1 Error-correcting VS error-detecting codes

Show that the following statements are equivalent for a code C:

1. C has minimum distance $d \geq 2$.
2. If d is odd, C can correct $(d - 1)/2$ errors.
3. If d is even, C can correct $d/2 - 1$ errors.
4. C can detect $d - 1$ errors.
5. C can correct $d - 1$ erasures (in the erasure model, the receiver knows where the errors have occurred).

2 Generalized Hamming bound

Prove the following bound: for any $(n, k, d)_q$ code $C \subseteq (\Sigma)^n$ with $|\Sigma| = q$,

$$k \leq n - \log_q \left(\sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{i} (q-1)^i \right)$$

3 Parity check matrix

Let C be a $[n, k, d]_q$-linear code and $G \in \mathbb{F}_q^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_q^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_q^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_q^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank$(H) = n - k$.
2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k | P]$ for some $P \in \mathbb{F}_q^{k \times (n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).
3. Construct a parity check matrix from G'.
4. Construct a parity check matrix of the code given by the generator matrix $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2.
4 (Optional) Almost-universal hash-functions: link between almost-universal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a hash function is that there are few collisions. A family of functions \(\{f_y\}_{y \in Y} \) from \(f_y : X \to Z \) is called \(\epsilon \)-almost universal if for any \(x \neq x' \), we have \(\mathbb{P}_y \{ f_y(x) = f_y(x') \} \leq \epsilon \) for a uniformly chosen \(y \in Y \). In other words, for any \(x \neq x' \),

\[
\left| \{ y \in Y : f_y(x) = f_y(x') \} \right| \leq \epsilon |Y| .
\]

The objective of the exercise is to show that almost-universal hash-functions and codes with a good distance are equivalent: from one you can construct the other efficiently.

Definition 4.1. Let \(\mathcal{H} = \{ f_1, \ldots, f_n \} \) be a family of hash-functions, where for each \(1 \leq i \leq n \), \(f_i : X \to Z \). We define the code \(C_\mathcal{H} : X \to Z^n \) by

\[
C_\mathcal{H}(x) = (f_1(x), \ldots, f_n(x))
\]

for all \(x \in X \).

On the contrary, given a code \(C : X \to Z^n \), we define the family of hash-functions \(\mathcal{H}_C = \{ f_1, \ldots, f_n \} \), from \(X \) to \(Z \) by

\[
f_i(x) = C(x)_i
\]

where \(x \in X \) and \(C(x)_i \) is the \(i \)-th letter of \(C(x) \) in the alphabet \(Z \).

1. Let \(\mathcal{H} = \{ f_1, \ldots, f_n \} \) be a family of \(\epsilon \)-almost universal hash-functions. Prove that \(C_\mathcal{H} \) has minimum distance \((1 - \epsilon)n \).

2. On the other way, let \(C \) be a code from \(X \) to \(Z^n \) with minimum distance \(\delta n \), prove that \(\mathcal{H}_C \) is a family of \((1 - \delta) \)-almost universal hash-functions.