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Planar maps

o A planar map is a locally finite, connected graph embedded in
the plane in such a way that :

@ no two edges cross, except at a common endpoint,
o every compact subset of the plane intersects finitely many
vertices and edges,

considered up to orientation-preserving homeomorphism.
o The faces of the map are the connected components of its

complementary. The degree of a face is the number of
half-edges adjacent to this face.
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Planar maps

Definitions

o A planar map is a locally finite, connected graph embedded in
the plane in such a way that :

@ no two edges cross, except at a common endpoint,
o every compact subset of the plane intersects finitely many
vertices and edges,

considered up to orientation-preserving homeomorphism.
o The faces of the map are the connected components of its

complementary. The degree of a face is the number of
half-edges adjacent to this face.
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Triangulations

o A triangulation of the plane is an infinite planar map in which

all the faces have degree 3. It may contain loops and multiple
edges.

o A triangulation with a hole of perimeter p is a finite map in
which all the faces have degree 3 except the external face,
which has degree p.

o A rooted triangulation is a triangulation with a distinguished
oriented edge. From now on, all the triangulations will be
rooted.

Examples : a rooted triangulation with a hole of perimeter 6.
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Definition

If t is a triangulation of a p-gon and T a triangulation of the plane,
we write t C T if T may be obtained by "filling" the hole of t with
an infinite triangulation.
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The UIPT

Theorem (= Angel-Schramm, 2003)

There is a random triangulation of the plane T, called the UIPT
(Uniform Infinite Planar Triangulation), such that for any
triangulation t with a hole of perimeter p, we have

P(t C T) = oA,

where || is the number of vertices of t and we have A = #\/5 and
2\/§P 2P)':.}p
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Picture by N. Curien.
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Spatial Markov property

Condition on t C T, and let e be an edge of Ot :
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Spatial Markov property

Condition on t C T, and let e be an edge of Ot :
A f

Case / Case Il; (here i = 2) Case Ill; (here i = 3)

P(E+CT) _ Gl G
- = C,
]P(tCT) Cp>\c P
° P(Case II,-) and IF’(Case III,-) are also explicitely known, and
depend only on p.

@ Then ]P’(Case l) =
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Peeling process and consequences

@ Allows to discover T, almost "face by face", in a Markovian
way.
@ Very flexible : the choice of e may be adapted to the
information we are looking for :
o growth in r* [Angel],
e critical probabilities for percolation [Angel, Angel-Curien,
Richier|,
o subdiffusivity of the random walk [Benjamini-Curien]
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A-Markovian triangulations

Definition

A random triangulation of the plane T is A-Markovian if there are
constants (Cp)p>1 such that for any triangulation t with a hole of
perimeter p we have

P(t C T) = (A
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A-Markovian triangulations

A random triangulation of the plane T is A-Markovian if there are

constants (Cp)p>1 such that for any triangulation t with a hole of
perimeter p we have

P(t C T) = (A

Proposition (Curien 2014, B. 2016)

If A\ > A¢ then there is no A-Markovian triangulation. If 0 < X\ < A,
then there is a unique one (in distribution), that we write T'y.
Besides we have

a1+ 3 ()

q=0

where h € (0, ] is such that A = .
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Hyperbolic behaviour

o Exponential volume growth [Curien]
@ Anchored expansion : if A is a finite, connected set of vertices
containing the root, then |0A| > c|A| [Curien].

@ The simple random walk has positive speed [Curien,
Angel-Nachmias-Ray].
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Scaling limit of T

@ A planar map can be seen as a (discrete) metric space,
equipped with its graph distance and the counting measure on
its vertices.

@ The set of all (classes of) locally compact measured metric
spaces can be equipped with the local
Gromov-Hausdorff-Prokhorov distance.
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Scaling limit of T

@ A planar map can be seen as a (discrete) metric space,
equipped with its graph distance and the counting measure on
its vertices.

@ The set of all (classes of) locally compact measured metric
spaces can be equipped with the local
Gromov-Hausdorff-Prokhorov distance.

Theorem (Curien-Le Gall 14, B. 16)

Let ut be the counting measure on the set of vertices of T. We
have the following convergence in distribution for the local
Gromov-Hausdorff-Prokhorov distance :

(r k) 2 7

a—-+oo

where P is a random (pointed) measured metric space
homeomorphic to the plane called the Brownian plane.

