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Outline

Hyperbolic surface: Riemannian surface with constant
curvature −1.
The Cheeger constant of a (compact) geometric object X
measures its "expansion":

h(X ) = inf

{
|∂A|
|A|

∣∣∣A ⊂ X , |A| ≤ |X |
2

}
.

In general, h(X ) is bounded by the Cheeger constant of its
universal cover, i.e. by 1 for hyperbolic surfaces.
Goal: prove that for a large hyperbolic surface X , we have
h(X ) ≤ 2

π + o(1).
First: study the same phenomenon on d-regular graphs.
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Connectivity of regular graphs

Let G be a d-regular graph with n vertices V (G ).
Various ways to measure the connectivity of a d-regular graph:

Diameter: diam(G ) = max{dG (x , y)|x , y ∈ V (G )}.
Spectral gap: d − λ2, where d = λ1 ≥ λ2 ≥ . . . is the
spectrum of the adjacency matrix of G .
Cheeger constant:

h(G ) = inf

{
|∂A|
|A|

∣∣∣A ⊂ V (G ), |A| ≤ |V (G )|
2

}
,

where ∂A is the set of edges with one end in A and one end in
V (G )\A.

Cheeger’s inequality:

1
2
(d − λ2(G )) ≤ h(G ) ≤

√
2d(d − λ2(G )).
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Connectivity of regular graphs: diameter and spectral gap

Diameter: at least logd−1(n) because the ball of radius r has
size O ((d − 1)r ).
For a uniform random graphs, the diameter is
(1+ o(1)) logd−1(n) w.h.p. [Bollobas–de la Vega 82].
Reason: balls look like trees, so they grow "as quickly as
possible".
Spectral gap: comparison with the infinite d-regular tree
[Alon–Boppana 91]:

λ2(G ) ≥ λ2(Td) + o(1) = 2
√
d − 1+ o(1).

This bound is optimal:
Uniform d-regular graphs satisfy λ2(G ) = 2

√
d − 1+ o(1) in

probability [Friedman 03].
Arithmetic constructions of Ramanujan graphs, i.e. with
λ2(G ) < 2

√
d − 1 [Lubotzky–Philipps–Sarnak 88, Margulis

88].
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The Cheeger constant of regular graphs

Cheeger constant:

h(G ) = inf

{
|∂A|
|A|

∣∣∣A ⊂ V (G ), |A| ≤ |V (G )|
2

}
,

cd = lim sup
n→+∞

max{h(G ) |G is a d-regular graph with n vertices}.

We have cd ≤ d − 2 = h(Td):
Let A be a connected, not too small subset of V (G ).
If E (A) is the set of edges between vertices of A, then

d |A| = |∂A|+ 2|E (A)| ≥ |∂A|+ 2(|A| − 1),

so |∂A||A| ≤ d − 2+ o(1).

On the other hand: various families of expanders show cd > 0.
For example random graphs give cd ≥ d

2 − O(
√
d) [Bollobas

88].
Thomas Budzinski Cheeger constant of hyperbolic surfaces



The Cheeger constant of regular graphs: upper bound

Actually cd ≤ d
2 [Bollobas 88]:

Choose A ⊂ V (G ) randomly, by taking each vertex with
probability 1

2 in an independent way.
Then |A| ≈ n

2 with high probability...
...and E[|∂A|] = 1

2 ×
dn
2 .

So there is A with |A| ≈ n
2 and |∂A| ≤ dn

4 , so h(G ) ≤ d
2 .

Improvement [Alon 97]:
First make 1� k � n connected groups of size n

k .
Keep each group in A with probability 1

2 .
Then at least ≈ n of the edges are inside a group, and d−2

2 n of
them are on the boundary between two groups.
We obtain cd ≤ d−2

2 .

We have cd ∼ d
2 as d → +∞, but c3 is still unknown.
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The hyperbolic plane

The hyperbolic plane H can be seen as the unit disk, equipped
with the metric

ds2 =
4 dx2

1− |x |2
.

Curvature: |B(x , r)| = πε2 − π
12ε

4K (x) + o(ε4).
Riemann uniformization theorem: H is the unique simply
connected surface with constant curvature equal to −1.
Perimeter and volumes of balls:

|BH(x , r)| = 2π (cosh(r)− 1) , |∂BH(x , r)| = 2π sinh(r).
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Compact hyperbolic surfaces

A compact hyperbolic surface S is a 2d manifold equipped
with a Riemannian metric with constant curvature −1. We
consider closed surfaces, i.e. no boundary.
Gauss–Bonnet formula:

∫
S K (x)dx = 2π(2− 2g), where g is

the genus of the surface, i.e. the number of holes. So g ≥ 2.

