0 Homework 3

1. (Typical sets) Let $X^n = X_1 \ldots X_n$ be independent and identically distributed bits with $X_1 \sim \text{Ber}(p)$, i.e., $P_{X_1}(0) = 1 - p$ and $P_{X_1}(1) = p$ (assume that $0 < p < 1/2$). Let $\delta > 0$ with $p + \delta \leq 1/2$, show that there exists a set $S_\delta \subseteq \{0, 1\}^n$ with $|S_\delta| \leq 2^{n \cdot h_2(p + \delta)}$ where $h_2(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)$ satisfying the property that

$$
\lim_{n \to \infty} P\{X^n \in S_\delta\} = 1.
$$

You may assume the following inequality for $k \leq n/2$ without proof:

$$
1 + \binom{n}{1} + \ldots + \binom{n}{k} \leq 2^{h_2(k/n)n}.
$$

Remark: We actually proved a more general version of this in class. You are asked here to produce an elementary self-contained proof.

2. (Bonus) Prove inequality (1).

3. Consider a source given by $X^n = X_1 \ldots X_n$ with X_i independent and identically distributed bits with $P\{X_i = 1\} = 1/4$. Describe the distribution of the random variable $h_{X^n}(X^n) = -\log_2 P_{X^n}(X^n)$. How many values does it take? What is the probability for each different value? What is the expectation?

4. We showed in class that taking a sequence $X^n = X_1 \ldots X_n$ of independent copies of X, we have $h_{X^n}(X^n)$ converges weakly to $H(X)$. Now for random variables X, Y we define $i_{X,Y}(X : Y) = \log_2 \frac{P_{XY}(X,Y)}{P_X(X)P_Y(Y)}$. If X^n is n independent copies of X and Y^n is n independent copies of Y. What can you say on the random variable $\frac{i_{X^n,Y^n}(X^n : Y^n)}{n}$ as $n \to \infty$?

1 Midterm 2016-2017, Problem 4

[See Tutorial 4]

2 From fair coins to any discrete distributions

Given a random variable X following a specific discrete distribution p, we want to know how many fair coins does it take to generate X. We want to minimize the average number of tosses we have to make. More formally: we are given a sequence of fair tosses Z_1, Z_2, \ldots, and wish to generate a discrete random variable $X \in \mathcal{X} = \{1, \ldots, m\}$, with a distribution $p = (p_1, \ldots, p_m)$. Let T be the random variable denoting the number of coins flips used in the algorithm.

We can describe the algorithm using a tree: the leaves are marked by output symbols X, and the path to the leaves is given by the sequence of bits produced by the fair coin. We moreover assume that the tree satisfies some properties:
The tree should be complete (i.e. every node is either a leaf or has two descendants)

The probability of a leaf at depth \(k \) is \(2^{-k} \). Many leaves may be labeled with the same output symbol – the total probability of all these leaves should be the one corresponding to this output symbol in the distribution \(p \).

In this representation, the average number of tosses is the expected depth of the tree. We want to find a tree with such properties that minimize its expected depth.

1. Consider the following distribution for \(X \):

\[
X = \begin{cases}
 a & \text{with probability } \frac{1}{3} \\
 b & \text{with probability } \frac{2}{3} \\
 c & \text{with probability } \frac{1}{3}
\end{cases}
\]

Find the minimal average number of fair bits (tosses) needed to generate \(X \). Compare this value with \(H(X) \).

2. Given a complete tree, we denote by \(\mathcal{Y} \) the set of the leaves. Consider a distribution \(Y \) on the leaves such that the probability of a leaf at depth \(k \) is \(2^{-k} \). Show that the expected depth of the tree is equal to the entropy of such a distribution.

3. Show that for any algorithm generating \(X \), the expected number of fair bits used is greater than the entropy, i.e. that: \(ET \geq H(X) \).

4. Show that if all the \(p_i \)'s are dyadic (i.e. \(p_i = 2^{-l_i} \)), one can achieve \(ET = H(X) \) with a finite algorithm.

5. Now we want to extend this result for non-diadic distributions. We will assume that this result holds even in the infinite case: i.e. for a dyadic distribution over an infinite set \(\mathcal{Y} \), we still can find an (infinite) algorithm \(T \) that achieves \(ET = H(Y) \).

(a) Let’s begin with an example: give an infinite tree that generate a random variable \(X \) with a distribution \(\left(\frac{1}{3}, \frac{2}{3} \right) \). What is its expected height? Compare this value with \(H(X) \).

(b) Given a non-dyadic distribution \(p = (p_1, \ldots, p_m) \), we split it into dyadic atoms, for example \(p_1 \to (p_1^{(1)}, p_1^{(2)}, \ldots) \), and so on. We take the tree \(T \) that achieves \(H(Y) = ET \), and want to show that it achieves the following inequalities:

\[
H(X) \leq ET < H(X) + 2
\]

We already proved the first inequality in a previous question. Show that the second inequality is equivalent to \(H(Y|X) < 2 \).

(c) Expanding the entropy of \(Y \), we have:

\[
H(Y) = - \sum_{i=1}^{m} \sum_{j \geq 1} p_i^{(j)} \log p_i^{(j)} = \sum_{i=1}^{m} \sum_{j: p_i^{(j)}>0} j 2^{-j}
\]

For \(i \in [1; m] \), we denote the corresponding term in the expansion by \(T_i \), i.e.:

\[
T_i = \sum_{j: p_i^{(j)}>0} j 2^{-j}
\]

Show that in order to prove the upper bound, it’s enough to prove that for all \(i \), \(T_i < -p_i \log p_i + 2p_i \).

(d) Denote by \(n \) the only integer such that: \(2^{-(n-1)} > p_i \geq 2^{-n} \), so we can rewrite \(\sum_{j: p_i^{(j)}>0} \) into \(\sum_{j \geq n, p_i^{(j)}>0} \). Using the fact that \(p_i = \sum_{j} p_i^{(j)} \), show that \(T_i + p_i \log p_i - 2p_i < 0 \). Conclude.