1 Homework 6 (2016-2017)

1. Let $A_q(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $(n, k, d)_q$). Determine $A_2(3, d)$ for all integers $d \geq 1$.

2. Suppose C is a $(n, k, d)_2$-code with d odd. Construct using C a code C' that is a $(n + 1, k, d + 1)_2$-code.

3. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_2$ provided that

$$2^{n-k} > 1 + \binom{n-1}{1} + \cdots + \binom{n-1}{d-2}.$$ \hspace{1cm} (1)

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7, 4, 3]_2$ Hamming code.

2 Singleton Bound

For every $(n, k, d)_q$-code, show that $k \leq n - d + 1$.

3 Weights of Codewords

Let C be an $[n, k, d]$-linear code over \mathbb{F}_q. Prove the following.

1. For $q = 2$, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.

2. For any q, either all the codewords begin with 0 or exactly a fraction $1/q$ of the codewords begin with 0. In general, for a given position $1 \leq i \leq n$, either all codewords contain 0 at the i-th position or each $\alpha \in \mathbb{F}_q$ appears at the i-th position of exactly $1/q$ of the codewords in C.

3. The following inequality holds for the minimum distance d of C.

$$d \leq \frac{n(q-1)q^{k-1}}{q^k - 1}$$

4 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $m \in \mathbb{F}_q^k$ and a uniformly random $k \times n$ matrix G over \mathbb{F}_q, show that the vector mG is uniformly distributed over \mathbb{F}_q^n.
2. Let \(k = (1 - H_q(\delta) - \varepsilon)n \), with \(\delta = d/n \). Show that there exists a \(k \times n \) matrix \(G \) such that

\[
\text{for every } m \in \mathbb{F}_q^k \setminus \{0\}, \, \text{wt}(mG) \geq d
\]

where \(\text{wt}(m) \) is the Hamming weight of the vector \(m \).

3. Show that \(G \) has full rank (i.e., it has dimension at least \(k = (1 - H_q(\delta) - \varepsilon)n \)).