1), g(1)

)
= v (f , g) + 2, in every term of (71), we have*

v
(
h(2), g(2)

)
− 1 ≥ 1

2
v (f , g) ≥ κ

2
|f | ≥ κ

2
|h(2)|.

This implies
(v(h(2),g(2))

2

)
≥ κ2

8 |f | × |h
(2)|. Using the crude bounds

(|f |+1
2

)
≤ |f |2 and 1 + |h(1)| ≥

|h(1)|, we obtain

|f |2βg(f) ≥
κ2

8

∑
h(1)+h(2)=f
g(1)+g(2)=g

v(h(2),g(2))≥v(h(1),g(1))

|f | × |h(1)| × |h(2)| × βg(1)(h(1))βg(2)(h(2)). (72)

The equation is now symmetric, so up to losing an extra factor two, we can remove the assump-
tion v

(
h(2), g(2)

)
≥ v

(
h(1), g(1)

)
and we get the first item. The second item follows straight

from the first one and the inequality |h(1)| × |h(2)| ≥ |f |
2 , since |h(1)| + |h(2)| = |f |

2 (except if
h(1) = 0 or h(2) = 0, but then the terms with g1, g2 > 0 do not contribute and the terms g1 = 0

or g2 = 0 contribute exactly βg(f) each).
Finally, for the third item, we simply need to consider the term corresponding to g∗ in the

second sum of (70) and use v(f , g) ≥ κ|f |.

Proof of Lemma 23. Let i∗ > 1 be such that αi∗ > 0. Considering a map m of B
(pj1,p

j
2,...,p

j
`j

)

g(j) , we
can tesselate each boundary face of m into faces of degree 2i∗ as in the proof of Lemma 16 to
obtain a map m′. We need at most pji faces for a boundary of length 2pji . We then root m′ on
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the first boundary of m, and add a marked edge on each of the other boundaries. This operation
is injective, so we obtain

β
(pj1,p

j
2,...,p

j
`j

)

g(j) (h(j)) ≤ |h(j)|`j−1βg(j)(ĥ(j)), (73)

where ĥ(j) = h(j) + (
∑`j

i=1 p
j
i )1i∗ . Using the crude bound |h(j)| ≤ |fn|, we can bound each term

of the left-hand side of Lemma 23 as follows:

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)

g(j) (h(j)) ≤ |fn|
∑k
i=1(`j−1)

k∏
j=1

βg(j)(ĥ(j)). (74)

On the other hand, by the second item of Lemma 39 and an easy induction on k, we have

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn−1−
∑
j(`j−1)

k∏
j=1

βg(j)(ĥ(j)) ≤ C ′βgn−g∗(f̂n), (75)

where f̂n = ĥ(1)+ĥ(2)+. . .+ĥ(k), the constant C ′ does not depend on n, and g∗ = 1+
∑

j(`j−1).

Note that f̂n = fn − h(0) + p1i∗ , with p =
∑k

j=1

∑`j
i=1 p

j
i . Therefore, we can write

βgn−g∗(f̂
n) ≤ βgn−g∗(fn + p1i∗) = O (βgn−g∗(f

n)) , (76)

where the last inequality comes from the Bounded ratio Lemma (Lemma 13), which applies
since by our choice of i∗ we have i∗fni∗ >

αi∗
2 |f

n| for n large enough.
By combining (74), (75) and (76), we have bounded the left-hand side of Lemma 23 by

O
(
|fn|g∗−1βgn−g∗(f

n)
)
. By the third item of Lemma 39, this is O

(
|fn|−g∗−1βgn(fn)

)
. Since

g∗ ≥ 0, this concludes the proof.

Proof of Lemma 25. The proof of the first part works in the exact same way as the proof of
Lemma 23, with the exception that now g∗ =

∑
j(`j − 1) (the +1 term was coming from

m having genus 1 and is not there anymore), so the last bound becomes O
(
|fn|−g∗βgn(fn)

)
.

Nevertheless, since the `j ’s are not all equal to 1, we have g∗ ≥ 1 and the conclusion remains
the same.

