On the Cheeger constant of hyperbolic surfaces

Thomas Budzinski (CNRS and ENS de Lyon)

20 Septembre 2022
Séminaire de probabilités de Grenoble

Thomas Budzinski Cheeger constant of hyperbolic surfaces



@ Hyperbolic surface: Riemannian surface with constant
curvature —1.

@ The Cheeger constant of a (compact) geometric object X
measures its "expansion":

h(X) = inf{|ﬁ:|\| ‘A C X, |Al < ‘X‘}

@ In general, h(X) is bounded by the Cheeger constant of its
universal cover, i.e. by 1 for hyperbolic surfaces.

@ Goal: prove that for a large hyperbolic surface X, we have
h(X) < 2 + o(1).

@ First: study the same phenomenon on d-regular graphs.
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Connectivity of regular graphs

@ Let G be a d-regular graph with n vertices V(G).
@ Various ways to measure the connectivity of a d-regular graph:

o Diameter: diam(G) = max{dg(x,y)|x,y € V(G)}.

o Spectral gap: d — A\, where d = \; > Ay > ... is the
spectrum of the adjacency matrix of G.

o Cheeger constant:

h(G)—in{|A|‘A cV( )7A|<V(2G)},

where OA is the set of edges with one end in A and one end in
V(G))\A.

@ Cheeger's inequality:

%(d — 22(G)) < h(G) < v/2d(d — X(G)).
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Connectivity of regular graphs: diameter and spectral gap

e Diameter: at least logy_;(n) because the ball of radius r has
size O((d —1)").

@ For a uniform random graphs, the diameter is
(1+ o(1))logy_1(n) w.h.p. [Bollobas—de la Vega 82].
Reason: balls look like trees, so they grow "as quickly as
possible".

@ Spectral gap: comparison with the infinite d-regular tree
[Alon—Boppana 91]:

)\Q(G) > )\Q(Td) + 0(1) =2V d—1+ O(].).

@ This bound is optimal:
o Uniform d-regular graphs satisfy A\2(G) = 2v/d — 1+ o(1) in
probability [Friedman 03].
o Arithmetic constructions of Ramanujan graphs, i.e. with
X2(G) < 24/d — 1 [Lubotzky—Philipps—Sarnak 88, Margulis
88].
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The Cheeger constant of regular graphs

@ Cheeger constant:

w6) =i { 4l 4 c vie). 14 < AELY,

¢qg = limsup max{h(G) | G is a d-regular graph with n vertices}.
n——+o00

e We have ¢y < d—2= h(Ty):
o Let A be a connected, not too small subset of V(G).
o If E(A) is the set of edges between vertices of A, then

d|A] = [0A] + 2|E(A)] = [0A] + 2(|A] - 1),

so%<d 2+ 0(1).

@ On the other hand: various families of expanders show c4 > 0.
For example random graphs give ¢y > ¢ — O(V/d) [Bollobas
88].
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The Cheeger constant of regular graphs: upper bound

o Actually c; < ¢ [Bollobas 88]:
o Choose A C V(G) randomly, by taking each vertex with
probability % in an independent way.
o Then |A| =~ § With high probability...
e ...and IE[|8A|] =1ixd
° So there is A Wlth |A| ~ 2 and |0A| < 9, so h(G) < 4.
e Improvement [Alon 97]:
o First make 1 < k < n connected groups of size 7.
o Keep each group in A with probability %
o Then at least & n of the edges are inside a group, and %n of
them are on the boundary between two groups.
e We obtain ¢ < %.

o We have ¢4 ~ % as d — +oo, but ¢z is still unknown.
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The hyperbolic plane

@ The hyperbolic plane H can be seen as the unit disk, equipped
with the metric

o Curvature: |B(x, r)| = me? — Se*K(x) + o(c*).

@ Riemann uniformization theorem: H is the unique simply
connected surface with constant curvature equal to —1.

