TUTORIAL VIII

1 Homework 4

The main objective here is to take an algorithmic approach for the channel coding problem. The input to our algorithmic problem is the specification of a noisy channel $W_{Y|X}$ from an input set \mathcal{X} to an output set \mathcal{Y} . We are going to use the channel only *once*. We would like to send k messages and we ask what is the minimum error probability that we can achieve.

This will be a good opportunity to introduce *submodular* functions which is an interesting property to keep in mind and a rich area of study in optimisation and approximation algorithms.

1. Maximization of submodular functions

A function $f: 2^{\mathcal{X}} \to \mathbb{R}_+$ taking as input a subset $S \subseteq X$ that has the following property.

$$f(S \cup T) + f(S \cap T) \le f(S) + f(T) . \tag{1}$$

It is said to be monotone if $f(S) \leq f(T)$ whenever $S \subseteq T$.

- (a) Show that an equivalent definition for submodular function is that $f(T \cup \{j\}) f(T) \le f(S \cup \{j\}) f(S)$ for any $S \subseteq T$ and any $j \in \mathcal{X}$. This can be interpreted as a "diminishing returns" property.
- (b) (Remark: this question is independent of the following questions) Let Z₁,..., Z_n be a family of random variables. For a subset S ⊆ {1,...,n}, let Z_S be the collection of random variables {Z_i}_{i∈S}. Show that f(S) = H(Z_S) is a submodular and monotone function.
- (c) Let f be a submodular, monotone and nonnegative function and consider the following optimization problem max_{S⊆X,|S|=k} f(S). Let S* of size k be such that f(S*) = max_{S⊆X,|S|=k} f(S). Computing such an S* is computationally hard in general (you are even asked to show this for a special f in a later question). But there is a natural greedy algorithm for this problem: start with S₀ = Ø, then choose S_{i+1} = S_i ∪ arg max{f(S_i ∪ {j}) : j ∈ X − S_i}. Show that

$$f(S^*) \le f(S_i) + k(f(S_{i+1}) - f(S_i))$$
.

- (d) Prove that $f(S^*) f(S_{i+1}) \le (1 \frac{1}{k})(f(S^*) f(S_i)).$
- (e) Conclude that the greedy algorithm gives a constant factor approximation for this problem (and say what the constant is).

2. Channel coding as a submodular optimization problem

Let S(W, k) be the largest average success probability of a code for k messages.

$$S(W,k) = \max_{e,d} \frac{1}{k} \sum_{i=1}^{k} \sum_{y \in \mathcal{Y}: d(y) = i}^{k} W_{Y|X}(y|e(i)) , \qquad (6)$$

where the maximization is over functions $e : \{1, \ldots, k\} \to \mathcal{X}$ and $d : \mathcal{Y} \to \{1, \ldots, k\}$.

- (a) Show that S(W, k) can be written as maximizing some function f over all subsets of \mathcal{X} of size k. Then show that f is submodular and monotone.
- (b) Conclude that it is possible to efficiently (here efficiently means polynomial in the description of the channel $W_{Y|X}$ and of k) find a code that achieves a success probability that is at least $(1 1/e) \cdot S(W, k)$.

(c) Show that the following problem is NP-complete. You may use the NP-completeness of well-known problems such as 3-SAT, MAX-INDEPENDENT-SET or 3-COLORING.
Input: W_{Y|X}, k and a number t ∈ [0, 1] (given in binary representation)
Output: No if S(W, k) < t and YES if S(W, k) ≥ t

2 Midterm

2.1 Problem 1

For each one of these statements, say whether it is true or false and provide a brief justification.