Now we prove the second point. As in the proof of Lemma 23, let i∗ > 1 be such that
αi∗ > 1. First, for the same reason as in (73), we can get rid of the boundaries by writing

β
pj
g(j)(h

(j)) ≤ βg(j)(ĥ(j)), (77)

where ĥ(j) = h(j) +pj1i∗ . Combining this with the first item of Lemma 39 and an easy induction
on k, we get

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn

k∏
j=1

|ĥ(j)|βpj
g(j)(ĥ

(j)) = O
(
|̂fn|βgn(f̂n)

)
,

where f̂n = ĥ(1) + ĥ(2) + . . . + ĥ(k). Now consider a term of the last summand such that
both |h(1)| and |h(2)| are larger than a. Then the product

∏k
j=1 |ĥ(j)| has at least one factor
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larger than |f
n|−|h(0)|

k , and another one larger than a. Hence, it can be bounded from below by
(|fn|−|h(0)|)a

k > |fn|a
2k for n large enough. Therefore, from the last display we get

∑
h(1)+h(2)+...+h(k)=fn−h(0)

g(1)+g(2)+...+g(k)=gn
|h(1)|,|h(2)|>a

k∏
j=1

βg(ĥ
(j)) = O

(
1

a
βgn(f̂n)

)
, (78)

where the O is uniform in a. Finally, we have f̂n = fn−h(0) + p1i∗ , where p =
∑k

j=1 pj . Hence,
using the Bounded ratio Lemma just like in the end of the proof of Lemma 23, we have

βgn(f̂n) ≤ βgn(fn + p1i∗) = O (βgn(fn)) .

Combined with (78), this proves the lemma.

A.3 Proof of the analyticity in Lemma 37

We fix (αj)j≥1 such that
∑

j≥1 jαj = 1 and recall that, for all ω ∈ [1,+∞), the weight sequence
q(ω) is given by (16). More precisely, we have

q
(ω)
j =

jαj
ωj−1c(ω)j−1hj(ω)

, (79)

where hj(ω) =
∑j−1

s=0

(
2s
s

)
(4ω)−s and

c(ω) =
4

1−
∑

i≥1
1

4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

. (80)

If we denote by ρ the root vertex of an infinite map Mq, our goal is to prove that the function

ω → E

[
1

degM
q(ω)

(ρ)

]

is analytic (and therefore continuous) on (1,+∞). We will show this by expressing the expec-
tation as a sum over possible neighbourhoods of the root. The first step will be to prove that
the probability to observe a fixed neighbourhood around the root is analytic. Our analyticity
arguments will rely on extending certain functions to complex values of ω, which we start doing
in the next lemma. We note that the definition of c(ω) from (80) still makes sense for ω complex
provided the series in the denominator converges.

Lemma 40. There is a complex neighbourhood of (1,+∞) on which the function ω → c(ω) is
well defined, analytic and on which c(ω) 6= 0.

Proof. To show that c(ω) is well defined and analytic, we will prove that for each ω0 ∈ (1,+∞),
the infinite sum in the denominator of (80) converges uniformly on a complex neighbourhood of
ω0. Since each term of the sum is analytic (as an inverse of a polynomial), this will be enough
to conclude.
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We fix ω0 > 1 and write δ = 1
2(ω0− 1). We also fix an integer s0 which will be specified in a

few lines. For ω complex with |ω−ω0| < δ, we have |ω| ≥ 1 + δ
2 . Hence, for i ≥ s0, we can write∣∣∣∣∣

i−1∑
s=s0+1

(
2s

s

)
(4ω)−s

∣∣∣∣∣ ≤∑
s>s0

|ω|−s ≤
(
1 + δ

2

)−s0
δ/2

.

Therefore, we have, for i ≥ s0, we have:

|hi(ω)| ≥

∣∣∣∣∣
s0∑
s=0

(
2s

s

)
(4ω)−s

∣∣∣∣∣− 2

δ

(
1 +

δ

2

)−s0
. (81)

We now fix the value of s0: we choose s0 > 1 large enough to have

2

δ

(
1 +

δ

2

)−s0
<

1

8ω0
.

We now know that the function ω →
∑min(i,s0)

s=0

(
2s
s

)
(4ω)−s is continuous and is at least 1 + 1

2ω0

for ω = ω0 (it is a sum of nonnegative terms where the term s = 0 is 1 and the term s = 1 is
1

2ω0
). Therefore, there is 0 < ε < δ such that, for ω complex with |ω − ω0| < ε, we have∣∣∣∣∣

s0∑
s=0

(
2s

s

)
(4ω)−s

∣∣∣∣∣ > 1 +
1

4ω0
.