4
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Scaling limit of T 7

o For A\ < A, fixed %’]I‘k cannot converge because T "grows too
quickly".
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Scaling limit of T 7

o For A\ < A, fixed %’]I‘k cannot converge because T "grows too
quickly".
o We look for (An) — Ac such that 1T, converges.
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Scaling limit of T 7

o For A\ < A, fixed %’]I‘A cannot converge because T "grows too
quickly".
o We look for (An) — Ac such that 1T, converges.

Theorem (B. 16)

Let (An)n>0 be a sequence of numbers in (0, A¢] such that
2 1
dn=2e(1=5) +o ()

(fo ) 7

n——+o00

Then

where P is a random (pointed) measured metric space
homeomorphic to the plane that we call the hyperbolic Brownian
plane.

o’
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Hull process of P

For r > 0 we write B,(P) for the hull of radius r of P, that is, the
reunion of its ball of radius r and all the bounded connected
components of its complementary.
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Hull process of P

For r > 0 we write B,(P) for the hull of radius r of P, that is, the
reunion of its ball of radius r and all the bounded connected
components of its complementary.

Theorem (Curien-Le Gall 14)
o There is a natural notion of "perimeter" of B,(P), that we
write P,(P), and (P,(P)) y>0 1S a time-reversed stable
branching process (in particular it is cadlag with only negative

jumps).

o’

Thomas Budzinski The hyperbolic Brownian plane




Hull process of P

For r > 0 we write B,(P) for the hull of radius r of P, that is, the
reunion of its ball of radius r and all the bounded connected
components of its complementary.

Theorem (Curien-Le Gall 14)

o There is a natural notion of "perimeter" of B,(P), that we
write P,(P), and (P/(P)),, is a time-reversed stable
branching process (in particular it is cadlag with only negative
jumps).

o If V,(P) is the volume of B,(P), then

(Vi( ’>0 <Z§,|AP ) >0’

ti<r

where (t;) is a measurable enumeration of the jumps of
(Pf(P))rzo' and the &; are i.i.d. with density %LQO.

o’

Thomas Budzinski The hyperbolic Brownian plane




Description of P”

For all r > 0, the random variable B,(P") has density

1
e—2V2,(P)eP2r(P) / 6_3P2r(P)X2dX
0

with respect to B,(P).
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Sketch of proof

@ We use the convergence of T to P and the absolute continuity
relations between T and T) :

P(B(Tx)=1t) Co(N) (A >\t|

P(E(T) = t) B Cp()‘c)

Ac
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Sketch of proof

@ We use the convergence of T to P and the absolute continuity
relations between T and T) :

P(BA(Tx)=1t)  Cp(A) 7/ A\
Iwitw

P(B(T)=1t) CplAc

Ac

@ Two main tools :

o precise asymptotics for the C,()),
o a reinforcement of the convergence of T to P.

Thomas Budzinski The hyperbolic Brownian plane



Asymptotics for the absolute continuity relations

Fix r > 0. Let (A\n), (pn) and (v,) be such that :

o An=2c(1-5%) +o(%),

o %4 — 3y,

Pn 3

Let t, be a possible value of B,,(T) such that t, has v, vertices
and a hole of perimeter p,. Then

P(@Tk") =) —5 e %veP /1 e3P dx.
P(Bn(T) = tn) 0
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Reinforced convergence to the Brownian plane

The three following convergences hold jointly in distribution as

n— 400 :
it — P
(RBaDI) . — (BYP)5
(%10BAm)) . — 3PP,z
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Reinforced convergence to the Brownian plane

The three following convergences hold jointly in distribution as

n— 400 :
it — P
(HBaM) . — VP,
(%10B(T )>0 — (3PP},

@ First two marginals : follows from
Gromov-Hausdorff-Prokhorov convergence.
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Reinforced convergence to the Brownian plane

The three following convergences hold jointly in distribution as

n— 400 :
it — P
(HBaM) . — VP,
(%10B(T )>0 — (3PP},

@ First two marginals : follows from
Gromov-Hausdorff-Prokhorov convergence.

e Joint convergence of the last two marginals. [Curien-Le Gall]
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Reinforced convergence to the Brownian plane

The three following convergences hold jointly in distribution as

n— 400 :
it — P
(RBaDI) . — (BYP)5
(Z10Ba(m)) . — GPP))sg

@ First two marginals : follows from
Gromov-Hausdorff-Prokhorov convergence.

e Joint convergence of the last two marginals. [Curien-Le Gall]

e To conclude : show that (P,(P)) ,>o 15 determined by
(Vr(P))rZO'
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THA you!
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