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General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every TD

session you are supposed to write computer codes to learn about the phenomenology and efficiency of

important algorithms for problems in quantum physics. You should choose a programming platform

(Python, Matlab, Mathematica, C, Fortran, etc.), and you should be able to plot your results in the

form of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities of

Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form. We assume

that you have some familiarity with at least one programming platform; if this is not the case, you

should be able to familiarize yourself rapidly e.g. by attending online tutorials.

TD1: Exact diagonalization of the S = 1/2 XXZ spin chain
(a.k.a. one-dimensional harcore bosons or spinless fermions)

In this exercise sheet, we shall use exact diagonalization to learn about the physics of the
one-dimensional XXZ model of interacting quantum spins defined on a closed ring. We will
explore the use of the Lanczos algorithm for the ground-state properties and low-energy
excitations; and also consider the non-equilibrium dynamics starting from a relevant initial
state.
The Hamiltonian of the XXZ spin chain – describing several quasi-one-dimensional magnetic
materials as well as some important synthetic quantum systems – reads
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Here Sµi (µ = +,−, z) are spin-1/2 operators, such that Sz| ↑〉 = 1/2| ↑〉, Sz| ↓〉 = −1/2| ↓〉,
S+| ↓〉 = | ↑〉, S−| ↑〉 = | ↓〉.
The XXZ spin chain is equivalent to a chain of impenetrable bosons (a.k.a. hardcore bosons),
with operators b+ = S+, b = S−, b†b = Sz + 1/2, and with the constraint (b+)2 = b2 = 0,
namely each site of the chain admits only two occupation numbers, n = 0, 1. The bosonic
Hamiltonian takes the form
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This same model can also be mapped onto a chain of spinless fermions via a nonlocal
(Jordan-Wigner transformation), but this aspect goes beyond the interest of the present
exercise sheet.
In the following we will consider the above models as cast on an L-site ring with periodic
boundary conditions, namely L + 1 ≡ 1, and L an even number . We consider the zero
magnetization sector of the Hilbert space, i.e.

∑
i S

z
i = 0 – or, equivalently for the case of

bosons, the case of half filling,
∑

i b
†
ibi = N = L/2.

Throughout the rest of the exercise, you can fix J = 1, setting the energy unit; while ∆ can
vary from large and negative to large and positive, and the physics will strongly depend on
its value.
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1 Building the Hamiltonian matrix and fully diagonalizing it
on a small ring

1.1

Start your diagonalization code by a part enumerating the D =

(
L
L/2

)
basis vectors span-

ning the zero-magnetization (or half-filling) sector of the many-body Hilbert space. In order
to store the states in memory, you can use e.g. a binary encoding of a Fock state for bosons:

Example : 1 0 1 1 0 0→ 1 ∗ 20 + 0 ∗ 21 + 1 ∗ 22 + 1 ∗ 23 + 0 ∗ 24 + 0 ∗ 25 = 13

You can store the basis using a state(index) vector, with index=1,...,D , which returns
the binary encoding for the index-th state.
Ideally you should write your code by leaving L as a variable which can be modified in
the header of your program (but remember that realistically you will be limited to sizes
L . 20).

1.2

For a small lattice (L ≤ 10) write the full matrix, and diagonalize it with a library built
in your coding platform (with python you can use numpy.linalg.eig under numpy; with
C/C++/Fortran you can use the Lapack library, etc.).

1.3

Check that the ground state satisfies translational invariance, by calculating e.g. the corre-
lation function 〈Szi Szi+1〉 and show that it is independent of the site i.

1.4

Repeat the diagonalization for a grid of values of ∆, going from -4 to 4 (with special focus
on the [−1, 1] interval), and plot E1−E0 (the energy gap between the ground state and the
first excited state) as a function of ∆, and this for various system sizes, e.g. L = 4, 6, 8, 10.
What do you observe?

1.5

You can also plot the nearest-neighbor correlations 〈Szi Szi+1〉 and 〈Sxi Sxi+1〉 as a function of
∆. What do you observe? And is there any correlation between this behavior and the one
of the spectral gap?

From this point onward, you can choose to work on one of the two successive optional tasks
– which both allow you to go beyond the simple full diagonalization you implemented so
far.