From now on, we consider ω in this complex ball. By (81), we have

|hi(ω)| ≥ 1 +
1

8ω0
,

for all i > s0, so

sup
ω∈B(ω0,ε)

∣∣∣∣ 1

4i−1

(
2i− 1

i− 1

)
iαi

ωi−1hi(ω)

∣∣∣∣ ≤ 1

4i−1

(
2i− 1

i− 1

)
iαi(

1 + δ
2

)i−1
(

1 + 1
8ω0

) ,
which is summable over i. Therefore, the infinite sum in the denominator of (80) converges
uniformly on B(ω0, ε), so c(ω) is well defined and analytic on a complex neighbourhood of ω0.

Moreover, we know that c(ω0) > 0, so c(ω) 6= 0 on a complex neighbourhood of ω0. Since
this is true for all ω0 ∈ (1,+∞), this proves the lemma.

Note that in the complex neighbourhood given by Lemma 40, the "weights" q(ω)
j given by (79)

also make sense for all j ≥ 1 and are analytic in ω. To control the terms of the sum giving the
expected inverse degree, we will need to make sure that the q(ω)

j are not too large, i.e. that they
are "admissible" even for ω complex.

Lemma 41. Let ω0 > ω1 > 1 be real. There is a complex neighbourhood of ω0 on which for all
j ≥ 1 we have

∣∣∣q(ω)
j

∣∣∣ ≤ q
(ω1)
j . In particular, on a complex neighbourhood of the line {ω > 1},

the sequence
(∣∣∣q(ω)

j

∣∣∣)
j≥1

is admissible and subcritical.
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Proof. First, the last part of the lemma is an immediate consequence of the first one, since a
weight sequence dominated term by term by an admissible and subcritical weight sequence is
also admissible and subcritical. We now prove the first part.

For j = 1, we have q(ω)
1 = α1 for all ω, so q(ω)

1 = q
(ω1)
1 in particular. We now find a complex

neighbourhood of ω0 on which
∣∣∣q(ω)
j

∣∣∣ ≤ q
(ω1)
j for all j ≥ 2. Let δ > 0 (to be specified later). By

the same argument as in the proof of Lemma 40, there is a complex neighbourhood of ω0 on
which

|hj(ω)| ≥ (1− δ) |hj(ω0)|

for all j ≥ 1. Moreover, we have ω0c(ω0) > 0, so by continuity there is a complex neighbourhood
of ω0 on which

|ωc(ω)| ≥ (1− δ) |ω0c(ω0)| .

By combining the last two equations and (79), we get, for ω in a complex neighbourhood of ω0,∣∣∣q(ω)
j

∣∣∣ ≤ 1

(1− δ)j
q

(ω0)
j =

1

1− δ

(
ω1c(ω1)

(1− δ)ω0c(ω0)

)j−1 hj(ω1)

hj(ω0)
× q(ω1)

j (82)

for all j ≥ 2.
We now claim that ω0c(ω0) > ω1c(ω1). Indeed, let j ≥ 2 be such that αj > 0. We know from

Lemma 10 that q(ω0)
j < q

(ω1)
j . On the other hand hj(ω0) < hj(ω1) since hj(ω) is a polynomial

with positive coefficients in 1
ω . Hence, the claim that ω0c(ω0) > ω1c(ω1) follows from (79).

Therefore, if δ is chosen small enough, we have ω1c(ω1)
(1−δ)ω0c(ω0) < 1. Since hj(ω1)

hj(ω0) ≤
hj(1)

1 ≤ C
√
j

for some absolute constant C, we conclude by (82) that, on a complex neighbourhood of ω0, we
have ∣∣∣q(ω)

j

∣∣∣ < q
(ω1)
j (83)

for all j ≥ j0, where j0 may depend on ω0 and ω1 but not on ω. Moreover, for 2 ≤ j ≤ j0, we
know by Lemma 10 that q(ω0)

j < q
(ω1)
j and that q(ω)

j is continuous in ω, so up to shrinking our
neighbourhood of ω0, (83) holds for all j ≥ 2. This proves the lemma.