@ Perimeter and volumes of balls:

|Bu(x, r)| = 2w (cosh(r) — 1), |0Bu(x,r)| = 2w sinh(r).
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Compact hyperbolic surfaces

@ A compact hyperbolic surface S is a 2d manifold equipped
with a Riemannian metric with constant curvature —1. We
consider closed surfaces, i.e. no boundary.

o Gauss—Bonnet formula: [¢ K(x)dx = 27(2 — 2g), where g is
the genus of the surface, i.e. the number of holes. So g > 2.

@ Equivalent definitions:
e S is locally isometric to H,
e S is a quotient of H (by a nice enough group action),
e S is a surface equipped with a conformal structure.
@ Hyperbolic surfaces with genus g form a (6g — 6)-dimensional
space M.
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Expander properties for hyperbolic surfaces

e Diameter of a hyperbolic surface S: at least (1 + o(1))logg
(because balls are not larger in S than in H).

@ There is a random model of hyperbolic surfaces (random
gluing of pants) where the diameter is (1 + o(1)) log g
[B.—Curien—Petri 19].

@ Spectral gap: A1(S) is the smallest nonzero eigenvalue of the
Laplacian on S.

o We have A1(S) < A\ (H) +o(1) = 1 + o(1) as g — +o0
[Huber 74].

@ There is a random model of hyperbolic surfaces (random cover
of a fixed, small surface) where the spectral gap is + + o(1)
[Hide—Maggee 21].

@ Selberg conjecture: A > % for arithmetic surfaces (Selberg
proved =).
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The Cheeger constant of hyperbolic surfaces

e h(S)=inf {%‘A C S, A < @} where |A| is the area and

|OA| the boundary length (maybe +00).

o Cheeger—Buser inequality: h(TS)Z < A1(S) < 2h(S) + 10h(S)>.

@ Various families of hyperbolic surfaces with Cheeger constant
bounded from below:

o Random models: random surfaces built from 3-regular graphs
[Brooks—Makover 04], Weil-Petersson random surfaces
[Mirzakhani 13]...

o Arithmetic surfaces: h(S) > 0,168... [Brooks 99 +
Kim-Sarnak 03].
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The Cheeger constant of hyperbolic surfaces

o Hyperbolic plane: h(H) = 1, attained for balls.
o If h(S) > 1+ ¢, then for all r > 0 such that |Bs(x, r)| < |2ﬂ

d
57 |1Bs(x ) = 10Bs(x, r)| = (1 +¢€)[Bs(x, r)l

so |Bs(x, r)| > c e absurd for r large enough, so

limsup sup h(S) <1
g—+0o SeMg

Theorem (B.—Curien—Petri 22)

We have ;
limsup sup h(S) < — =~ 0,637.
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Strategy of proof

o Like on graphs: cut the surface S into k regions (1 < k < g),
color each region in black or white with probability % and let A
be the union of black regions.

o Strategy already used on specific expander models, with a
clever choice of the regions:

o Arithmetic surfaces : h(S) < 0,44 [Brooks—Zuk 02],
o A natural model built from a random 3-regular graph:
h(S) < 2 + o(1) [Shen-Wu 22].
o If S is partitionned into regions C; with max(|C;|) < |S], then
S|
Al ~ Bl

o We have

)

1 1
E[l0A]] = Efaq =3

Joc

o¢]
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Poisson—Voronoi tesselation

o Let (x;) be a Poisson point process with intensity A on S, i.e.
for all R C S, the number of points x; in R has law
Poisson(A|R|), with independence between disjoint regions.

@ Voronoi tesselation:
G = {Z € S|\V/_], ds(X,',Z) < dS(XjaZ)} :

o Finally, take A small. We need to prove that for A small

enough:
Uac ] (i + 5) S|.

limsup sup E
g—+o00 SeM,
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Thickening the boundary

@ Let 9°C be the e-neighbourhood of 9C. Then
.1
|0C| = lim —|0°C],
e—0 2¢
o) )
< lim — e
E[Jac]] < lim 26/Sﬂ»(x € O C) dx,
so we want P (x € 0°C) < 2 4+ 4.

o Easy version of the argument: assume that S has a large
injectivity radius around x, i.e. Bs(r,x) = Bg(r, x) for some
r > 1. We first get the bound 1 instead of %

