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TUTORIAL VIII

1 Homework 4

The main objective here is to take an algorithmic approach for the channel coding problem. The input to our
algorithmic problem is the specification of a noisy channel WY |X from an input set X to an output set Y . We
are going to use the channel only once. We would like to send k messages and we ask what is the minimum error
probability that we can achieve.

This will be a good opportunity to introduce submodular functions which is an interesting property to keep in
mind and a rich area of study in optimisation and approximation algorithms.

1. Maximization of submodular functions
A function f : 2X → R+ taking as input a subset S ⊆ X that has the following property.

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) . (1)

It is said to be monotone if f(S) ≤ f(T ) whenever S ⊆ T .

(a) Show that an equivalent definition for submodular function is that f(T ∪{j})−f(T ) ≤ f(S∪{j})−f(S)
for any S ⊆ T and any j ∈ X . This can be interpreted as a “diminishing returns” property.

(b) (Remark: this question is independent of the following questions) Let Z1, . . . , Zn be a family of random
variables. For a subset S ⊆ {1, . . . , n}, let ZS be the collection of random variables {Zi}i∈S . Show that
f(S) = H(ZS) is a submodular and monotone function.

(c) Let f be a submodular, monotone and nonnegative function and consider the following optimization
problem maxS⊆X ,|S|=k f(S). Let S∗ of size k be such that f(S∗) = maxS⊆X ,|S|=k f(S). Computing
such an S∗ is computationally hard in general (you are even asked to show this for a special f in a
later question). But there is a natural greedy algorithm for this problem: start with S0 = ∅, then choose
Si+1 = Si ∪ arg max{f(Si ∪ {j}) : j ∈ X − Si}. Show that

f(S∗) ≤ f(Si) + k(f(Si+1)− f(Si)) .

(d) Prove that f(S∗)− f(Si+1) ≤ (1− 1
k )(f(S∗)− f(Si)).

(e) Conclude that the greedy algorithm gives a constant factor approximation for this problem (and say what
the constant is).

2. Channel coding as a submodular optimization problem
Let S(W,k) be the largest average success probability of a code for k messages.

S(W,k) = max
e,d

1

k

k∑
i=1

∑
y∈Y:d(y)=i

WY |X(y|e(i)) , (6)

where the maximization is over functions e : {1, . . . , k} → X and d : Y → {1, . . . , k}.
(a) Show that S(W,k) can be written as maximizing some function f over all subsets of X of size k. Then

show that f is submodular and monotone.

(b) Conclude that it is possible to efficiently (here efficiently means polynomial in the description of the channel
WY |X and of k) find a code that achieves a success probability that is at least (1− 1/e) · S(W,k).



(c) Show that the following problem is NP-complete. You may use the NP-completeness of well-known
problems such as 3-SAT,MAX-INDEPENDENT-SET or 3-COLORING.
Input: WY |X , k and a number t ∈ [0, 1] (given in binary representation)
Output: NO if S(W,k) < t and YES if S(W,k) ≥ t

2 Midterm

2.1 Problem 1

For each one of these statements, say whether it is true or false and provide a brief justification.

1. Define the distribution PX = (1/5, 1/5, 1/5, 2/5). We have H(X) = log2 5.

2. For any random variable X ∈ X and any x ∈ X , we have PX(x) ≤ 2−H(X).

3. Define the channel W with binary input and output given by W (0|0) = 1/3,W (1|0) = 2/3,W (0|1) =
1/3,W (1|1) = 2/3. The capacity of this channel is 0.

4. Define the tripartite mutual information I(X : Y : Z) = I(X : Y ) − I(X : Y |Z). For any random variables
X,Y, Z, we have I(X : Y : Z) ≥ 0.

5. For any random variables X1, X2, we have H(X1X2) = H(X1) +H(X2).

6. Consider the distribution PX = (1/2, 1/4, 1/8, 1/16, 1/16). The code with the shortest expected length for this
source has expected length exactly H(X).

7. Consider a set of points P ⊂ R2 of size m. Suppose that the projections of the set P on the x-axis and the y-axis
both have at most n distinct points. Then m ≤ n2.

8. Let X1, . . . , Xn be iid random variables each living in the finite set X . Recall that a sequence xn =
(x1, . . . , xn) ∈ X n is said to be ε-typical if 2−n(H(X1)+ε) ≤ PX1...Xn(x1 . . . xn) ≤ 2−n(H(X1)−ε). Now a
sequence xn = (x1, . . . , xn) is said to be ε-strongly typical if (1− ε)PX1(a) ≤ N(a|xn)

n ≤ (1 + ε)PX1(a) for all
a ∈ X . Here N(a|xn) denotes the number of times the symbol a occurs in the sequence xn.

