
Ecole Normale Supérieure de Lyon Université de Lyon
Master: Sciences de la Matière, A. A. 2024-2025

Computational Quantum Physics (M2) T. Roscilde, F. Mezzacapo, F. Caleca, S. Bocini

General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every TD

session you are supposed to write computer codes to learn about the phenomenology and efficiency of

important algorithms for problems in quantum physics. You should choose a programming platform

(Python, Matlab, Mathematica, C, Fortran, etc.), and you should be able to plot your results in the

form of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities of

Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form. We assume

that you have some familiarity with at least one programming platform; if this is not the case, you

should be able to familiarize yourself rapidly e.g. by attending online tutorials.

TD3: Matrix product states

In this exercise sheet, we shall get familiarized with the manipulation of matrix product
states, which are an efficient Ansatz to studying weakly entangled systems in one dimension
(and beyond). We will focus on an ensemble of S = 1/2 spins.

1 Performing the singular-value decomposition of a matrix

1.1

We consider a rank-3 tensor M
(σ)
α,β with σ = +1,−1, α = 1, ..., D1, β = 1, ..., D2. Choose two

bond dimensions D1 and D2, and build a random tensor M with e.g. random real entries.

1.2

Define a function to reshape the tensor into a 2D1×D2 rectangular matrix M(σ,α),β. Repre-
senting the tensor as a matrix is necessary to perform the SVD (see next point). Define also
a function to perform the inverse step, i.e. to reshape a 2D1×D2 matrix into a D1×2×D2.

1.3

Perform numerically the singular-value decomposition (SVD) of the matrix, so as to build
the following matrices:

• a unitary matrix U with shape 2D1 ×Dmin,

• the Dmin ×Dmin singular-value matrix S,

• a Dmin ×D2 unitary matrix V †,

where Dmin = min(2D1, D2). Convert the matrix U into a tensor A in such a way to

obtain the representation M
(σ)
σ,β =

∑
γ A

(σ)
αγ Sγγ(V †)γβ. (You can check that it reproduces

the original matrix.)

1

2 Bringing a matrix product state to the left-canonical form

2.1

Choose a system size N (not too big!), and a bond dimension D. Build N − 2 random
tensors M2,M3, ...MN−1 of size D× 2×D; a 1× 2×D matrix M1; and a D× 2× 1 matrix
MN . The matrices define then a matrix product state (MPS):

|Ψ〉 =
∑

σ1σ2...σN

M
(σ1)
1 M

(σ2)
2 ...M

(σN)
N |σ1σ2... σN 〉 (1)

where |σ1σ2...σN 〉 is a spin state in the computational basis.
Do you understand why the above construction is in fact redundant for a lattice of N spins
with open boundary conditions?

2.2

Bring the MPS into a left canonical form by successive SVDs of the matrices, following the
sequence:

• via SVD bring M1 to the form A1S1V
†
1 ; store A1;

• build M̃2 = S1V
†
1M2;

• via SVD bring M̃2 to the form M̃2 = A2S2V
†
2 ; store A2;

• ...

• continue until you get to M̃N = SN−1V
†
N−1MN . When applying the SVD to it (and

storing AN), you should be able to read out the norm of the state, 〈Ψ|Ψ〉.

2.3

The A1, A2, ..., AN tensors that you stored give you the left-canonical form of the MPS.
(You can check that.)

3 Bonus: bringing a matrix product state to the right canon-
ical form

Now we want to do the same “canonicalization” operation, but starting from the right!
Such a process is analogous to the canonicalization to the left and could be performed on
any MPS (the starting MPS does not need to be in left canonical form). However, we will
apply the right canonicalization to an MPS that is already in its left canonical form. This
allows to easily extract the entropy of the system across any possible partition.

3.1

The reduction to right-canonical form works as follows (keep in mind that this time the
physical index should be fused with the right index, so you should adapt the functions of
point 1.2 appropriately):

• via SVD bring AN to the form UN−1S
′
N−1BN ; store S′N−1;

• build ÃN−1 = AN−1UN−1S
′
N−1;

• via SVD bring ÃN−1 to the form ÃN−1 = UN−2S
′
N−2BN−1; store S′N−2;

2

• ...

• continue until you get to the SVD of Ã2, giving you the S′1 matrix, that you will store.

3.2

Take the singular value matrices S′1, S
′
2...S

′
N−1 that you stored, and examine their diagonal

elements, (S′n)αα. Out of them build the probabilities p
(n)
α = (S′n)2αα, and check whether∑

α p
(n)
α = 1. If not, then normalize them.

From the probabilities p
(n)
α , calculate the entanglement entropy:

Sn = −
∑
α

p(n)α log p(n)α (2)

for the subsystem of size n (or for its complement N − n).
Plot Sn vs. n – what do you observe?

4 Bonus: scaling properties of entanglement in random MPS

This last part wants you to look at what happens when you increase the system size – in
case you made it until this point!

4.1

Repeat what you did in the part 3 for a sequence of system sizes – e.g. N = 4, 6, 8,

For each of them store the function S(N)
n . Make a plot of the various functions S(N)

n . What
can you observe? Can the entropies of the state you generated reach their maximum value,
given by logD?

3