We now move on to the proof of analyticity. For this, we will write the expected inverse
degree of the root as an infinite sum over all possible values of the "ball" of radius 1. We first
precise the notion of ball that we will use8. We consider a peeling algorithm A1 such that,
if the root vertex ρ is on ∂m, then A1(m) is the edge on ∂m on the right of ρ. If M is a
map, we perform a filled-in peeling exploration of M using the algorithm A1, and denote it by(
EA1
t (M)

)
t≥0

. We stop the exploration at the first time τ where ρ /∈ ∂EA1
t (M), which is finite

almost surely if ρ has finite degree. We denote by B•1(M) the explored map EA1
τ (M). Finally,

we denote by H the set of possible values of B•1(M), where M is an infinite, one-ended planar
map with finite vertex degrees. Note that H is an infinite set of finite planar maps with one
hole.

We can now write, for ω > 1:

E

[
1

degM
q(ω)

(ρ)

]
=
∑
m∈H

1

degm(ρ)
p(ω)
m , (84)

8This notion is actually closer to the hull of a map. Since it is not useful here, we will not compare it to other
notions of hull introduced in the literature.
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where p(ω)
m = P

(
B•1

(
Mq(ω)

)
= m

)
. We have

p(ω)
m = P

(
m ⊂Mq(ω)

)
= (ωc(ω))|∂m|−1 h|∂m|(ω)

∏
f∈m

q
(ω)
|f | ,

where |∂m| is the half-perimeter of the hole of m and |f | = deg(f)
2 , and the product is over

internal faces f of m. Since q(ω)
j is well-defined and analytic in ω on a complex neighbourhood of

(1,+∞), the right-hand side still makes sense for ω complex, so there is a complex neighbourhood
of (1,+∞) on which p(ω)

m makes sense for all m.
We now fix ω0 > 1. To prove analyticity in a neighbourhood of ω0, it is enough to prove that

the sum in (84) converges uniformly in ω on a neighbourhood of ω0. Therefore, it is sufficient
to find a complex neighbourhood N of ω0 on which∑

m∈H
sup
ω∈N

∣∣∣p(ω)
m

∣∣∣ < +∞. (85)

For this, in the computation of p(ω)
m , we first replace q(ω)

j using (79) to obtain∣∣∣p(ω)
m

∣∣∣ = |ωc(ω)||∂m|−1−
∑
f∈m(|f |−1) ×

∣∣h|∂m|(ω)
∣∣× ∏

f∈m

|f |α|f |∣∣h|f |(ω)
∣∣ .

The Euler formula shows that |∂m| − 1−
∑

f∈m(|f | − 1) = −Inn(m), where Inn(m) ≥ 0 is the
number of internal vertices of m. We now fix ω1, ω2 real with 1 < ω1 < ω0 < ω2. By using on
the one hand the fact that ω → ωc(ω) is increasing on (1,+∞) (see the discussion right after
(82)), and on the other hand the same argument as in the proof of Lemma 40, there is a complex
neighbourhood N0 of ω0 on which

|ωc(ω)| ≥ ω1c(ω1) and ∀j ≥ 1, hj(ω2) ≤ |hj(ω)| ≤ hj(ω1) ≤ 1√
1− ω−1

1

where the rightmost inequality comes from the Taylor expansion of 1√
1−ω−1

1

. For ω ∈ N0, we

have ∣∣∣p(ω)
m

∣∣∣ ≤ 1√
1− ω−1

1

(ω1c(ω1))−Inn(m)
∏
f∈m

|f |α|f |
h|f |(ω2)

.

On the other hand, for m ∈ H, we have

P
(
B•1

(
Mq(ω2)

)
= m

)
= p(ω2)

m = h|∂m|(ω2) (ω2c(ω2))−Inn(m)
∏
f∈m

|f |α|f |
h|f |(ω2)

,

with h|∂m|(ω2) ≥ 1. It follows that

sup
ω∈N0

|p(ω)
m | ≤

1√
1− ω−1

1

(
ω2c(ω2)

ω1c(ω1)

)Inn(m)

P
(
m ⊂Mq(ω2)

)
,

so ∑
m∈H

sup
ω∈N0

|p(ω)
m | ≤

1√
1− ω−1

1

E

(ω2c(ω2)

ω1c(ω1)

)Inn
(
B•1

(
M

q(ω2)

)) . (86)
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Therefore, to prove (85) and therefore analyticity, it is sufficient to prove that for any ω0 > 1,
we can find 1 < ω1 < ω0 < ω2 < +∞ such that the last expectation is finite. This will follow
from the next lemma.

Lemma 42. Let ω0 > 1. We can find 1 < ω3 < ω0 < ω4 < +∞ and a constant y0 > 1 such
that, for all ω ∈ [ω3, ω4], we have

E

[
y

Inn
(
B•1

(
M

q(ω)

))
0

]
< +∞.