S

Equivalent definitions:
S is locally isometric to H,
S is a quotient of H (by a nice enough group action),
S is a surface equipped with a conformal structure.

Hyperbolic surfaces with genus g form a (6g − 6)-dimensional
spaceMg .
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Expander properties for hyperbolic surfaces

Diameter of a hyperbolic surface S : at least (1+ o(1)) log g
(because balls are not larger in S than in H).
There is a random model of hyperbolic surfaces (random
gluing of pants) where the diameter is (1+ o(1)) log g
[B.–Curien–Petri 19].
Spectral gap: λ1(S) is the smallest nonzero eigenvalue of the
Laplacian on S .
We have λ1(S) ≤ λ1(H) + o(1) = 1

4 + o(1) as g → +∞
[Huber 74].
There is a random model of hyperbolic surfaces (random cover
of a fixed, small surface) where the spectral gap is 1

4 + o(1)
[Hide–Maggee 21].
Selberg conjecture: λ1 >

1
4 for arithmetic surfaces (Selberg

proved 3
16).
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The Cheeger constant of hyperbolic surfaces

h(S) = inf
{
|∂A|
|A|

∣∣∣A ⊂ S , |A| ≤ |S |2
}
, where |A| is the area and

|∂A| the boundary length (maybe +∞).

Cheeger–Buser inequality: h(S)2

4 ≤ λ1(S) ≤ 2h(S) + 10h(S)2.
Various families of hyperbolic surfaces with Cheeger constant
bounded from below:

Random models: random surfaces built from 3-regular graphs
[Brooks–Makover 04], Weil–Petersson random surfaces
[Mirzakhani 13]...
Arithmetic surfaces: h(S) ≥ 0, 168... [Brooks 99 +
Kim–Sarnak 03].
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The Cheeger constant of hyperbolic surfaces

Hyperbolic plane: h(H) = 1, attained for balls.

If h(S) > 1+ ε, then for all r ≥ 0 such that |BS(x , r)| < |S |
2 :

d

dr
|BS(x , r)| = |∂BS(x , r)| ≥ (1+ ε) |BS(x , r)| ,

so |BS(x , r)| ≥ c e(1+ε)r , absurd for r large enough, so

lim sup
g→+∞

sup
S∈Mg

h(S) ≤ 1.

Theorem (B.–Curien–Petri 22)

We have
lim sup
g→+∞

sup
S∈Mg

h(S) ≤ 2
π
≈ 0, 637.
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Strategy of proof

Like on graphs: cut the surface S into k regions (1� k � g),
color each region in black or white with probability 1

2 and let A
be the union of black regions.
Strategy already used on specific expander models, with a
clever choice of the regions:

Arithmetic surfaces : h(S) . 0, 44 [Brooks–Zuk 02],
A natural model built from a random 3-regular graph:
h(S) ≤ 2

3 + o(1) [Shen–Wu 22].

If S is partitionned into regions Ci with max(|Ci |)� |S |, then
|A| ≈ |S |2 .
We have

E [|∂A|] = 1
2
|∂C | := 1

2

∣∣∣∣∣⋃
i

∂Ci

∣∣∣∣∣ ,
so h(S) ≤ |∂C ||S | .
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Poisson–Voronoi tesselation

Let (xi ) be a Poisson point process with intensity λ on S , i.e.
for all R ⊂ S , the number of points xi in R has law
Poisson(λ|R|), with independence between disjoint regions.
Voronoi tesselation:

Ci = {z ∈ S | ∀j , dS(xi , z) ≤ dS(xj , z)} .

Finally, take λ small. We need to prove that for λ small
enough:

lim sup
g→+∞

sup
S∈Mg

E

[∣∣∣∣∣⋃
i

∂Ci

∣∣∣∣∣
]
≤
(
2
π
+ δ

)
|S |.
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Thickening the boundary

Let ∂εC be the ε-neighbourhood of ∂C . Then

|∂C | = lim
ε→0

1
2ε
|∂εC |,

so
E [|∂C |] ≤ lim

ε→0

1
2ε

∫
S
P (x ∈ ∂εC ) dx ,

so we want P (x ∈ ∂εC ) ≤ 2
π + δ.

Easy version of the argument: assume that S has a large
injectivity radius around x , i.e. BS(r , x) = BH(r , x) for some
r � 1. We first get the bound 1 instead of 2

π .
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Poisson–Voronoi tesselation of the hyperbolic plane

Local picture around x : Poisson–Voronoi tesselation of the
hyperbolic plane (for decreasing values of λ).

