On the Cheeger constant of hyperbolic surfaces

Thomas Budzinski (CNRS and ENS de Lyon)

20 Septembre 2022 Séminaire de probabilités de Grenoble

- Hyperbolic surface: Riemannian surface with constant curvature -1.
- The Cheeger constant of a (compact) geometric object X measures its "expansion":

$$h(X) = \inf \left\{ \frac{|\partial A|}{|A|} \mid A \subset X, \ |A| \leq \frac{|X|}{2} \right\}.$$

- In general, h(X) is bounded by the Cheeger constant of its universal cover, i.e. by 1 for hyperbolic surfaces.
- Goal: prove that for a large hyperbolic surface X, we have $h(X) \leq \frac{2}{\pi} + o(1)$.
- First: study the same phenomenon on *d*-regular graphs.

Connectivity of regular graphs

- Let G be a d-regular graph with n vertices V(G).
- Various ways to measure the connectivity of a *d*-regular graph:
 - Diameter: diam(G) = max{ $d_G(x, y) | x, y \in V(G)$ }.
 - Spectral gap: *d* − λ₂, where *d* = λ₁ ≥ λ₂ ≥ ... is the spectrum of the adjacency matrix of *G*.
 - Cheeger constant:

$$h(G) = \inf \left\{ \frac{|\partial A|}{|A|} \mid A \subset V(G), \ |A| \leq \frac{|V(G)|}{2} \right\},$$

where ∂A is the set of edges with one end in A and one end in $V(G) \setminus A$.

• Cheeger's inequality:

$$\frac{1}{2}(d-\lambda_2(G)) \leq h(G) \leq \sqrt{2d(d-\lambda_2(G))}.$$

Connectivity of regular graphs: diameter and spectral gap

- Diameter: at least log_{d-1}(n) because the ball of radius r has size O((d 1)^r).
- For a uniform random graphs, the diameter is

 (1 + o(1)) log_{d-1}(n) w.h.p. [Bollobas-de la Vega 82].
 Reason: balls look like trees, so they grow "as quickly as possible".
- Spectral gap: comparison with the infinite *d*-regular tree [Alon-Boppana 91]:

$$\lambda_2(G) \geq \lambda_2(\mathbb{T}_d) + o(1) = 2\sqrt{d-1} + o(1).$$

- This bound is optimal:
 - Uniform *d*-regular graphs satisfy $\lambda_2(G) = 2\sqrt{d-1} + o(1)$ in probability [Friedman 03].
 - Arithmetic constructions of Ramanujan graphs, i.e. with $\lambda_2(G) < 2\sqrt{d-1}$ [Lubotzky–Philipps–Sarnak 88, Margulis 88].

The Cheeger constant of regular graphs

• Cheeger constant:

$$h(G) = \inf \left\{ \frac{|\partial A|}{|A|} \left| A \subset V(G), |A| \leq \frac{|V(G)|}{2} \right\},$$

 $c_d = \limsup_{n \to +\infty} \max\{h(G) \mid G \text{ is a } d\text{-regular graph with } n \text{ vertices}\}.$

$$d|A| = |\partial A| + 2|E(A)| \ge |\partial A| + 2(|A| - 1),$$

so
$$\frac{|\partial A|}{|A|} \leq d - 2 + o(1)$$
.

• On the other hand: various families of expanders show $c_d > 0$. For example random graphs give $c_d \ge \frac{d}{2} - O(\sqrt{d})$ [Bollobas 88].

- Actually $c_d \leq \frac{d}{2}$ [Bollobas 88]:
 - Choose $A \subset V(G)$ randomly, by taking each vertex with probability $\frac{1}{2}$ in an independent way.
 - Then $|A| \approx \frac{n}{2}$ with high probability...
 - ...and $\mathbb{E}[|\partial A|] = \frac{1}{2} \times \frac{dn}{2}$.
 - So there is A with $|A| \approx \frac{n}{2}$ and $|\partial A| \leq \frac{dn}{4}$, so $h(G) \leq \frac{d}{2}$.
- Improvement [Alon 97]:
 - First make $1 \ll k \ll n$ connected groups of size $\frac{n}{k}$.
 - Keep each group in A with probability $\frac{1}{2}$.
 - Then at least $\approx n$ of the edges are inside a group, and $\frac{d-2}{2}n$ of them are on the boundary between two groups.
 - We obtain $c_d \leq \frac{d-2}{2}$.
- We have $c_d \sim \frac{d}{2}$ as $d \to +\infty$, but c_3 is still unknown.