Thomas Budzinski Cheeger constant of hyperbolic surfaces



Poisson—\oronoi tesselation of the hyperbolic plane

o Local picture around x: Poisson—Voronoi tesselation of the

o Large injectivity radius: we can do all the computations in H
instead of S.
o For a typical cell C; [Isokawa 00]:

BlGH=5, BOGH=—= [Tenfut Do~ 2
N ,—moe YT A YT

but not robust enough for the general case.
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The closest point to x

@ Condition on the closest point of the Poisson process to x, say
Xiy, With dp(x, x;,) = r.

X

NG

o If x € 9°C, then there is j # iy such that the bisector between
Xj, and x; intersects By (x,€), so r < du(x, x;) < r+ 2¢, so

P(x € 0°C|xjy) S A x 2 x |0Bg(x,r)]|.
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Computation

@ On the other hand, law of d(x, xj, ):
P (du(x, xip) = r) = exp (= |Bu(x, r)[) -
o For A small, we have r large so [0By(r)| ~ |Bu(r)|, so
P(x € 85

< 25/\2

~ 26)\2 (j |> |Bu(r)| x e MBu(nl 4,
Bu(r

1 e
_0y2 [( | ! I )\2> e)\|BH(r)|]0
= 2¢.

— \BH y) x [0Bg(r)| x e MBI qr

o SoE[|aC]] < |S| and A(S) < 1



From 1 to 2/

o Let A%(x, y) be the set of points z € H such that the bisector
between y and z intersects By(x, ¢).

@ Good approximation in polar
coordinates (for r large):

a& {(r';@’)|r§r’§r+2s
e So
V A (x, y)| & 26 % 2 x |0Bu(x, )|

2
P(x € 0°C| xjy) = N A®(x, x;,)| = 2eA x = |0Bu(x, r)| .
T

/

i)

sin —
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Dirichlet domains

o Reminder: S is a quotient of H by the action of a discrete
isometry group G, i.e. there is a surjective isometry p: H — S
such that p(x’) = p(y’) iff 3g € G,y' = g - X'

o Fundamental domain: D C H such that p is a bijection from
D to S.

o Let x € S, and assume p(0) = x. The Dirichlet domain of S
around x is

D =D(S,x) ={x" € H|Vg € G, du(0,x) < du(0,g - x)}.

o In other words, it is the Voronoi cell around 0 of the point set
{g-0lge G}
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The general case

o Roughly speaking, the argument still works, replacing
|Bu(x, r)| by |Bp(x, r)| = |Bu(x,r) N D|.

o Now, when we evaluate the contribution of points at distance
r from x, we need to integrate over the set

I, = {6 € [O,QW]’[I’,G] € D}7
and not just over [0, 27]:

]P(X 6 a€C|Xlo = [r’ﬁ]) ~ )\|A€(X7X,0) ﬂ D|
m/Zesinh(r)
I

and similarly, express the law of x;, in polar coordinates:

.0 -0 ,
sm2‘dc9

exp (—A |Bp(x, r)|) Loey, sinh(r) drdé.
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The general case

o In the contribution of {d(x, x;,) = r}, the following integral

appears:
/l\err

o Useful lemma: for all finite measure p on [0, 27],

/271' /271‘
0 0

with equality for the uniform measure [Toth 56].

_ g
-0 dode’.

sin

01 — 6>

sin >

p(d6) p(d6) < 2 ([0, 27])?

o We find again
2 +o0 d 2
]P)(X S 85(:) < 26)\2 X —/ (— |BD(r)|> X e_)‘|BD(r)| dr
™ Jo dr

and finish the computation as before.
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Further questions

@ The bound % should not be sharp, as the interfaces are not
straight geodesics. Can we get to % or below?

@ On H, Poisson—Voronoi has a nontrivial limit when A — 0:
points go to infinity but interfaces stay there ("pointless
Voronoi diagram"). Study this object?

o Already known: p. ~ Z\ as A — 0 [Hansen—Miiller 20].
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THANK yOoU !
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