The statement is that if xn is ε-strongly typical, then xn is c · ε-typical where c is a constant that is independent
of n but can depend on the distribution PX1 .

9. If xn is ε-typical, then it is also c · ε-strongly typical for a constant c that is independent of n but can depend on
the distribution PX1 .

2.2 Problem 2: Tighter analysis of the binary symmetric channel

The capacity of a channel is defined as a limit of the rate when the channel is used n times with n → ∞. The
objective of this problem is to obtain finite n bounds on the maximum rate of communication. We focus in this
problem on the binary symmetric channel defined by

BSCf (b|b) = 1− f and BSCf (1− b|b) = f for any b ∈ {0, 1} .

As in the homework, let us denote by S(W,k) the maximum over all encoding and decoding maps of the average
success probability for transmitting k distinct messages over the channel W , which maps inputs X to outputs Y . We
can write

S(W,k) = max
e,d

1

k

k∑
j=1

∑
y∈Y:d(y)=j

W (y|e(j)) ,
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where e : {1, . . . , k} → X and d : Y → {1, . . . , k} ∪ {fail}. In this notation, our objective is to give bounds on
S(BSC⊗nf , 2αn) for various values of α. Here BSC⊗nf denotes n independent copies of the channel BSCf .

1. Compute the capacity of the channel BSCf . Draw a sketch of the graph of the capacity as a function of f ∈ [0, 1].

2. Using the last question, what can be said on limn→∞ S(BSC⊗nf , 2αn) as a function of α?

3. Show that for any n ≥ 1, f ∈ [0, 1/2] and α ∈ R, we have S(BSC⊗nf , 2αn) = S(BSC⊗n1−f , 2
αn).

Thus, in what follows, we assume that f ∈ [0, 1/2].

4. (Achievability) We first consider the setting when α is below the capacity. Here we would like to show a lower
bound on S(BSC⊗nf , 2αn).

(a) Show that for any encoding and decoding function e : {1, . . . , 2αn} → {0, 1}n, d : {0, 1}n →
{1, . . . , 2αn} ∪ {fail}, the average probability of error when transmitting a message over BSC⊗nf is given
by

1

2αn

2αn∑
j=1

P
z∼µf

{d(e(j)⊕ z) 6= j} . (8)

Here µf denotes the distribution on {0, 1}n where the bits are independent and equal to 1 with probability
f and ⊕ refers to the bitwise xor.

(b) Now, we choose e and d for which the expression (??) can be upper bounded. As usual, we choose
the code at random: the encoding function e : {1, . . . , 2αn} → {0, 1}n is chosen uniformly at random
among all functions. For the decoder let us fix a parameter δ ∈ [0, 1] and define d by d(y) = j if
j ∈ {1, . . . , 2αn} is the unique j such that ∆(e(j), y) ≤ (f + δ)n, otherwise, we set d(y) = fail.
Here ∆(x, y) = |{i ∈ {1, . . . , n} : xi 6= yi}| is the Hamming distance. Show that, taking the expectation
(over the choice of e and d) of the probability of error (??) can be upper bounded by

P
z∼µf

{|z| > (f + δ)n}+ (2αn − 1) P
z∼µf

e(1)∼µ1/2
e(2)∼µ1/2

{∆(e(1)⊕ z, e(2)) ≤ (f + δ)n} . (9)

(c) Show that e(1)⊕ z is uniformly distributed on {0, 1}n and conclude that ∆(e(1)⊕ z, e(2)) has a binomial
distribution with parameters n and 1/2, which we denote by Bin(n, 1/2).

(d) Using Chernoff’s bound

P
w∼Bin(n,f)

{w ≥ (1 + η)E {w}} ≤ e−
η2E{w}

3 for η ∈ [0, 1]

as well as the following inequality for f ≤ 1/2

bfnc∑
i=0

(
n

i

)
≤ 2H2(f)n ,

show that for α = 1−H2(f)− γ with γ > 0, there is a constant cγ,f (that can depend on γ and f but not
on n) such that S(BSC⊗nf , 2αn) ≥ 1− 2−cγ,fn for all n ≥ 1.

(e) Let again α = 1−H2(f)−γ, how large should I take n as a function of γ to guarantee an success probability
of say 0.99? Your answer can take the form n ≥ Ω(g(γ)).

5. (Strong converse) The objective of this part is to show that if α = 1 − H2(f) + γ with γ > 0, then
S(BSC⊗nf , 2αn) ≤ 2−cγ,fn for cγ,f > 0 and independent of n.

(a) Let us start with a simple channel: the identity channel, i.e., BSC0. Show that for any n, S(BSC⊗n0 , 2αn) ≤
2(1−α)n.

(b) Show how to reduce the general case to the identity (Hint: you can see the noise z as part of the message
being sent over the identity channel).
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