The hyperbolic plane

• The *hyperbolic plane* \mathbb{H} can be seen as the unit disk, equipped with the metric

$$\mathrm{d}s^2 = \frac{4\,\mathrm{d}x^2}{1-|x|^2}$$

- Curvature: $|B(x,r)| = \pi \varepsilon^2 \frac{\pi}{12} \varepsilon^4 K(x) + o(\varepsilon^4)$.
- Riemann uniformization theorem: Ⅲ is the unique simply connected surface with constant curvature equal to -1.
- Perimeter and volumes of balls:

$$|B_{\mathbb{H}}(x,r)|=2\pi\left(\cosh(r)-1
ight), \quad |\partial B_{\mathbb{H}}(x,r)|=2\pi\sinh(r).$$

Compact hyperbolic surfaces

- A compact hyperbolic surface S is a 2d manifold equipped with a Riemannian metric with constant curvature -1. We consider *closed* surfaces, i.e. no boundary.
- Gauss-Bonnet formula: $\int_{S} K(x) dx = 2\pi(2-2g)$, where g is the *genus* of the surface, i.e. the number of holes. So $g \ge 2$.

- Equivalent definitions:
 - S is locally isometric to \mathbb{H} ,
 - S is a quotient of \mathbb{H} (by a nice enough group action),
 - S is a surface equipped with a conformal structure.
- Hyperbolic surfaces with genus g form a (6g-6)-dimensional space \mathcal{M}_g .

Expander properties for hyperbolic surfaces

- Diameter of a hyperbolic surface S: at least (1 + o(1)) log g (because balls are not larger in S than in ℍ).
- There is a random model of hyperbolic surfaces (random gluing of pants) where the diameter is $(1 + o(1)) \log g$ [B.-Curien-Petri 19].
- Spectral gap: $\lambda_1(S)$ is the smallest nonzero eigenvalue of the Laplacian on S.
- We have $\lambda_1(S) \leq \lambda_1(\mathbb{H}) + o(1) = \frac{1}{4} + o(1)$ as $g \to +\infty$ [Huber 74].
- There is a random model of hyperbolic surfaces (random cover of a fixed, small surface) where the spectral gap is $\frac{1}{4} + o(1)$ [Hide–Maggee 21].
- Selberg conjecture: $\lambda_1 > \frac{1}{4}$ for *arithmetic* surfaces (Selberg proved $\frac{3}{16}$).

The Cheeger constant of hyperbolic surfaces

- $h(S) = \inf \left\{ \frac{|\partial A|}{|A|} \middle| A \subset S, |A| \le \frac{|S|}{2} \right\}$, where |A| is the area and $|\partial A|$ the boundary length (maybe $+\infty$).
- Cheeger-Buser inequality: $\frac{h(S)^2}{4} \le \lambda_1(S) \le 2h(S) + 10h(S)^2$.
- Various families of hyperbolic surfaces with Cheeger constant bounded from below:
 - Random models: random surfaces built from 3-regular graphs [Brooks–Makover 04], Weil–Petersson random surfaces [Mirzakhani 13]...
 - Arithmetic surfaces: $h(S) \ge 0,168...$ [Brooks 99 + Kim–Sarnak 03].

The Cheeger constant of hyperbolic surfaces

- Hyperbolic plane: $h(\mathbb{H}) = 1$, attained for balls.
- If $h(S) > 1 + \varepsilon$, then for all $r \ge 0$ such that $|B_S(x, r)| < \frac{|S|}{2}$:

$$\frac{d}{dr}\left|B_{\mathcal{S}}(x,r)\right| = \left|\partial B_{\mathcal{S}}(x,r)\right| \ge (1+\varepsilon)\left|B_{\mathcal{S}}(x,r)\right|,$$

so $|B_{\mathcal{S}}(x,r)| \ge c e^{(1+\varepsilon)r}$, absurd for r large enough, so

$$\limsup_{g\to+\infty} \sup_{S\in\mathcal{M}_g} h(S) \leq 1.$$

Theorem (B.-Curien-Petri 22) We have $\limsup_{g \to +\infty} \sup_{S \in \mathcal{M}_g} h(S) \leq \frac{2}{\pi} \approx 0,637.$

Strategy of proof

- Like on graphs: cut the surface S into k regions (1 ≪ k ≪ g), color each region in black or white with probability ¹/₂ and let A be the union of black regions.
- Strategy already used on specific expander models, with a clever choice of the regions:
 - Arithmetic surfaces : $h(S) \lesssim 0,44$ [Brooks–Zuk 02],
 - A natural model built from a random 3-regular graph: $h(S) \le \frac{2}{3} + o(1)$ [Shen–Wu 22].
- If S is partitionned into regions C_i with $\max(|C_i|) \ll |S|$, then $|A| \approx \frac{|S|}{2}$.
- We have

$$\mathbb{E}\left[|\partial A|\right] = \frac{1}{2}|\partial C| := \frac{1}{2}\left|\bigcup_{i} \partial C_{i}\right|,$$

so $h(S) \leq \frac{|\partial C|}{|S|}$.