First, let us explain how Lemma 42 proves the finiteness of the right-hand side of (86). We
fix ω3, ω4 as given by Lemma 42. Since ω → ωg(ω) is continuous at ω0, there are ω1 ∈ (ω3, ω0),
ω2 ∈ (ω0, ω4) and y0 > 1 such that

ω2g(ω2)

ω1g(ω1)
< y0.

Such ω1 and ω2 suit our needs, so all we have left to do is to prove Lemma 42.

Proof of Lemma 42. We want to track down the number of inner vertices created at each step
of a peeling exploration. The sketch of the proof is the following:

• we first argue that by an absolute continuity argument, the number of internal vertices
created by a peeling exploration can be replaced by a random walk with known step
distribution;

• we then bound the number of internal vertices created by one step of this random walk;

• we finally estimate the number of peeling steps needed to complete the exploration of B•1 .

From now on, the values of ω that we will consider will be real and larger than 1. For t ≥ 0,
we denote respectively by P (ω)

t and I(ω)
t the half-perimeter and the number of inner vertices of

EA1
t

(
Mq(ω)

)
. We also write τ (ω) for the first peeling step at which the root vertex of Mq(ω)

disappears from the boundary, and note that Inn
(
B•1

(
Mq(ω)

))
= I

(ω)

τ (ω) .

We recall that P (ω) has the law of a random walk P̃ (ω) with step distribution ν̃q(ω) , started

from 1 and conditioned on the positive probability event {∀t ≥ 0, P̃
(ω)
t ≥ 1}. Moreover, condi-

tionally on P (ω), the law of I(ω) can be described as follows:

• the increments I(ω)
t+1 − I

(ω)
t are independent;

• if P (ω)
t+1 − P

(ω)
t ≥ 0, then I(ω)

t+1 − I
(ω)
t = 0;

• if P (ω)
t+1 − P

(ω)
t ≤ −1, then I

(ω)
t+1 − I

(ω)
t = 0 has the law of the total number of vertices

of a q(ω)-Boltzmann map of the 2
(
−1− P (ω)

t+1 + P
(ω)
t

)
-gon (with the convention that the

unique map of the 0-gon has a single vertex and no internal face).

Let Ĩ(ω) be the process obtained from P̃ (ω) in the exact same way as I(ω) is obtained from P (ω).
Then

(
P (ω), I(ω)

)
has the law of

(
P̃ (ω), Ĩ(ω)

)
conditioned on {∀t ≥ 0, P̃

(ω)
t ≥ 1}. Moreover,

by the choice of our peeling algorithm A1, we know that τ (ω) is the first time at which the
perimeter decreases and the swallowed part is on the left of the peeled edge. Therefore, it

70



is the G-th time where the perimeter decreases, where G is a geometric variable (starting at
1) with parameter 1

2 , independent from P (ω) and I(ω). Similarly, let τ̃ (ω) be the G-the time

where P̃ (ω) decreases. Then
(
P (ω), I(ω), τω

)
has the law of

(
P̃ (ω), Ĩ(ω), τ̃ω

)
conditioned9 on

{∀t ≥ 0, P̃
(ω)
t ≥ 1}. Therefore, for all y ≥ 0, we have

E
[
y

Inn
(
B•1

(
M

q(ω)

))]
≤ 1

P
(
∀t ≥ 0, P̃

(ω)
t ≥ 1

)E [yĨ(ω)

τ̃(ω)

]
.

In particular, since the conditioning is nondegenerate, it is enough to find y0 > 1 such that, for
ω in a real neighbourhood of ω0, we have

E

[
y
Ĩ

(ω)

τ̃(ω)

0

]
< +∞. (87)

Let Î(ω) have the distribution of Ĩ(ω)
1 , conditionned on {Ĩ(ω)

1 ≥ 1} (i.e. Î is the law of the
number of internal vertices created by a peeling step, conditioned to be nonzero). We recall
that τ̃(ω) is the G-th time where the walk Ĩ(ω) increases, where G is independent from Ĩ(ω) and
P (G = i) = 1

2i+1 for all i ≥ 1. It follows that Ĩ(ω)

τ̃ (ω) has the law of the sum of G i.i.d. copies of
Î(ω). Therefore, we need to get bounds on the variable Î(ω). For that, we will first get bounds
on the law of Ĩ(ω)

