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TUTORIAL VIII

1 Homework 4

The main objective here is to take an algorithmic approach for the channel coding problem. The input to our
algorithmic problem is the specification of a noisy channel Wy |y from an input set A" to an output set ). We
are going to use the channel only once. We would like to send k£ messages and we ask what is the minimum error
probability that we can achieve.

This will be a good opportunity to introduce submodular functions which is an interesting property to keep in
mind and a rich area of study in optimisation and approximation algorithms.

1. Maximization of submodular functions
A function f : 2% — R, taking as input a subset S C X that has the following property.

FISUT)+ F(SNT) < f(5)+ A(T) . (1

It is said to be monotone if f(S) < f(T') whenever S C T.
(a) Show that an equivalent definition for submodular function is that f(T'U{j}) — f(T) < f(SU{j}) — f(S)
for any S C T and any j € X. This can be interpreted as a “diminishing returns” property.

(b) (Remark: this question is independent of the following questions) Let Z1, ..., Z, be a family of random
variables. For a subset S C {1,...,n}, let Zg be the collection of random variables {Z;};cs. Show that
f(S) = H(Zg) is a submodular and monotone function.

(c) Let f be a submodular, monotone and nonnegative function and consider the following optimization
problem maxgc x 5= f(S5). Let S* of size k be such that f(S*) = maxgcx 5= f(S). Computing
such an S* is computationally hard in general (you are even asked to show this for a special f in a
later question). But there is a natural greedy algorithm for this problem: start with Sy = (), then choose
Siv1 = 5; U argmax{f(Si U {j}) 1je X — Sz} Show that

fFOS%) < f(Si) + k(f(Siv1) — f(S)) -

(d) Prove that f(S*) — f(Si+1) < (1= £)(F(S™) = F(Si)).
(e) Conclude that the greedy algorithm gives a constant factor approximation for this problem (and say what

the constant is).

2. Channel coding as a submodular optimization problem
Let S(W, k) be the largest average success probability of a code for k£ messages.

S(W, = max o Z Z WY|X(?/|€( i), (6)
=1 yeY:d(y)=
where the maximization is over functions e : {1,...,k} - X andd:Y — {1,...,k}.

(a) Show that S(W, k) can be written as maximizing some function f over all subsets of X’ of size k. Then
show that f is submodular and monotone.

(b) Conclude that it is possible to efficiently (here efficiently means polynomial in the description of the channel
Wy x and of k) find a code that achieves a success probability that is at least (1 — 1/¢) - S(W, k).
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(c) Show that the following problem is NP-complete. You may use the NP-completeness of well-known
problems such as 3-SAT, MAX-INDEPENDENT-SET or 3-COLORING.
Input: Wy x, k and a number ¢ € [0, 1] (given in binary representation)
Output: No if S(W, k) < t and YES if S(W, k) >t

Midterm

2.1 Problem 1

For each one of these statements, say whether it is true or false and provide a brief justification.

1.
2.

Define the distribution Py = (1/5,1/5,1/5,2/5). We have H (X ) = log, 5.

For any random variable X € X and any = € X, we have Py (z) < 9~ H(X),

. Define the channel W with binary input and output given by W (0[0) = 1/3,W (1]0) = 2/3,W(0]1) =

1/3,W(1]1) = 2/3. The capacity of this channel is 0.

. Define the tripartite mutual information /(X : Y : Z) = I(X :Y) — I(X : Y|Z). For any random variables

X,Y,Z,wehave (X : Y : Z) > 0.

. For any random variables X1, X, we have H(X1X2) = H(X1) + H(X2).

. Consider the distribution Px = (1/2,1/4,1/8,1/16,1/16). The code with the shortest expected length for this

source has expected length exactly H(X).

. Consider a set of points P C R? of size m. Suppose that the projections of the set P on the z-axis and the y-axis

both have at most n distinct points. Then m < n?.

. Let X1,...,X,, be iid random variables each living in the finite set X. Recall that a sequence x" =
(x1,...,2y) € X™ is said to be e-typical if 2—n(H(X1)+e) < Px, x,(z1...2,) < 2-n(H(X1)=€)  Now a
sequence z" = (z1,...,%,) is said to be e-strongly typical if (1 — €) Px, (a) < % < (1+ €)Px,(a) for all

a € X. Here N (a|z™) denotes the number of times the symbol @ occurs in the sequence z™.