Poisson–Voronoi tesselation

- Let (x_i) be a Poisson point process with intensity λ on S, i.e. for all R ⊂ S, the number of points x_i in R has law Poisson(λ|R|), with independence between disjoint regions.
- Voronoi tesselation:

$$C_i = \{z \in S \mid \forall j, d_S(x_i, z) \leq d_S(x_j, z)\}.$$

• Finally, take λ small. We need to prove that for λ small enough:

$$\limsup_{g\to+\infty}\sup_{S\in\mathcal{M}_g}\mathbb{E}\left[\left|\bigcup_i\partial C_i\right|\right]\leq \left(\frac{2}{\pi}+\delta\right)|S|.$$

Thickening the boundary

• Let $\partial^{\varepsilon} C$ be the ε -neighbourhood of ∂C . Then

$$|\partial C| = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} |\partial^{\varepsilon} C|,$$

SO

$$\mathbb{E}\left[\left|\partial C\right|\right] \leq \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{S} \mathbb{P}\left(x \in \partial^{\varepsilon} C\right) \, \mathrm{d}x,$$

so we want $\mathbb{P}(x \in \partial^{\varepsilon} C) \leq \frac{2}{\pi} + \delta$.

Easy version of the argument: assume that S has a large injectivity radius around x, i.e. B_S(r, x) = B_H(r, x) for some r ≫ 1. We first get the bound 1 instead of ²/_π.

Poisson–Voronoi tesselation of the hyperbolic plane

 Local picture around x: Poisson–Voronoi tesselation of the hyperbolic plane (for decreasing values of λ).

- Large injectivity radius: we can do all the computations in $\mathbb H$ instead of S.
- For a typical cell C_i [Isokawa 00]:

$$\mathbb{E}\left[|C_i|\right] = \frac{1}{\lambda}, \quad \mathbb{E}\left[|\partial C_i|\right] = \frac{8}{\sqrt{\pi\lambda}} \int_0^\infty e^{-u} \sqrt{u + \frac{u^2}{4\pi\lambda}} \, \mathrm{d}u \sim \frac{4}{\pi\lambda},$$

but not robust enough for the general case.

The closest point to x

• Condition on the closest point of the Poisson process to x, say x_{i_0} , with $d_{\mathbb{H}}(x, x_{i_0}) = r$.

• If $x \in \partial^{\varepsilon} C$, then there is $j \neq i_0$ such that the bisector between x_{i_0} and x_j intersects $B_{\mathbb{H}}(x,\varepsilon)$, so $r \leq d_{\mathbb{H}}(x,x_j) \leq r+2\varepsilon$, so $\mathbb{P}\left(x \in \partial^{\varepsilon} C \mid x_{i_0}\right) \lesssim \lambda \times 2\varepsilon \times |\partial B_{\mathbb{H}}(x,r)|$.

Computation

• On the other hand, law of $d_{\mathbb{H}}(x, x_{i_0})$:

$$\mathbb{P}\left(d_{\mathbb{H}}(x, x_{i_0}) \geq r\right) = \exp\left(-\lambda \left|B_{\mathbb{H}}(x, r)\right|\right).$$

• For λ small, we have r large so $|\partial B_{\mathbb{H}}(r)| pprox |B_{\mathbb{H}}(r)|$, so

$$\begin{split} &\mathbb{P}\left(x\in\partial^{\varepsilon}C\right)\\ &\leq 2\varepsilon\lambda^{2}\int_{0}^{+\infty}\left(\frac{d}{dr}\left|B_{\mathbb{H}}(r)\right|\right)\times\left|\partial B_{\mathbb{H}}(r)\right|\times e^{-\lambda|B_{\mathbb{H}}(r)|}\,\mathrm{d}r\\ &\approx 2\varepsilon\lambda^{2}\int_{0}^{+\infty}\left(\frac{d}{dr}\left|B_{\mathbb{H}}(r)\right|\right)\times\left|B_{\mathbb{H}}(r)\right|\times e^{-\lambda|B_{\mathbb{H}}(r)|}\,\mathrm{d}r\\ &= 2\varepsilon\lambda^{2}\left[\left(-\frac{|B_{\mathbb{H}}(r)|}{\lambda}+\frac{1}{\lambda^{2}}\right)e^{-\lambda|B_{\mathbb{H}}(r)|}\right]_{0}^{+\infty}\\ &= 2\varepsilon. \end{split}$$

• So $\mathbb{E}[|\partial C|] \lesssim |S|$ and $h(S) \lesssim 1$.

