The hyperbolic Brownian plane

Thomas Budzinski

ENS Paris

July 7th, 2016

Thomas Budzinski The hyperbolic Brownian plane

Planar maps

Definitions

- A *planar map* is a locally finite, connected graph embedded in the plane in such a way that :
 - no two edges cross, except at a common endpoint,
 - every compact subset of the plane intersects finitely many vertices and edges,

considered up to orientation-preserving homeomorphism.

• The *faces* of the map are the connected components of its complementary. The *degree* of a face is the number of half-edges adjacent to this face.

Planar maps

Definitions

- A *planar map* is a locally finite, connected graph embedded in the plane in such a way that :
 - no two edges cross, except at a common endpoint,
 - every compact subset of the plane intersects finitely many vertices and edges,

considered up to orientation-preserving homeomorphism.

• The *faces* of the map are the connected components of its complementary. The *degree* of a face is the number of half-edges adjacent to this face.

Triangulations

Definition

- A *triangulation of the plane* is an infinite planar map in which all the faces have degree 3. It may contain loops and multiple edges.
- A triangulation with a hole of perimeter p is a finite map in which all the faces have degree 3 except the external face, which has degree p.
- A *rooted* triangulation is a triangulation with a distinguished oriented edge. From now on, all the triangulations will be rooted.

Examples : a rooted triangulation with a hole of perimeter 6.

Definition

If t is a triangulation of a p-gon and T a triangulation of the plane, we write $t \subset T$ if T may be obtained by "filling" the hole of t with an infinite triangulation.

Theorem (\approx Angel-Schramm, 2003)

There is a random triangulation of the plane \mathbb{T} , called the *UIPT* (Uniform Infinite Planar Triangulation), such that for any triangulation *t* with a hole of perimeter *p*, we have

$$\mathbb{P}(t\subset\mathbb{T})=C_p\lambda_c^{|t|},$$

where |t| is the number of vertices of t and we have $\lambda_c = \frac{1}{12\sqrt{3}}$ and $C_p = 2\sqrt{3} \frac{p(2p)!}{p!^2} 3^p$.

Picture by N. Curien.

Spatial Markov property

Condition on $t \subset \mathbb{T}$, and let *e* be an edge of ∂t :

Spatial Markov property

Condition on $t \subset \mathbb{T}$, and let *e* be an edge of ∂t :

• Then
$$\mathbb{P}(\text{Case } I) = \frac{\mathbb{P}(t+f\subset\mathbb{T})}{\mathbb{P}(t\subset\mathbb{T})} = \frac{C_{p+1}\lambda_c^{|t|+1}}{C_p\lambda_c^{|t|}} = \frac{C_{p+1}}{C_p}\lambda_c.$$

Spatial Markov property

Condition on $t \subset \mathbb{T}$, and let *e* be an edge of ∂t :

• Then
$$\mathbb{P}(\text{Case } I) = \frac{\mathbb{P}(t+f\subset\mathbb{T})}{\mathbb{P}(t\subset\mathbb{T})} = \frac{C_{p+1}\lambda_c^{|t|+1}}{C_p\lambda_c^{|t|}} = \frac{C_{p+1}}{C_p}\lambda_c.$$

• $\mathbb{P}(\text{Case } II_i)$ and $\mathbb{P}(\text{Case } III_i)$ are also explicitely known, and depend only on p.

- \bullet Allows to discover $\mathbb T,$ almost "face by face", in a Markovian way.
- Very flexible : the choice of *e* may be adapted to the information we are looking for :
 - growth in r^4 [Angel],
 - critical probabilities for percolation [Angel, Angel-Curien, Richier],
 - subdiffusivity of the random walk [Benjamini-Curien]

λ -Markovian triangulations

Definition

A random triangulation of the plane T is λ -Markovian if there are constants $(C_p)_{p\geq 1}$ such that for any triangulation t with a hole of perimeter p we have

$$\mathbb{P}(t \subset T) = C_p(\lambda)\lambda^{|t|}.$$

λ -Markovian triangulations

Definition

A random triangulation of the plane T is λ -Markovian if there are constants $(C_p)_{p\geq 1}$ such that for any triangulation t with a hole of perimeter p we have

$$\mathbb{P}(t \subset T) = C_p(\lambda)\lambda^{|t|}.$$

Proposition (Curien 2014, B. 2016)

If $\lambda > \lambda_c$ then there is no λ -Markovian triangulation. If $0 < \lambda \le \lambda_c$ then there is a unique one (in distribution), that we write \mathbb{T}_{λ} . Besides we have

$$C_p(\lambda) = rac{1}{\lambda} \Big(8 + rac{1}{h} \Big)^{p-1} \sum_{q=0}^{p-1} {2q \choose q} h^q,$$

where $h \in (0, \frac{1}{4}]$ is such that $\lambda = \frac{h}{(1+8h)^{3/2}}$.