1 .
More precisely, by summing all possible peeling cases, for all y ≥ 1 and ω ∈ (1,+∞), we

have

E
[
yĨ

(ω)
1 − 1

]
= 2

∑
i≥0

(
1

ωc(ω)

)i+1 ∑
|∂m|=i

(
y#Vertices(m) − 1

) ∏
f∈m

q
(ω)
|f | , (88)

where the sum is over all finite maps of the 2i-gon, the product over inner faces and |f | =

deg(f)/2. We have computed the expectation of yĨ
(ω)
1 − 1 instead of yĨ

(ω)
1 because yĨ

(ω)
1 − 1

vanishes in the "peeling cases" where P̃ (ω)
1 ≥ 0 (i.e. when a peeling case discovers a new face, no

internal vertex is created). We first fix ω′ ∈ (1, ω0) and prove that there is y (that may depend
on ω′) such that E

[
yĨ

(ω′)
]
< +∞. Indeed, using the Euler formula, if m is a finite map of the

2i-gon, the total number of vertices of m is equal to i+ 1 +
∑

f (|f | − 1), where the sum is over
internal faces. We recall from Section 2.3 that Wi(q) is the partition function of q-Boltzmann
maps of the 2i-gon and W •i (q) is the corresponding pointed partition function (i.e. biased by
the number of vertices). Bounding y#Vertices(m) − 1 by y#Vertices(m), we can rewrite (88) as

E
[
yĨ

(ω′)
1

]
≤ 1 + 2

∑
i≥0

(
y

ω′c(ω′)

)i+1

Wi

(
q(ω5,y)

)
≤ 1 + 2

∑
i≥0

(
y

ω′c(ω′)

)i+1

W •i

(
q(ω5,y)

)
,

(89)

where q(ω′,y) is the weight sequence given by q(ω′,y)
j = q

(ω′)
j yj−1. We first claim that if y > 1 is

small enough, then q(ω′,y) is still admissible. Indeed, using the notation of Section 2.3, we have

9The triplet
(
P̃ (ω), Ĩ(ω), τ̃ω

)
can be interpreted in terms of a peeling exploration of the half-plane analog of

Mq(ω) , but this will not be necessary for us.
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fq(ω′,y)(x) = fq(ω′)(yx), so q(ω′,y) is admissible if and only if the equation

fq(ω′)(yx) = 1− 1

x
(90)

has a solution. We already know that q(ω′) is admissible, and the smallest solution to (90) is
1
4cq(ω′) = 1

4c(ω
′) for y = 1. Moreover, by definition of the walk ν̃q(ω′) , we have∑

j≥1

q
(ω′)
j

(
ω′c(ω′)

)j−1
=
∑
i≥0

ν̃q(ω′)(i) ≤ 1 < +∞,

which proves that the radius of convergence of q(ω′) is at least ω′c(ω′), so the radius of conver-
gence of fq(ω′) is at least 1

4ω
′c(ω′) > 1

4c(ω
′). Now let x ∈

(
1
4c(ω

′), 1
4ω
′c(ω′)

)
. By convexity of

fq(ω′) and concavity of x→ 1− 1
x , we have

1− 1

x
< fq(ω′)(x) < +∞.

It follows that for y > 1 small enough

1− 1

x/y
< fq(ω′) (y × (x/y)) < +∞.

On the other hand, the inequality is reversed if we replace x/y by 1. Hence, by the intermediate
value theorem (90) has a solution, so q(ω′,y) is admissible for y > 1 small enough. Moreover
y → cq(ω′,y) is continuous in a neighbourhood of y = 1. On the other hand, using the formula (5),
the right-hand side of (89) is finite if and only if y

ω′c(ω′) × cq(ω′,y) < 1. This is true for y = 1, so
by continuity in y this is also true for some y > 1. We have therefore proved that for some fixed

ω′ ∈ (1, ω0), there is y′ > 1 such that E
[
(y′)Ĩ

(ω′)
1

]
< +∞.