From 1 to $2/\pi$

 Let A^ε(x, y) be the set of points z ∈ ℍ such that the bisector between y and z intersects B_ℍ(x, ε).

 Good approximation in polar coordinates (for r large):

$$\left\{ (r'; \theta') \mid r \le r' \le r + 2\varepsilon \left| \sin \frac{\theta'}{2} \right| \right\}$$

So
$$|A^{\varepsilon}(x, y)| \approx 2\varepsilon \times \frac{2}{\pi} \times |\partial B_{\mathbb{H}}(x, r)|.$$

$$\mathbb{P}\left(x\in\partial^{arepsilon}\mathcal{C}\,|\,x_{i_0}
ight)pprox\lambda\left|\mathcal{A}^arepsilon(x,x_{i_0})
ight|pprox2arepsilon\lambda imesrac{2}{\pi}\left|\partial\mathcal{B}_{\mathbb{H}}(x,r)
ight|$$

Dirichlet domains

- Reminder: S is a quotient of 𝔄 by the action of a discrete isometry group G, i.e. there is a surjective isometry p : 𝔄 → S such that p(x') = p(y') iff ∃g ∈ G, y' = g ⋅ x'.
- Fundamental domain: $D \subset \mathbb{H}$ such that p is a bijection from D to S.
- Let x ∈ S, and assume p(0) = x. The Dirichlet domain of S around x is

$$D=D(S,x)=\{x'\in\mathbb{H}\,|\,\forall g\in G, d_{\mathbb{H}}(0,x)\leq d_{\mathbb{H}}(0,g\cdot x)\}.$$

• In other words, it is the Voronoi cell around 0 of the point set $\{g \cdot 0 \mid g \in G\}$.

The general case

- Roughly speaking, the argument still works, replacing $|B_{\mathbb{H}}(x,r)|$ by $|B_D(x,r)| = |B_{\mathbb{H}}(x,r) \cap D|$.
- Now, when we evaluate the contribution of points at distance *r* from *x*, we need to integrate over the set

$$I_r = \{\theta \in [0, 2\pi] \mid [r, \theta] \in D\},\$$

and not just over $[0, 2\pi]$:

$$\mathbb{P}\left(x \in \partial^{\varepsilon} C \mid x_{i_0} = [r, \theta]\right) \approx \lambda \left|A^{\varepsilon}(x, x_{i_0}) \cap D\right|$$
$$\approx \int_{I_r} 2\varepsilon \sinh(r) \left|\sin \frac{\theta' - \theta}{2}\right| \, \mathrm{d}\theta'$$

and similarly, express the law of x_{i_0} in polar coordinates:

$$\exp\left(-\lambda |B_D(x,r)|\right) \mathbb{1}_{\theta \in I_r} \sinh(r) \,\mathrm{d}r \,\mathrm{d}\theta.$$

The general case

In the contribution of {d(x, x_{i0}) = r}, the following integral appears:

$$\int_{I_r \times I_r} \left| \sin \frac{\theta - \theta'}{2} \right| \, \mathrm{d}\theta \, \mathrm{d}\theta'.$$

• Useful lemma: for all finite measure μ on $[0, 2\pi]$,

$$\int_0^{2\pi} \int_0^{2\pi} \left| \sin \frac{\theta_1 - \theta_2}{2} \right| \, \mu(\mathrm{d}\theta_1) \, \mu(\mathrm{d}\theta_2) \leq \frac{2}{\pi} \mu([0, 2\pi])^2,$$

with equality for the uniform measure [Toth 56].

• We find again

$$\mathbb{P}\left(x\in\partial^{\varepsilon}C\right)\leq 2\varepsilon\lambda^{2}\times\frac{2}{\pi}\int_{0}^{+\infty}\left(\frac{d}{dr}\left|B_{D}(r)\right|\right)^{2}\times e^{-\lambda|B_{D}(r)|}\,\mathrm{d}r$$

and finish the computation as before.

Further questions

- The bound $\frac{2}{\pi}$ should not be sharp, as the interfaces are not straight geodesics. Can we get to $\frac{1}{2}$ or below?
- On III, Poisson–Voronoi has a nontrivial limit when λ → 0: points go to infinity but interfaces stay there ("pointless Voronoi diagram"). Study this object?
 - Already known: $p_c \sim \frac{\pi}{3}\lambda$ as $\lambda \to 0$ [Hansen–Müller 20].

THANK YOU!