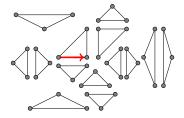
# Markovian triangulations and robust convergence to the UIPT

#### Thomas Budzinski (CNRS and ENS Lyon)

2021, September 14th Journée Combitop, ENS Lyon

- The UIPT is a natural "uniform" model of discrete, infinite planar geometry:
  - obtained by convergence of finite models relying on enumerative combinatorics;
  - nice to study because of its Spatial Markov property.
- Goals:
  - classify infinite objects exhibiting a similar Markov property;
  - use this to prove the convergence of finite models to the UIPT in a "robust" way, without precise enumeration.

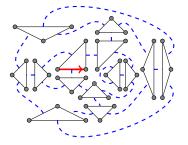
# Triangulations of the sphere



- A *triangulation of the sphere* with 2*n* faces is a set of 2*n* triangles whose sides have been glued two by two, in a way that is homeomorphic to the sphere.
- Our triangulations are *of type I* (we may glue two sides of the same triangle), and *rooted* (oriented root edge).
- Exact, explicit enumeration [Tutte 60s]:

$$\#\mathcal{T}_n = 2 \frac{4^n (3n)!!}{(n+1)!(n+2)!!}.$$

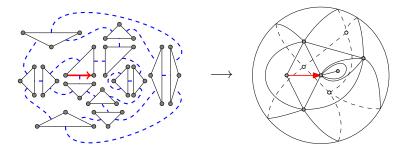
## Triangulations of the sphere



- A triangulation of the sphere with 2n faces is a set of 2n triangles whose sides have been glued two by two, in a way that is homeomorphic to the sphere.
- Our triangulations are *of type I* (we may glue two sides of the same triangle), and *rooted* (oriented root edge).
- Exact, explicit enumeration [Tutte 60s]:

$$\#\mathcal{T}_n = 2 \frac{4^n (3n)!!}{(n+1)!(n+2)!!}.$$

## Triangulations of the sphere

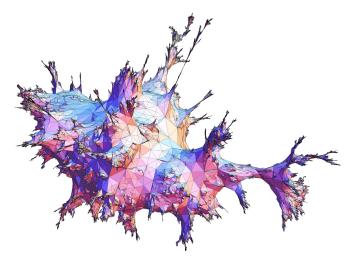


- A *triangulation of the sphere* with 2*n* faces is a set of 2*n* triangles whose sides have been glued two by two, in a way that is homeomorphic to the sphere.
- Our triangulations are *of type I* (we may glue two sides of the same triangle), and *rooted* (oriented root edge).
- Exact, explicit enumeration [Tutte 60s]:

$$\#\mathcal{T}_n = 2 \frac{4^n (3n)!!}{(n+1)!(n+2)!!}.$$

## Random triangulations of the sphere

• Let  $T_n$  be a uniform triangulation of the sphere with 2n faces. What does  $T_n$  look like?

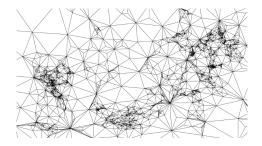


#### Local limits of uniform triangulations

Local convergence:

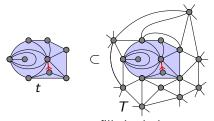
$$d_{ ext{loc}}(t,t') = ig(1+ ext{max}ig\{r\geq 0|B_r(t)=B_r(t')ig\}ig)^{-1}$$
 .

• Then  $T_n$  converges in distribution for the local topology to a random triangulation of the plane called the UIPT (Uniform Infinite Planar Triangulation)  $\mathbb{T}$  [Angel-Schramm 03].



## The argument of Angel and Schramm

• Let t be a small triangulation with a hole:



• Then  $\mathbb{P}(t \subset T_n) = \frac{\#\text{ways to fill the hole}}{\#\mathcal{T}_n}$  depends on the perimeter and volume of t. It is explicit by the enumeration of Tutte, and converges as  $n \to +\infty$ .

# The argument of Angel and Schramm

- Before that:
  - Tightness (control vertex degree): uses that  $\frac{\#T_{n+1}}{\#T_n}$  is bounded.
  - One-endedness, i.e. in the limit there is no finite set separating two infinite regions: uses that

$$\sum_{\substack{k+\ell=n\\k,\ell\gg 1}} \#\mathcal{T}_k \times \#\mathcal{T}_\ell \ll \#\mathcal{T}_n.$$

- Can be mimiced for many models, as long as exact enumeration is known.
- What if add "perturbations" that make the model too hard to count? For example, if we start with n triangles and o(n) quadrangles?

