Forcing clique immersions via chromatic number

Tien-Nam Le

ENS de Lyon

Join work with: Paul Wollan

SIWAG, 26 September 2016
1 Introduction

2 Sketch of proof
Immersion – a variant of minor

Definition by mapping: map a graph H into another G:

Minor: $H \leq_m G$
- Vertices of $H \rightarrow$ disjoint self-connected sets of vertices of G.
- Edges of $H \rightarrow$ distinct edges of G.

Immersion: $H \leq_i G$
- Vertices of $H \rightarrow$ distinct vertices of G.
- Edges of $H \rightarrow$ edge-disjoint paths of G.
Alternative definition of immersion

- To **split off** a path, we replace the path by an edge between its endpoints.
- **G** contains **H** as an **immersion** if **H** can be obtained from a subgraph of **G** by a series of splitting off paths.

Figure: Example: **G** contains **H** as an immersion.
Hadwiger’s conjecture and its immersion variant

Hadwiger’s conjecture’43

\[\chi(G) \geq t \implies G \geq_m K_t. \]

Conjecture 1 (Lescure–Meyniel’89, Abu-Khzam–Langston’03)

\[\chi(G) \geq t \implies G \geq_i K_t. \]

- \(n \leq 6 \): proved by Lescure–Meyniel’89,
- \(n = 7 \): by Devos, Kawarabayashi, Mohar and Okamura ’10.
Conjecture 1

Relaxation of Conjecture 1

Find some good function \(\varphi \) such that

\[
\chi(G) \geq \varphi(t) \implies G \geq_i K_t.
\]

We can attack the relaxation via minimum degree.

Observation

If the following holds true for any \(G \),

\[
\delta(G) \geq \varphi(t) \implies G \geq_i K_t,
\]

then the following also holds true for any \(G \),

\[
\chi(G) \geq \varphi(t) + 1 \implies G \geq_i K_t.
\]
Main result

<table>
<thead>
<tr>
<th>Theorem (Devos, Dvořak, Fox, McDonald, Mohar and Scheide’14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\delta(G) \geq 200t \implies G \geq_i K_t.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Dvořák–Yepremyan’15+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\delta(G) \geq 11t + 7 \implies G \geq_i K_t.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Le–Wollan’16+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\delta(G) \geq 7t + 7 \implies G \geq_i K_t.]</td>
</tr>
<tr>
<td>[\chi(G) \geq 3.54t + 4 \implies G \geq_i K_t.]</td>
</tr>
</tbody>
</table>
1 Introduction

2 Sketch of proof
Lemma 1

Given G of n vertices and $A \subseteq V(G)$ of t vertices.

- $\overline{d}_G(A)$: average degree (in G) of vertices in A.
- $\delta_G(A)$: min degree (in G) of vertices in A.

Lemma 1

If $\overline{d}_G(A) + \delta_G(A) \geq n + 2 + t$, then $G \geq_i K_t$.

- Idea of proof: repeatedly splitting off paths of length 2 and 4 with endpoints in A, noting that the degree of endpoints are unchanged after a splitting off.
Proof of $\delta(G) \geq 7t + 7 \implies G \geq_i K_t$.

• Let G^* be a smallest (number of vertices) counterexample.

• Then G^* contains an immersion of some eulerian graph G such that
 • max-deg of G is at least $7t$,
 • $\sum_{x:d_G(x)<7t} (7t - d_G(x)) \leq 7t$.

• Let x be a max-deg vertex in G, let $A = \{x\}$ and $B = N_G(x)$.

• Repeatedly add vertices (who have many edges to B) into A.

• We can always find such vertices, otherwise there is some counterexample smaller than G.

• Stop when $|A| = t$.
Proof of $\delta(G) \geq 7t + 7 \implies G \geq_i K_t$.

- Let $H = G[A \cup B]$. There are two cases:

 CASE 1:
 - All vertices in A have high enough degree (in H).
 - Then $\overline{d}_H(A) + \delta_H(A)$ is high enough.
 - Then apply Lemma 1.

 CASE 2:
 - Most of vertices in A have high degree, but some have low degree.
 - Then $\overline{d}_H(A)$ is high, but $\delta_H(A)$ is low.
 - Then use a specific strategy (similar to Lemma 1) to split off paths of length 2 and 4 to obtain K_t. \square
Lemma 2

- Let $\alpha = \frac{2|E|}{n^2}$ (density of G), we have:

\\
\begin{align*}
\text{Lemma 2} \\
\text{If } 0.5 \leq \alpha \leq 0.75, \text{ then } G \geq_i K_t, \text{ where } t = (2\alpha - 1)n.
\end{align*}
\\
- For instance, if $\alpha = 0.7$, then $G \geq_i K_{0.4n}$
Proof of $\chi(G) \geq 3.54t + 4 \iff G \geq_i K_t.$

- Let G^* be a smallest (number of vertices) critical counterexample.
- Let x be a min-deg vertex, and $N = N_{G^*}(x)$.
- Let $\chi(G^*) = \ell$, and $G = G^* \backslash \{x\}$, then $\chi(G) = \ell - 1$.
- Given a coloring of G with $\ell - 1$ colors:
 - **singleton**: a vertex in N unique with its color.
 - **doubleton**: two vertices (and only them) in N sharing the same color.
- Consider a coloring of G maximizing number of singletons (noting that N must have all $\ell - 1$ colors).
Proof of $\chi(G) \geq 3.54t + 4 \iff G \geq_i K_t$.

There is a Kempe chain between any **singleton–singleton**:

![Singleton-Singleton Diagram]

For any **singleton–doubleton**, there are two cases:

![Singleton-Doubleton Case 1]

or

![Singleton-Doubleton Case 2]
Proof of $\chi(G) \geq 3.54t + 4 \implies G \geq_i K_t$.

For any doubleton–doubleton, there are 3 cases:
Proof of $\chi(G) \geq 3.54t + 4 \iff G \geq_i K_t$.

- Split off these chains to get new edges.

- Consider the graph H with:
 - vertex set: $S \cup D_1 \cup D_2$
 - edge set: new edges.

- Immerse from H a very dense graph H' on $S \cup D_1$ by splitting off paths and swapping some primary–secondary pairs.

- Obtain H' with density ≈ 0.7, noting that $|S \cup D_1| \geq 2.6t$.

- Apply Lemma 2 to get a K_t immersion. \square
Thank you.