Let us now come back to (88). By Lemma 10 and the fact that ω → ωc(ω) is increasing
(see the discussion right after (82)), each term in the right-hand side is nonincreasing in ω and
nondecreasing in y. By the dominated convergence theorem, it follows that (88) is continuous
in (ω, y) for ω ∈ [ω′,+∞) and y ∈ [1, y′]. Since the left-hand side is equal to 0 for y = 1, there
is y0 ∈ (1, y′) and a real neighbourhood N1 of ω0 such that, for ω ∈ N1, we have

E
[
y
Ĩ

(ω)
1

0 − 1

]
≤ 1

2ω0c(ω0)
. (91)

On the other hand, we recall that Î(ω) has the law of Ĩ(ω)
1 conditionned on the event

{
P̃

(ω)
1 ≤ −1

}
,

which has probability ν̃q(ω) ((−∞,−1]). Therefore, for all ω ∈ [1,+∞), we can write

E
[
yÎ

(ω)

0 − 1
]
≤

E
[
y
Ĩ

(ω)
1

0 − 1

]
ν̃q(ω) ((−∞,−1])

≤
E
[
y
Ĩ

(ω)
1

0 − 1

]
ν̃q(ω)(−1)

=
ωc(ω)

2
E
[
y
Ĩ

(ω)
1

0 − 1

]
,

using the definition of ν̃q. Therefore, using (91), for ω in the neighbourhood N1 of ω0, we have

E
[
yÎ

(ω)

0

]
≤ 1 +

1

4

ωc(ω)

ω0c(ω0)
.
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In particular, by continuity of c(ω), there is a neighbourhood N2 of ω0 such that, for ω ∈ N2,
we have E

[
yÎ

(ω)

0

]
≤ 3

2 .

Finally, let
(
Î

(ω)
k

)
k≥1

be i.i.d. copies of Î(ω). We recall that the quantity that we are

interested in has the law of
Î

(ω)
1 + Î

(ω)
2 + · · ·+ Î

(ω)
G ,

where G is geometric with parameter 1
2 and independent from the Î(ω)

k . For ω ∈ N2, we have

E
[
y
Î

(ω)
1 +···+Î(ω)

G
0

]
=
∑
k≥1

1

2k+1
E
[
yÎ

(ω)

0

]k
≤
∑
k≥1

1

2k+1

(
3

2

)k
< +∞.

This proves (87), and therefore the lemma.

A.4 Uniform convergence of the volume process

The goal of this appendix is to prove Lemma 11, which states that the approximation of ω given
by Proposition 8 is good uniformly in ω. If (X

(ω)
t )t≥1,ω∈Ω and (X

(ω)
∞ )ω∈Ω are random variables,

we say that X(ω)
t converges in probability to X(ω)

∞ uniformly in ω over Ω if for all ε > 0, there is
t0 > 0 such that, for all t ≥ t0 and ω ∈ Ω:

P
(∣∣∣X(ω)

t −X(ω)
∞

∣∣∣ > ε
)
< ε.

To prove Lemma 11, we will adapt the proof of (15) from [18, Prop 10.12]. For this, we
will need the uniform weak law of large numbers below. This result is probably not new but we
could not locate it in the literature. We give a proof for the sake of completeness.

Lemma 43. Let
(
X(ω)

)
ω∈Ω

be a uniformly integrable family of random variables on R+. For

each ω ∈ Ω, let
(
X

(ω)
t

)
t≥1

be i.i.d. copies of X(ω). Then the convergence in probability

X
(ω)
t :=

1

t

t∑
i=1

X
(ω)
i −−−−→

t→+∞
E
[
X(ω)

]
is uniform in ω ∈ Ω.

Proof. We adapt one of the classical proofs of the weak law of large numbers: we truncate the
variables at some cutoff A and use the second moment method on the truncated variables.

More precisely, for A > 0, we write X(ω,≤A)
t = X

(ω)
t 1

X
(ω)
t ≤A

and X(ω,>A)
t = X

(ω)
t 1

X
(ω)
t >A

.
We also write

X
(ω,≤A)
t :=

1

t

t∑
i=1

X
(ω),≤A
i and X

(ω,>A)
t :=

1

t

t∑
i=1

X
(ω),>A
i .

Fix ε > 0. By uniform integrability, let A be such that E
[
X(ω,>A)

]
≤ ε2

8 for all ω ∈ Ω. By
a variance computation, we have

P
(∣∣∣X(ω,≤A)

t − E
[
X(ω,≤A)

]∣∣∣ ≥ ε

4

)
≤ 4A2

εt
.
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We also have ∣∣∣E [X(ω,≤A)
]
− E

[
X(ω)

]∣∣∣ = E
[
X(ω,>A)

]
≤ ε2

8
<
ε

2
.