- By the Angel–Schramm argument

   P(t ⊂ T) = lim<sub>n→+∞</sub> P(t ⊂ T<sub>n</sub>) only depends on the perimeter and volume of t.
- Consequence: when we explore the UIPT "face by face" using peeling explorations, the perimeter and volume of the explored region follow a Markov chain with values in N<sup>2</sup>.
- Useful tool to study the fractal-like properties of  $\mathbb{T}$  (e.g. volume growth in  $r^4$  [Angel 04]).

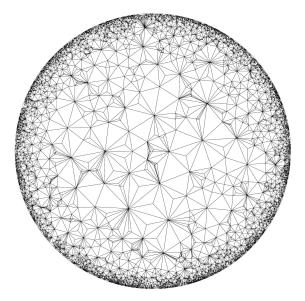
# Planar Stochastic Hyperbolic Triangulations

- The PSHT (Planar Stochastic Hyperbolic Triangulations) are the local limits of uniform triangulations of genus g with 2n faces when g is proportional to n [B.-Louf 19].
- They form a one-parameter family  $(\mathbb{T}_{\lambda})_{0 \leq \lambda \leq \lambda_{c}}$ , where  $\lambda_{c} = \frac{1}{12\sqrt{3}}$ . Characterized by a stronger version of the Markov property [Curien 14]:

$$\mathbb{P}(t \subset \mathbb{T}_{\lambda}) = C_{|\partial t|}(\lambda) imes \lambda^{|t|}.$$

- What do they look like?
  - $\lambda = \lambda_c$ : the UIPT;
  - $0 < \lambda < \lambda_c$ : hyperbolic (mean degree > 6, exponential volume growth...);
  - $\lambda = 0$ : dual of a complete binary tree (degenerate object with infinite vertex degrees).

# A PSHT $\mathbb{T}_{\lambda}$ with $0 < \overline{\lambda < \lambda_c}$



# Convergence of high genus triangulations

- The proof does not rely on asymptotic enumeration!
- Main ingredients:
  - Tightness: "robust" adaptation of the tightness argument of Angel–Schramm;
  - Planarity and one-endedness of subsequential limits: use the Goulden–Jackson recursion (coming from algebraic combinatorics);
  - Any limit must have the spatial Markov property;

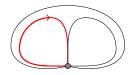
#### Theorem (B.–Louf 19)

Let T be a Markovian planar, one-ended, random infinite triangulation. Then T is of the form  $\mathbb{T}_{\Lambda}$ , where  $\Lambda$  is a random variable on  $[0, \lambda_c]$ (PSHT with a random parameter).

- Compare estimates on the PSHT and surgery arguments to prove that  $\Lambda$  is deterministic.
- Almost "enumeration-free" proof: if we want to replicate this sketch on planar models, the weak point is one-endedness.

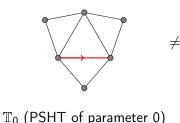
- Infinite triangulation: family of countably many triangles glued along their edges and vertices. We do not assume one-endedness, nor finite vertex degrees.
- Examples of "degenerate" planar infinite triangulations:

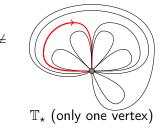




 $\mathbb{T}_0$  (PSHT of parameter 0)  $\mathbb{T}_{\star}$  (only one vertex)

- Infinite triangulation: family of countably many triangles glued along their edges and vertices. We do not assume one-endedness, nor finite vertex degrees.
- Examples of "degenerate" planar infinite triangulations:

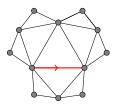




• Infinite triangulation: family of countably many triangles glued along their edges and vertices. We do not assume one-endedness, nor finite vertex degrees.

≠

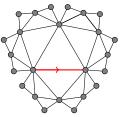
• Examples of "degenerate" planar infinite triangulations:



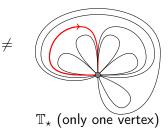
 $\mathbb{T}_{\star}$  (only one vertex)

 $\mathbb{T}_0$  (PSHT of parameter 0)  $\mathbb{T}_s$ 

- Infinite triangulation: family of countably many triangles glued along their edges and vertices. We do not assume one-endedness, nor finite vertex degrees.
- Examples of "degenerate" planar infinite triangulations:



 $\mathbb{T}_0$  (PSHT of parameter 0)



#### Definition

A random, infinite, planar triangulation T is *Markovian* if for any finite planar triangulation t with one or several holes, the probability  $\mathbb{P}(t \subset T)$  only depends on the perimeters of the holes of t and its total number of faces.