- 1. Define the distribution $P_X = (1/5, 1/5, 1/5, 2/5)$. We have $H(X) = \log_2 5$.
- 2. For any random variable $X \in \mathcal{X}$ and any $x \in \mathcal{X}$, we have $P_X(x) \leq 2^{-H(X)}$.
- 3. Define the channel W with binary input and output given by W(0|0) = 1/3, W(1|0) = 2/3, W(0|1) = 1/3, W(1|1) = 2/3. The capacity of this channel is 0.
- 4. Define the tripartite mutual information I(X : Y : Z) = I(X : Y) I(X : Y|Z). For any random variables X, Y, Z, we have $I(X : Y : Z) \ge 0$.
- 5. For any random variables X_1, X_2 , we have $H(X_1X_2) = H(X_1) + H(X_2)$.
- 6. Consider the distribution $P_X = (1/2, 1/4, 1/8, 1/16, 1/16)$. The code with the shortest expected length for this source has expected length exactly H(X).
- 7. Consider a set of points $P \subset \mathbb{R}^2$ of size m. Suppose that the projections of the set P on the x-axis and the y-axis both have at most n distinct points. Then $m \leq n^2$.
- 8. Let X_1, \ldots, X_n be iid random variables each living in the finite set \mathcal{X} . Recall that a sequence $x^n = (x_1, \ldots, x_n) \in \mathcal{X}^n$ is said to be ϵ -typical if $2^{-n(H(X_1)+\epsilon)} \leq P_{X_1...X_n}(x_1 \ldots x_n) \leq 2^{-n(H(X_1)-\epsilon)}$. Now a sequence $x^n = (x_1, \ldots, x_n)$ is said to be ϵ -strongly typical if $(1-\epsilon)P_{X_1}(a) \leq \frac{N(a|x^n)}{n} \leq (1+\epsilon)P_{X_1}(a)$ for all $a \in \mathcal{X}$. Here $N(a|x^n)$ denotes the number of times the symbol a occurs in the sequence x^n .

The statement is that if x^n is ϵ -strongly typical, then x^n is $c \cdot \epsilon$ -typical where c is a constant that is independent of n but can depend on the distribution P_{X_1} .

9. If x^n is ϵ -typical, then it is also $c \cdot \epsilon$ -strongly typical for a constant c that is independent of n but can depend on the distribution P_{X_1} .

2.2 Problem 2: Tighter analysis of the binary symmetric channel

The capacity of a channel is defined as a limit of the rate when the channel is used n times with $n \to \infty$. The objective of this problem is to obtain finite n bounds on the maximum rate of communication. We focus in this problem on the binary symmetric channel defined by

$$\operatorname{BSC}_f(b|b) = 1 - f$$
 and $\operatorname{BSC}_f(1-b|b) = f$ for any $b \in \{0,1\}$.

As in the homework, let us denote by S(W, k) the maximum over all encoding and decoding maps of the average success probability for transmitting k distinct messages over the channel W, which maps inputs \mathcal{X} to outputs \mathcal{Y} . We can write

$$\mathcal{S}(W,k) = \max_{e,d} \frac{1}{k} \sum_{j=1}^{k} \sum_{y \in \mathcal{Y}: d(y)=j} W(y|e(j)) ,$$

where $e : \{1, \ldots, k\} \to \mathcal{X}$ and $d : \mathcal{Y} \to \{1, \ldots, k\} \cup \{\texttt{fail}\}$. In this notation, our objective is to give bounds on $S(\mathsf{BSC}_f^{\otimes n}, 2^{\alpha n})$ for various values of α . Here $\mathsf{BSC}_f^{\otimes n}$ denotes n independent copies of the channel BSC_f .

- 1. Compute the capacity of the channel BSC_f. Draw a sketch of the graph of the capacity as a function of $f \in [0, 1]$.
- 2. Using the last question, what can be said on $\lim_{n\to\infty} S(BSC_f^{\otimes n}, 2^{\alpha n})$ as a function of α ?
- 3. Show that for any $n \ge 1, f \in [0, 1/2]$ and $\alpha \in \mathbb{R}$, we have $S(BSC_f^{\otimes n}, 2^{\alpha n}) = S(BSC_{1-f}^{\otimes n}, 2^{\alpha n})$. Thus, in what follows, we assume that $f \in [0, 1/2]$.
- 4. (Achievability) We first consider the setting when α is below the capacity. Here we would like to show a lower bound on $S(BSC_f^{\otimes n}, 2^{\alpha n})$.
 - (a) Show that for any encoding and decoding function $e : \{1, \ldots, 2^{\alpha n}\} \to \{0, 1\}^n, d : \{0, 1\}^n \to \{1, \ldots, 2^{\alpha n}\} \cup \{\texttt{fail}\}$, the average probability of error when transmitting a message over $\mathsf{BSC}_f^{\otimes n}$ is given by