Large injectivity radius: we can do all the computations in H
instead of S .
For a typical cell Ci [Isokawa 00]:

E [|Ci |] =
1
λ
, E [|∂Ci |] =

8√
πλ

∫ ∞
0

e−u
√

u +
u2

4πλ
du ∼ 4

πλ
,

but not robust enough for the general case.
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The closest point to x

Condition on the closest point of the Poisson process to x , say
xi0 , with dH(x , xi0) = r .

ε

r

r + 2ε
x

xi0

xj

If x ∈ ∂εC , then there is j 6= i0 such that the bisector between
xi0 and xj intersects BH(x , ε), so r ≤ dH(x , xj) ≤ r + 2ε, so

P (x ∈ ∂εC | xi0) . λ× 2ε× |∂BH(x , r)| .
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Computation

On the other hand, law of dH(x , xi0):

P (dH(x , xi0) ≥ r) = exp (−λ |BH(x , r)|) .

For λ small, we have r large so |∂BH(r)| ≈ |BH(r)|, so

P (x ∈ ∂εC )

≤ 2ελ2
∫ +∞

0

(
d

dr
|BH(r)|

)
× |∂BH(r)| × e−λ|BH(r)| dr

≈ 2ελ2
∫ +∞

0

(
d

dr
|BH(r)|

)
× |BH(r)| × e−λ|BH(r)| dr

= 2ελ2
[(
−|BH(r)|

λ
+

1
λ2

)
e−λ|BH(r)|

]+∞
0

= 2ε.

So E [|∂C |] . |S | and h(S) . 1.
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From 1 to 2/π

Let Aε(x , y) be the set of points z ∈ H such that the bisector
between y and z intersects BH(x , ε).

Aε(x , y)

θ′

r

r + 2εx

y

z

Good approximation in polar
coordinates (for r large):{
(r ′; θ′) | r ≤ r ′ ≤ r + 2ε

∣∣∣∣sin θ′2
∣∣∣∣} .

So
|Aε(x , y)| ≈ 2ε× 2

π ×|∂BH(x , r)|.

P (x ∈ ∂εC | xi0) ≈ λ |Aε(x , xi0)| ≈ 2ελ× 2
π
|∂BH(x , r)| .
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Dirichlet domains

Reminder: S is a quotient of H by the action of a discrete
isometry group G , i.e. there is a surjective isometry p : H→ S
such that p(x ′) = p(y ′) iff ∃g ∈ G , y ′ = g · x ′.
Fundamental domain: D ⊂ H such that p is a bijection from
D to S .
Let x ∈ S , and assume p(0) = x . The Dirichlet domain of S
around x is

D = D(S , x) = {x ′ ∈ H | ∀g ∈ G , dH(0, x) ≤ dH(0, g · x)}.

In other words, it is the Voronoi cell around 0 of the point set
{g · 0 | g ∈ G}.
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The general case

Roughly speaking, the argument still works, replacing
|BH(x , r)| by |BD(x , r)| = |BH(x , r) ∩ D|.
Now, when we evaluate the contribution of points at distance
r from x , we need to integrate over the set

Ir = {θ ∈ [0, 2π] | [r , θ] ∈ D} ,

and not just over [0, 2π]:

P (x ∈ ∂εC | xi0 = [r , θ]) ≈ λ |Aε(x , xi0) ∩ D|

≈
∫
Ir

2ε sinh(r)
∣∣∣∣sin θ′ − θ2

∣∣∣∣ dθ′

and similarly, express the law of xi0 in polar coordinates:

exp (−λ |BD(x , r)|)1θ∈Ir sinh(r) dr dθ.
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The general case

In the contribution of {d(x , xi0) = r}, the following integral
appears: ∫

Ir×Ir

∣∣∣∣sin θ − θ′2

∣∣∣∣ dθ dθ′.

Useful lemma: for all finite measure µ on [0, 2π],∫ 2π

0

∫ 2π

0

∣∣∣∣sin θ1 − θ22

∣∣∣∣ µ(dθ1)µ(dθ2) ≤ 2
π
µ([0, 2π])2,

with equality for the uniform measure [Toth 56].
We find again

P (x ∈ ∂εC ) ≤ 2ελ2 × 2
π

∫ +∞

0

(
d

dr
|BD(r)|

)2

× e−λ|BD(r)| dr

and finish the computation as before.
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Further questions

The bound 2
π should not be sharp, as the interfaces are not

straight geodesics. Can we get to 1
2 or below?

On H, Poisson–Voronoi has a nontrivial limit when λ→ 0:
points go to infinity but interfaces stay there ("pointless
Voronoi diagram"). Study this object?

Already known: pc ∼ π
3λ as λ→ 0 [Hansen–Müller 20].
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THANK YOU !
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