#### Theorem (B.21+)

Let T be an infinite, planar, Markovian random triangulation. Then T is of the form  $\mathbb{T}_{\Lambda}$ , where  $\Lambda$  is a random variable with values in  $[0, \lambda_c] \cup \{\star\}$ .

- Consequences:
  - No nice notion of "uniform planar multi-ended triangulation".
  - The UIPT is the only Markovian planar triangulation where the expected inverse degree is 1/6.

#### Robust convergence to the UIPT

- Sketch of a "combinatorics-free" proof of convergence of triangulations of the sphere to the UIPT:
  - "Dual local topology": use dual distance instead of graph distances.

 $d_{
m loc}^*(t,t') = (1 + \max\{r \ge 0 | B_r^*(t) = B_r^*(t')\})^{-1}$ 

- Makes tightness immediate, but limits may have infinite vertex degrees;
- The finite model is Markovian, so any subsequential limit is Markovian;
- The expected inverse of the root degree in a triangulation of the sphere is 1/6, and this passes to the limit;
- So the UIPT is the only possible subsequential limit;
- In particular the limit has finite vertex degrees, so convergence for the dual local topology implies convergence for the usual local topology.
- Robust argument: still works if we add a perturbation "small compared to the size n".

- For example, this sketch allows to prove the convergence to the UIPT of:
  - "Triangulations with defects", i.e. maps with prescribed face degrees where triangles represent a proportion 1 – o(1) of the edges;
  - High temperature Ising triangulations, i.e. triangulations of size *n* equipped with an Ising model on the faces with inverse temperature β<sub>n</sub> → 0;
  - Uniform triangulations of size n and genus  $g_n = o(n)$ .
- "Meta-theorem": If we perturb the uniform measure by factors  $e^{o(n)}$ , we still have convergence to the UIPT.

# Large deviations for pattern occurences in uniform triangulations

- For  $t_0$  a triangulation with a hole and T a triangulation of the sphere, let  $occ_{t_0}(T)$  be the number of occurences of  $t_0$  in T.
- Fix  $t_0$ , and let  $T_n^{(\beta)}$  be a triangulation of the sphere of size n, picked with probability proportional to  $e^{\beta \operatorname{occ}_{t_0}(T)}$ .
- The previous sketch shows that if  $\beta_n \to 0$ , then  $T_n^{(\beta_n)}$  converges locally to the UIPT.

#### Corollary

Let  $T_n$  be a uniform triangulation of the sphere with 2n triangles. Then for every  $\varepsilon > 0$ , the probability that

$$\frac{\operatorname{occ}_{t_0}(T_n)}{6n} - \mathbb{P}\left(t_0 \subset UIPT\right) > \varepsilon$$

decreases exponentially in n.

#### Sketch of proof in the one-ended case

Let T be a one-ended, planar, infinite Markovian triangulation.
 For v ≥ p ≥ 1, let

$$a_v^p = \mathbb{P}(t \subset T)$$

for t a triangulation with perimeter p and v vertices in total.Peeling equations:

$$a_{v}^{p} = a_{v+1}^{p+1} + 2\sum_{i=0}^{p-1}\sum_{j\geq 0}a_{v+j}^{p-i}\#\mathcal{T}_{i+1,j}.$$

- In particular, the law of T is determined by the numbers  $a_v^1$ .
- For a mixture of PSHT  $\mathbb{T}_{\Lambda}$ , we have  $a_{\nu}^{1} = \mathbb{E}\left[\Lambda^{\nu-1}\right]$ .
- So we need to show that (a<sup>1</sup><sub>ν</sub>)<sub>ν≥1</sub> is the sequence of moments of some variable Λ.