2 Option 1: using the Lanczos method for the low-lying spec-
trum on bigger rings

You can now work with bigger system sizes (maybe going up to L = 16...) by using the
Lanczos approach targeting the lowest eigenvalues.
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2.1

Build the Lanczos basis from the orthonormalization of Krylov vectors: choosing an initial
vector |φ〉 from the basis (suggestion: use |101010...〉), build the sequence of M vectors
(k = 0, ...,M − 1):

|ψ0〉 = |φ〉
β1|ψ1〉 = H|ψ0〉 − 〈ψ0|H|ψ0〉|ψ0〉
β2|ψ2〉 = H|ψ1〉 − 〈ψ1|H|ψ1〉|ψ1〉 − 〈ψ0|H|ψ1〉|ψ0〉

...

βk|ψk〉 = H|ψk−1〉 − 〈ψk−1|H|ψk−1〉|ψk−1〉 − 〈ψk−2|H|ψk−1〉|ψk−2〉
...

where βk is the normalization vector.
The application of the matrix H onto the |ψk〉 vectors can be calculated by a matrix-vector
multiplication (if you have built the matrix in the first place), OR it can be calculated on
the fly, without ever building the matrix (which may occupy too much memory).
The reduced Hamiltonian matrix to be diagonalized has the tridiagonal form

(H)red =


〈ψ0|H|ψ0〉 〈ψ0|H|ψ1〉 0 0 ... 0
〈ψ1|H|ψ0〉 〈ψ1|H|ψ1〉 〈ψ1|H|ψ2〉 0 ... 0

0 〈ψ2|H|ψ1〉 〈ψ2|H|ψ2〉 〈ψ2|H|ψ3〉 ... 0
0 0 ... ... ... 0

 (4)

2.2

By monitoring the value of the two lowest eigevalues (E0 and E1) of the reduced matrix,
increase M until you have reached convergence. Check that for L . 10 you recover the
same result as at question 1.4.

2.3

Extend the results found at question 1.4 by going to bigger system sizes (L = 12, 14, ...).

3 Option 2: implementing the translation symmetry

3.1

Build an array translation(index) that associates to each of the basis states (with index
index)a basis state of which the index-th state is a translation (e.g. 101100 is a translation
of 001011). In practice you can proceed as follows:

1. Set translation(index)=-1 for all the states;

2. Scan the states with label index one by one; if translation(index)=-1 , then
translation(index)=index .

3. Scan the states with index jndex>index ; if state(jndex) is a translation of state(index) ,
then translation(jndex)=index .

With this procedure you will be able to identify a subset of O(D/L) basis states |ψl〉 from
which all other states can be produced by translation, namely the states |ψl〉 such that
translation(index)=index .
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3.2

From the representative states |ψl〉, build a reduced basis of zero-momentum states

|ψ(0)
l 〉 =

1√
L

L−1∑
d=0

Td|ψl〉 (5)

where Td is the operator translating a state by a distance d on the ring.

3.3

Build the Hamiltonian matrix using these states only, in order to diagonalize it in the zero-
momentum sector. Check that the ground state energy you find for small system sizes is
the same as what found from the full diagonalization at question 1.4.

(If you wonder why the ground state should have zero momentum, think about what bosons
typically do in their ground state...).

4 Bonus: studying the non-equilibrium dynamics

In this bonus section, we would like to consider the non-equilibrium evolution starting from a
state which is not an Hamiltonian eigenstate – namely, we would like to simulate a so-called
quantum quench.
In the following, we shall choose the initial state |ψ(0)〉 = |101010...〉, and we would like to
monitor how its density/spin pattern evolves for different values of ∆.

4.1

To calculate the time evolution under Hamiltonian H, use the full diagonalization at ques-
tion 1.4, namely the knowledge of the spectrum H|φm〉 = Em|φm〉, to evolve |ψ(0)〉 as

|ψ(t)〉 = e−iHt |ψ(0)〉 =
∑
m

e−iEmt 〈ψm|ψ(0)〉 |ψm〉 . (6)

4.2

Calculate the evolution of the imbalance I =
∑

i(−1)i+1ni (which starts at its maximum
value of L/2 for t = 0) for ∆ = 0 and ∆ = ±2. What do you observe? Do you have any
explanation?

4