$$\frac{1}{2^{\alpha n}} \sum_{j=1}^{2^{\alpha n}} \Pr_{z \sim \mu_f} \left\{ d(e(j) \oplus z) \neq j \right\} .$$
(8)

Here μ_f denotes the distribution on $\{0,1\}^n$ where the bits are independent and equal to 1 with probability f and \oplus refers to the bitwise xor.

(b) Now, we choose e and d for which the expression (??) can be upper bounded. As usual, we choose the code at random: the encoding function $e : \{1, \ldots, 2^{\alpha n}\} \to \{0, 1\}^n$ is chosen uniformly at random among all functions. For the decoder let us fix a parameter $\delta \in [0, 1]$ and define d by d(y) = j if $j \in \{1, \ldots, 2^{\alpha n}\}$ is the unique j such that $\Delta(e(j), y) \leq (f + \delta)n$, otherwise, we set d(y) = fail. Here $\Delta(x, y) = |\{i \in \{1, \ldots, n\} : x_i \neq y_i\}|$ is the Hamming distance. Show that, taking the expectation (over the choice of e and d) of the probability of error (??) can be upper bounded by

$$\mathbf{P}_{z \sim \mu_{f}} \{ |z| > (f+\delta)n \} + (2^{\alpha n} - 1) \mathbf{P}_{\substack{z \sim \mu_{f} \\ e(1) \sim \mu_{1/2} \\ e(2) \sim \mu_{1/2}}} \{ \Delta(e(1) \oplus z, e(2)) \le (f+\delta)n \} .$$
(9)

- (c) Show that $e(1) \oplus z$ is uniformly distributed on $\{0, 1\}^n$ and conclude that $\Delta(e(1) \oplus z, e(2))$ has a binomial distribution with parameters n and 1/2, which we denote by Bin(n, 1/2).
- (d) Using Chernoff's bound

$$\mathbf{P}_{w \sim \text{Bin}(n,f)} \{ w \ge (1+\eta) \mathbf{E} \{ w \} \} \le e^{-\frac{\eta^2 \mathbf{E} \{ w \}}{3}} \quad \text{for } \eta \in [0,1]$$

as well as the following inequality for $f \leq 1/2$

$$\sum_{i=0}^{\lfloor fn \rfloor} \binom{n}{i} \le 2^{H_2(f)n} ,$$

show that for $\alpha = 1 - H_2(f) - \gamma$ with $\gamma > 0$, there is a constant $c_{\gamma,f}$ (that can depend on γ and f but not on n) such that $S(BSC_f^{\otimes n}, 2^{\alpha n}) \ge 1 - 2^{-c_{\gamma,f}n}$ for all $n \ge 1$.

- (e) Let again $\alpha = 1 H_2(f) \gamma$, how large should I take n as a function of γ to guarantee an success probability of say 0.99? Your answer can take the form $n \ge \Omega(g(\gamma))$.
- 5. (Strong converse) The objective of this part is to show that if $\alpha = 1 H_2(f) + \gamma$ with $\gamma > 0$, then $S(BSC_f^{\otimes n}, 2^{\alpha n}) \leq 2^{-c_{\gamma,f}n}$ for $c_{\gamma,f} > 0$ and independent of n.
 - (a) Let us start with a simple channel: the identity channel, i.e., BSC₀. Show that for any n, $S(BSC_0^{\otimes n}, 2^{\alpha n}) \le 2^{(1-\alpha)n}$.
 - (b) Show how to reduce the general case to the identity (Hint: you can see the noise z as part of the message being sent over the identity channel).