- Exponential volume growth [Curien]
- Anchored expansion : if A is a finite, connected set of vertices containing the root, then $|\partial A| \ge c|A|$ [Curien].
- The simple random walk has positive speed [Curien, Angel-Nachmias-Ray].

Scaling limit of ${\mathbb T}$

- A planar map can be seen as a (discrete) metric space, equipped with its graph distance and the counting measure on its vertices.
- The set of all (classes of) locally compact measured metric spaces can be equipped with the local Gromov-Hausdorff-Prokhorov distance.

Scaling limit of ${\mathbb T}$

- A planar map can be seen as a (discrete) metric space, equipped with its graph distance and the counting measure on its vertices.
- The set of all (classes of) locally compact measured metric spaces can be equipped with the local Gromov-Hausdorff-Prokhorov distance.

Theorem (Curien-Le Gall 14, B. 16)

Let $\mu_{\mathbb{T}}$ be the counting measure on the set of vertices of $\mathbb{T}.$ We have the following convergence in distribution for the local Gromov-Hausdorff-Prokhorov distance :

$$\left(\frac{1}{n}\mathbb{T}, \frac{1}{n^4}\mu_{\mathbb{T}}\right) \xrightarrow[a \to +\infty]{(d)} \mathcal{P}$$

where \mathcal{P} is a random (pointed) measured metric space homeomorphic to the plane called the *Brownian plane*.

Scaling limit of \mathbb{T}_{λ} ?

• For $\lambda < \lambda_c$ fixed $\frac{1}{n}\mathbb{T}_{\lambda}$ cannot converge because \mathbb{T}_{λ} "grows too quickly".

Scaling limit of \mathbb{T}_{λ} ?

- For $\lambda < \lambda_c$ fixed $\frac{1}{n}\mathbb{T}_{\lambda}$ cannot converge because \mathbb{T}_{λ} "grows too quickly".
- We look for $(\lambda_n) \to \lambda_c$ such that $\frac{1}{n} \mathbb{T}_{\lambda_n}$ converges.

Scaling limit of \mathbb{T}_{λ} ?

- For $\lambda < \lambda_c$ fixed $\frac{1}{n}\mathbb{T}_{\lambda}$ cannot converge because \mathbb{T}_{λ} "grows too quickly".
- We look for $(\lambda_n) \to \lambda_c$ such that $\frac{1}{n} \mathbb{T}_{\lambda_n}$ converges.

Theorem (B. 16)

Let $(\lambda_n)_{n\geq 0}$ be a sequence of numbers in $(0, \lambda_c]$ such that

$$\lambda_n = \lambda_c \left(1 - \frac{2}{3n^4} \right) + o\left(\frac{1}{n^4} \right).$$

Then

$$\left(\frac{1}{n}\mathbb{T}_{\lambda_n}, \frac{1}{n^4}\mu_{\mathbb{T}_{\lambda_n}}\right) \xrightarrow[n \to +\infty]{(d)} \mathcal{P}^h$$

where \mathcal{P}^{h} is a random (pointed) measured metric space homeomorphic to the plane that we call the *hyperbolic Brownian plane*.

Hull process of ${\cal P}$

For $r \ge 0$ we write $\overline{B_r}(\mathcal{P})$ for the *hull* of radius r of \mathcal{P} , that is, the reunion of its ball of radius r and all the bounded connected components of its complementary.

Hull process of ${\cal P}$

For $r \ge 0$ we write $\overline{B_r}(\mathcal{P})$ for the *hull* of radius r of \mathcal{P} , that is, the reunion of its ball of radius r and all the bounded connected components of its complementary.

Theorem (Curien-Le Gall 14)

There is a natural notion of "perimeter" of B_r(P), that we write P_r(P), and (P_r(P))_{r≥0} is a time-reversed stable branching process (in particular it is càdlàg with only negative jumps).

Hull process of ${\cal P}$

For $r \ge 0$ we write $\overline{B_r}(\mathcal{P})$ for the *hull* of radius r of \mathcal{P} , that is, the reunion of its ball of radius r and all the bounded connected components of its complementary.

Theorem (Curien-Le Gall 14)

- There is a natural notion of "perimeter" of B_r(P), that we write P_r(P), and (P_r(P))_{r≥0} is a time-reversed stable branching process (in particular it is càdlàg with only negative jumps).
- If $V_r(\mathcal{P})$ is the volume of $\overline{B_r}(\mathcal{P})$, then

$$(V_r(\mathcal{P}))_{r\geq 0} = \left(\sum_{t_i\leq r}\xi_i|\Delta P_r(\mathcal{P})|^2\right)_{r\geq 0},$$

where (t_i) is a measurable enumeration of the jumps of $(P_r(\mathcal{P}))_{r\geq 0}$, and the ξ_i are i.i.d. with density $\frac{e^{-1/2x}}{\sqrt{2\pi x^5}}\mathbb{1}_{x>0}$.