# The Hausdorff moment problem

• Let  $\Delta$  be the discrete derivative operator:

$$(\Delta u)_n = u_n - u_{n+1}.$$

#### Theorem (Hausdorff)

Let  $(u_n)$  be a sequence of real numbers. Then  $(u_n)$  is the sequence of moments of some [0, 1]-valued random variable if and only if

$$\forall k \geq 0, \forall n \geq 0, \, \Delta^k u_n \geq 0.$$

- By induction on k, we prove  $(\Delta^k a^p)_v \ge 0$  for all  $k \ge 0$  and  $v \ge p \ge 1$ .
- So there is a variable  $\Lambda \in [0,1]$  such that  $a_v^1 = \mathbb{E}[\Lambda^{v-1}]$ .
- The convergence of the sum in the peeling equation implies  $\Lambda \in \Big[0, \frac{1}{12\sqrt{3}}\Big].$

#### The multi-ended case

Let T be a multi-ended Markovian triangulation. For a triangulation t with volume v and k holes of perimeters p<sub>1</sub>,..., p<sub>k</sub>, we write

 $a_v^{p_1,p_2,\ldots,p_k} = \mathbb{P}(t \subset T \text{ and } T \setminus t \text{ has } k \text{ infinite components}).$ 

New peeling equation:

$$\begin{aligned} a_{v}^{p_{1},...,p_{k}} &= a_{v}^{p_{1}+1,p_{2},...,p_{k}} + 2\sum_{i=0}^{p_{1}-1}\sum_{j\geq 0}a_{v+i+j}^{p_{1}-i,p_{2},...,p_{k}}\times \#\mathcal{T}_{i+1,j} \\ &+ \sum_{i=0}^{p_{1}-1}a_{v}^{i+1,p_{1}-i,p_{2},...,p_{k}}. \end{aligned}$$

• The first term in the RHS has "larger" perimeters, so the law of T is determined by terms of the form  $a_v^{1,...,1} = a_v^{k\otimes 1}$ .

#### The multi-ended case

- The law of  $\mathcal{T}$  is determined by terms of the form  $a_v^{1,\dots,1} = a_v^{k\otimes 1}.$
- Hausdorff moment problem : there is (Λ, Γ) such that, for all k, v ≥ 1:

$$a_{\mathbf{v}}^{k\otimes 1} = \mathbb{E}\left[\Lambda^{\mathbf{v}-1}\Gamma^{k-1}
ight].$$

- We want either  $\Gamma = 0$  (PSHT  $\mathbb{T}_{\lambda}$ ) or  $(\Lambda, \Gamma) = (0, 1)$  (degenerate  $\mathbb{T}_{\star}$ ).
- From here, we can solve completely the peeling equations:

$$a_{v}^{p_{1},...,p_{k}} = \mathbb{E}\left[\Lambda^{v-1}\Gamma^{k-1}\prod_{i=1}^{k}C_{p_{i}}(\Lambda,\Gamma)
ight],$$

where  $C_{\rho}(\lambda,\gamma)$  is given by the induction

$$C_{p} = C_{p+1} + 2\sum_{i=0}^{p-1} \lambda^{i} Z_{i+1}(\lambda) C_{p-i} + \gamma \sum_{i=0}^{p-1} C_{i+1} C_{p-i}.$$

#### The multi-ended case

$$C_{p} = C_{p+1} + 2\sum_{i=0}^{p-1} \lambda^{i} Z_{i+1}(\lambda) C_{p-i} + \gamma \sum_{i=0}^{p-1} C_{i+1} C_{p-i}.$$

- In particular, the generating function  $\sum_{p\geq 1} C_p(\lambda, \gamma) x^p$  is explicit.
- Behaviour of the generating function near its first singularity  $\rightarrow$  if  $\gamma > 0$  and  $(\lambda, \gamma) \neq (0, 1)$ , then  $C_p(\lambda, \gamma) < 0$  for some p.
- Recall  $a_v^{\rho,(k-1)\otimes 1} = \mathbb{E}\left[\Lambda^{\nu-1}\Gamma^{k-1}C_{\rho}(\Lambda,\Gamma)\right].$
- When k, v get large, this is close to  $\lambda_{\max}^{\nu-1} \gamma_{\max}^{k-1} C_p(\lambda_{\max}, \gamma_{\max})$ , which is negative for some p if  $\gamma_{\max} > 0$ .
- So almost surely  $\Lambda = 0$  or  $\Gamma = 0$ .
- Similar argument to exclude  $\Lambda = 0$  and  $0 < \Gamma < 1$ .

- Different kinds of face degrees ?
- What if we remove the planarity assumption? Conjectures:
  - There are no Markovian nonplanar triangulations with finite vertex degrees...
  - ...but there should be nonplanar, degenerate objects.

# THANK YOU!