Finally, by the Markov inequality

P
(∣∣∣X(ω,≤A)

t −X(ω)
t

∣∣∣ ≥ ε

4

)
≤ 4

ε
E
[
X

(ω,>A)
t

]
=

4

ε
E
[
X(ω,>A)

]
≤ ε

2
.

Combining the last three displays, we get P
(∣∣∣X(ω)

t − E
[
X(ω)

]∣∣∣ ≥ ε) ≤ ε
2 + 4A2

εt for all t ≥ 1 and

ω ∈ Ω, and the lemma follows by taking t ≥ 8A2

ε2
.

We can now prove Lemma 11. We recall that we have fixed (αj)j≥1 with
∑

j≥1 jαj = 1 and
α1 < 1 and that, for all ω ≥ 1, we denote by q(ω) the unique weight sequence such that ωq = ω

and aj(q) = αj for all j ≥ 1. We finally recall that
(
P

(ω)
t

)
t≥0

and
(
V

(ω)
t

)
t≥0

are respectively

the perimeter and volume processes associated to a peeling exploration of Mq(ω) .

Proof of Lemma 11. We know that
(
P

(ω)
t , V

(ω)
t

)
t≥0

has the law of a random walk
(
P̃

(ω)
t , Ṽ

(ω)
t

)
t≥0

on Z2 started from 1 and conditionned on the event that P̃ (ω)
t ≥ 1 for all t ≥ 0. Moreover, the

step distribution of P̃ (ω) is ν̃q(ω) . Since the function (1p≥1hp(ω))p≥1 is harmonic for P̃ (ω) on
{1, 2, . . .}, by a simple martingale argument we have

P
(
∀t ≥ 0, P̃

(ω)
t ≥ 1|P̃ (ω)

0 = 1
)

=
h1(ω)

limp→+∞ hp(ω)
=

√
ω − 1

ω

by (10). Since ω lies in a compact subset of (1,+∞), this probability is bounded away from 0.
Therefore, it is enough to prove

Ṽ
(ω)
t − 2P̃

(ω)
t

t
−−−−→
t→+∞

(√
ω −
√
ω − 1

)2
2
√
ω(ω − 1)

in probability, uniformly in ω. Note that the computation E
[
Ṽ

(ω)
1 − 2P̃

(ω)
1

]
=

(
√
ω−
√
ω−1)

2

2
√
ω(ω−1)

is

given by Proposition 10.12 in [18], so the convergence holds for ω fixed.
To prove that it is uniform, by the uniform weak law of large number (Lemma 43), it is

sufficient to prove that Ṽ (ω)
1 − 2P̃

(ω)
1 is uniformly integrable in ω for ω in a compact subset of

(1,+∞). This can be deduced from continuity both in distribution and for the expectation.
More precisely, assume that this is not the case. Then we can find a sequence (ωi)i≥1 such
that

(
Ṽ

(ωi)
1 − 2P̃

(ωi)
1

)
i≥1

is not uniformly integrable. By compactness, up to extraction we can

assume ωi → ω∞ ∈ (1,+∞). Then we claim that

Ṽ
(ωi)

1 − 2P̃
(ωi)
1

(d)−−−−→
i→+∞

Ṽ
(ω∞)

1 − 2P̃
(ω∞)
1 . (92)

Indeed, Ṽ (ω)
1 − 2P̃

(ω)
1 can be interpreted as the number of inner edges created by one peeling

step in the half-plane version of Mq(ω) . As proved in the beginning of Appendix A.3, each q(ω)
j

is a continuous function of ω, so the probability of each peeling case is a continuous function of
ω, so for all k the probability P

(
Ṽ

(ω)
1 − 2P̃

(ω)
1 = k

)
is continuous in ω, which proves (92).
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On the other hand, we know from the computation above that E
[
Ṽ

(ω)
1 − 2P̃

(ω)
1

]
is a contin-

uous function of ω, so E
[
Ṽ

(ωi)
1 − 2P̃

(ωi)
1

]
→ E

[
Ṽ

(ω∞)
1 − 2P̃

(ω∞)
1

]
as i→ +∞. By the Skorokhod

embedding theorem and Scheffé’s lemma, it follows that we can couple the variables Ṽ (ωi)
1 −2P̃

(ωi)
1

in such a way that they converge to Ṽ (ω∞)
1 − 2P̃

(ω∞)
1 in L1. In particular they are uniformly

integrable, which concludes the proof.
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