The statement is that if ™ is e-strongly typical, then =" is c - e-typical where c is a constant that is independent
of n but can depend on the distribution Py .

. If ™ is e-typical, then it is also c - e-strongly typical for a constant c that is independent of n but can depend on

the distribution Py, .

2.2 Problem 2: Tighter analysis of the binary symmetric channel

The capacity of a channel is defined as a limit of the rate when the channel is used n times with n — oo. The
objective of this problem is to obtain finite n bounds on the maximum rate of communication. We focus in this
problem on the binary symmetric channel defined by

BSCy(blb) =1—f and BSC¢(1 —0blb) = f forany b € {0,1} .

As in the homework, let us denote by S(W, k) the maximum over all encoding and decoding maps of the average
success probability for transmitting & distinct messages over the channel W, which maps inputs X to outputs ). We
can write

k
S(W, k) = max

LSS wle))
yeYV:d(y)=j

7j=1

>
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where e : {1,...,k} - Xandd:Y — {1,...,k} U {fail}. In this notation, our objective is to give bounds on
S(BSC;‘?", 29™) for various values of . Here BSC??” denotes n independent copies of the channel BSCy.

1. Compute the capacity of the channel BSC¢. Draw a sketch of the graph of the capacity as a function of f € [0, 1].

2. Using the last question, what can be said on lim,, S(BSCS?", 29™) as a function of a?

3. Show that forany n > 1, f € [0,1/2] and o € R, we have S(BSC?”, 201) = S(Bsc?ff, 20m),

Thus, in what follows, we assume that f € [0,1/2].

4. (Achievability) We first consider the setting when « is below the capacity. Here we would like to show a lower
bound on S(BSCH™, 20M).

f )

(a) Show that for any encoding and decoding function e : {1,...,2%"} — {0,1}", d : {0,1}" —
{1,...,2%"} U{fail}l, the average probability of error when transmitting a message over BSC}‘?" is given
by

1 <.
oo P {d(e(j) ®2) # 5} ®)
— =g

Here /1 denotes the distribution on {0, 1}™ where the bits are independent and equal to 1 with probability
f and @ refers to the bitwise xor.

(b) Now, we choose e and d for which the expression (??) can be upper bounded. As usual, we choose
the code at random: the encoding function e : {1,...,2*"} — {0,1}" is chosen uniformly at random
among all functions. For the decoder let us fix a parameter § € [0, 1] and define d by d(y) = j if
j € {1,...,29"} is the unique j such that A(e(j),y) < (f + J)n, otherwise, we set d(y) = fail.
Here A(z,y) = |{i € {1,...,n} : z; # y;}| is the Hamming distance. Show that, taking the expectation
(over the choice of e and d) of the probability of error (??) can be upper bounded by

X {lz > (f+0)np + 27" 1) P {Ale(1) @ z,e(2)) < (f +)n} . ©

2oLy
5(1)“‘#1/2
6(2)NH1/2

(c) Show that e(1) @ z is uniformly distributed on {0, 1}" and conclude that A(e(1) @ z,e(2)) has a binomial
distribution with parameters n and 1/2, which we denote by Bin(n, 1/2).
(d) Using Chernoff’s bound
_ n2E{w}
P {w>0+nE{w}}<e 3 forn € [0, 1]
w~Bin(n,f)

as well as the following inequality for f < 1/2

Lfn]
Z (n> < oHa(f)n ,
1

i=0
show that for « = 1 — Hy(f) — v with v > 0, there is a constant c, s (that can depend on  and f but not
on n) such that S(BSC??", 207) > 1 —27%s" foralln > 1.
(e) Letagain o« = 1—Ha(f)—"y, how large should I take n as a function of  to guarantee an success probability
of say 0.99? Your answer can take the form n > Q(g(7)).

5. (Strong converse) The objective of this part is to show that if &« = 1 — Hy(f) + v with v > 0, then
S(BSC;‘?”, 29m) < 27" for ¢, r > 0 and independent of n.

(a) Let us start with a simple channel: the identity channel, i.e., BSCg. Show that for any n, S(B SC%@”, 20m) <
o(1—a)n

(b) Show how to reduce the general case to the identity (Hint: you can see the noise z as part of the message
being sent over the identity channel).
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