For all $r \geq 0$, the random variable $\overline{B_r}(\mathcal{P}^h)$ has density

$$e^{-2V_{2r}(\boldsymbol{\mathcal{P}})}e^{P_{2r}(\boldsymbol{\mathcal{P}})}\int_0^1e^{-3P_{2r}(\boldsymbol{\mathcal{P}})x^2}\mathrm{d}x$$

with respect to $\overline{B_r}(\mathcal{P})$.

• We use the convergence of \mathbb{T} to \mathcal{P} and the absolute continuity relations between \mathbb{T} and \mathbb{T}_{λ} :

$$\frac{\mathbb{P}(\overline{B_r}(\mathbb{T}_{\lambda})=t)}{\mathbb{P}(\overline{B_r}(\mathbb{T})=t)} = \frac{C_p(\lambda)}{C_p(\lambda_c)} \left(\frac{\lambda}{\lambda_c}\right)^{|t|}$$

• We use the convergence of \mathbb{T} to \mathcal{P} and the absolute continuity relations between \mathbb{T} and \mathbb{T}_{λ} :

$$\frac{\mathbb{P}(\overline{B_r}(\mathbb{T}_{\lambda})=t)}{\mathbb{P}(\overline{B_r}(\mathbb{T})=t)} = \frac{C_p(\lambda)}{C_p(\lambda_c)} \left(\frac{\lambda}{\lambda_c}\right)^{|t|}$$

- Two main tools :
 - precise asymptotics for the $C_p(\lambda)$,
 - \bullet a reinforcement of the convergence of $\mathbb T$ to $\boldsymbol{\mathcal P}.$

Proposition

Fix r > 0. Let (λ_n) , (p_n) and (v_n) be such that :

•
$$\lambda_n = \lambda_c \left(1 - \frac{2}{3n^4}\right) + o\left(\frac{1}{n^4}\right),$$

• $\frac{v_n}{n^4} \longrightarrow 3v,$
• $\frac{p_n}{n^2} \longrightarrow \frac{3}{2}p.$

Let t_n be a possible value of $\overline{B_{rn}}(\mathbb{T})$ such that t_n has v_n vertices and a hole of perimeter p_n . Then

$$\frac{\mathbb{P}(\overline{B_{rn}}(\mathbb{T}_{\lambda_n})=t_n)}{\mathbb{P}(\overline{B_{rn}}(\mathbb{T})=t_n)} \longrightarrow e^{-2\nu}e^{\rho}\int_0^1 e^{-3\rho x^2} dx.$$

The three following convergences hold jointly in distribution as $n \to +\infty$:

$$\begin{cases} \frac{1}{n}\mathbb{T} & \longrightarrow \mathcal{P} \\ \left(\frac{1}{n^4}|\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(3V_r(\mathcal{P})\right)_{r\geq 0} \\ \left(\frac{1}{n^2}|\partial\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(\frac{3}{2}P_r(\mathcal{P})\right)_{r\geq 0}. \end{cases}$$

The three following convergences hold jointly in distribution as $n \to +\infty$:

$$\begin{cases} \frac{1}{n}\mathbb{T} & \longrightarrow \mathcal{P} \\ \left(\frac{1}{n^4}|\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & (3V_r(\mathcal{P}))_{r\geq 0} \\ \left(\frac{1}{n^2}|\partial\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(\frac{3}{2}P_r(\mathcal{P})\right)_{r\geq 0}. \end{cases}$$

• First two marginals : follows from Gromov-Hausdorff-Prokhorov convergence.

The three following convergences hold jointly in distribution as $n \to +\infty$:

$$\begin{cases} \frac{1}{n}\mathbb{T} & \longrightarrow \mathcal{P} \\ \left(\frac{1}{n^4}|\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(3V_r(\mathcal{P})\right)_{r\geq 0} \\ \left(\frac{1}{n^2}|\partial \overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(\frac{3}{2}P_r(\mathcal{P})\right)_{r\geq 0}. \end{cases}$$

- First two marginals : follows from Gromov-Hausdorff-Prokhorov convergence.
- Joint convergence of the last two marginals. [Curien-Le Gall]

The three following convergences hold jointly in distribution as $n \to +\infty$:

$$\begin{cases} \frac{1}{n}\mathbb{T} & \longrightarrow \mathcal{P} \\ \left(\frac{1}{n^4}|\overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(3V_r(\mathcal{P})\right)_{r\geq 0} \\ \left(\frac{1}{n^2}|\partial \overline{B_{rn}}(\mathbb{T})|\right)_{r\geq 0} & \longrightarrow & \left(\frac{3}{2}P_r(\mathcal{P})\right)_{r\geq 0}. \end{cases}$$

- First two marginals : follows from Gromov-Hausdorff-Prokhorov convergence.
- Joint convergence of the last two marginals. [Curien-Le Gall]
- To conclude : show that $(P_r(\mathcal{P}))_{r\geq 0}$ is determined by $(V_r(\mathcal{P}))_{r\geq 0}$.

THANK YOU!