Sorting networks

Summary: The first exercise should be easy. The second one is a classic (see [2] or [1]). The third exercise will cover a more sophisticated kind of sorting networks; the more eager will find numerous other examples in [3].

1 All sequences are 0-1

▷ Question 1 Let \(w = \langle w_1, ..., w_n \rangle \) be a sequence. A comparator network sorts \(w \) correctly if and only if it sorts \(\langle f(w_1), ..., f(w_n) \rangle \) correctly for every non-decreasing \(f : \mathbb{N} \rightarrow \{0, 1\} \).

2 Bitonic sorting networks

Definition 1. We call bitonic a sequence which is either increasing and then decreasing or decreasing and then increasing. Thus, sequences \(\langle 2, 3, 7, 7, 4, 1 \rangle \) and \(\langle 12, 5, 10, 11, 19 \rangle \) are bitonic.

Binary bitonic sequence can all be written as \(0^i 1^j 0^k \) or \(1^i 0^j 1^k \) with \(i, j, k \in \mathbb{N} \).

Definition 2. A bitonic sorting network is a comparator network sorting every bitonic binary sequence.

▷ Question 2 Does a bitonic sorting network sort every bitonic sequence?

▷ Question 3 Build a bitonic sorting network using separators. How many comparators does it use? How deep is it?

▷ Question 4 Using bitonic sorting networks, design a network merging two sorted lists. Use it as a stepping stone to build a general sorting network and estimate its complexity (depth, number of comparators).

3 Sort a 2D grid

This exercise extends the odd-even mergesort over sequences seen during the lecture to 2D grids.

Definition 4. A square matrix \(A = ((a_{i,j})) \) of size \(n \times n \), \(n = 2^m \) is in snakelike order if elements are placed as follows:

\[
\begin{align*}
a_{2i-1,j} &\leq a_{2i-1,j+1}, & 1 \leq j \leq n-1, & 1 \leq i \leq n/2, \\
a_{2i,j+1} &\leq a_{2i,j}, & 1 \leq j \leq n-1, & 1 \leq i \leq n/2, \\
a_{2i-1,n} &\leq a_{2i,n}, & 1 \leq i \leq n/2, \\
a_{2i,1} &\leq a_{2i+1,1}, & 1 \leq i \leq n/2 - 1.
\end{align*}
\]

Notice that this snake induces a linear network within the grid (see figure 1).

Definition 5. A shuffle turns the \(n = 2p \)-long sequence of elements \(\langle z_1, \ldots, z_n \rangle \) into the sequence \(\langle z_1, z_{p+1}, z_2, z_{p+2}, \ldots, z_p, z_2p \rangle \). For instance, the “shuffle” of \((1, 2, 3, 4, 5, 6, 7, 8) \) is \((1, 5, 2, 6, 3, 7, 4, 8) \).

We propose to study the following algorithm, which merges four \(2^{m-1} \times 2^{m-1} \) snakelike-ordered matrices into a single \(2^m \times 2^m \) snakelike-ordered matrix:

1. shuffle each row (using odd-even transpositions on the index of the elements), which is equivalent to shuffling columns

V. Le Fèvre, T.-N. Le
2. sort every pair of columns (which are \(n \times 2 \) matrices) respecting the snakelike order, using
\(2n \) odd-even transpositions on the linear network induced over the relevant \(2n \)-long snakes

3. apply \(2n \) odd-even transposition steps over the linear network induced by the snake of size \(n^2 \)

Question 5 Execute this merging algorithm with the following matrix (note that each \(2 \times 2 \) matrix is already snakelike sorted).

\[
\begin{bmatrix}
1 & 3 & 5 & 6 \\
11 & 8 & 16 & 10 \\
4 & 7 & 2 & 9 \\
14 & 13 & 15 & 12 \\
\end{bmatrix}
\]

Question 6 Show that the first step of the algorithm can be executed in time \(2^m - 1 \), a time unit spanning a swap between neighbours (you can parallelize!). Deduce that the merging algorithm is executed in time \(\leq \frac{9}{2n} \).

Question 7 Admitting for now that the merging algorithm is correct, write an algorithm sorting sequences of length \(2^{2m} \) over a \(2^m \times 2^m \) grid. Estimate its complexity.

Question 8 Show that the odd-even transposition sorting step over a grid is correct (ie, \(2n \) transposition steps in the third phase of the merging algorithm yield a correctly ordered snake).

References

