
Ecole Normale Supérieure de Lyon Université de Lyon
Master: Sciences de la Matière, A. A. 2024-2025

Computational Quantum Physics (M2) T. Roscilde, F. Mezzacapo, F. Caleca, S. Bocini

General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every TD

session you are supposed to write computer codes to learn about the phenomenology and efficiency of

important algorithms for problems in quantum physics. You should choose a programming platform

(Python, Matlab, Mathematica, C, Fortran, etc.), and you should be able to plot your results in the

form of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities of

Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form. We assume

that you have some familiarity with at least one programming platform; if this is not the case, you

should be able to familiarize yourself rapidly e.g. by attending online tutorials.

TD4: Imaginary-time Path Integral Monte Carlo

In this exercise sheet, we apply the Imaginary-time Path Integral Monte Carlo (PIMC)
method to investigate the finite-temperature physics of quantum particles subjected to an
external harmonic potential. As a starting point we specialize our attention to the case of
a single particle in one spatial dimension. The Hamiltonian of the system of our interest is
H = − ~2

2m
∂2

∂y2
+ 1

2mω
2y2, where ω is the angular frequency, ~ the reduced Planck constant

and y the particle position. By choosing E0 = ~ω and y0 =
√

~
mω as units of energy and

length, respectively, one obtains the dimensionless form:

H = −1

2

∂2

∂x2
+ v(x), with v(x) =

1

2
x2. (1)

1 Useful formulas

The partition function of our system at a temperature 1/β is:

Z =

∫
dx0

〈
x0|e−βH|x0

〉
. (2)

The integrand in Eq. (2) can be analytically evaluated due to the particular Hamiltonian
in Eq. (1), however, given the purpose of this TD we will use an approximation which is i)
systematically improvable and ii) applicable regardless the details of the Hamiltonian. By
inserting M − 1 identities in Eq. (2) we obtain:

Z =

∫ M−1∏
k=0

dxk
〈
xk|e−τH|xk+1

〉
, (3)

where τ = β/M is the imaginary time step, M the number of slices, x = x0, · · · , xM−1 is
the path or world line and xM = x0. The kth imaginary time propagator in Eq. (3) can be
approximated as:

〈
xk|e−τH|xk+1

〉
' (2πτ)−

1
2 e−

(xk+1−xk)
2

2τ e−τv(xk). (4)

The above is known as primitive approximation: it is exact in the limit of small τ and

1

accurate up to order τ2. Defining

P (x) =

∏M−1
k=0

〈
xk|e−τH|xk+1

〉
Z

'
∏M−1
k=0 (2πτ)−

1
2 e−

(xk+1−xk)
2

2τ e−τv(xk)

Z
, (5)

the expectation value of an operator O in terms of its estimator O(x) is:

EXP [O] =

∫
D(x)P (x)O(x), where D(x) ≡ dx0dx1, · · · , dxM−1. (6)

For general models, Eq. (6) cannot be solved exactly. The PIMC method, in a nutshell,
provides an efficient way of estimating the multidimensional integral above. Specifically,
via PIMC one generates a large set of configurations x1, · · · ,xNc sampled from P (x) and
approximates Eq. (6) as:

EXP [O] ' 1

Nc

Nc∑
i=1

O(xi) = 〈O(x)〉 . (7)

You may have noticed that in this section we have used two approximations: the primitive
one for the propagators and that in Eq. (7). They are both “under control”, becoming exact
in the large M and Nc limit, respectively.

2 Setting up the code

Our PIMC code should be written in terms of a few adjustable parameters and arrays which
will be progressively defined and consistently used in the TD sheets.

For example, you may start using:

β: dimensionless inverse temperature.

M : number of imaginary time slices, or beads.

x: array of size M with the particle position at each slice (i.e., the world line).

Nc: number of configurations generated by our PIMC algorithm. A new configuration is
generated starting from the current one, proposing a certain number of single-bead dis-
placements (see below).

Also, you will need to use standard functions included in essentially all programming
languages to extract uniformly or normally distributed random numbers.

2.1 Sampling the configuration space

The sampling strategy is one of the fundamental point of a PIMC code. As a first step
you should assign the system initial configuration e.g., by uniformly extracting the position
of our single particle for each bead in a certain range [−XMAX,XMAX]. Then you can
modify the initial configuration by proposing M sequential single-bead updates as follows:

2

for(k = 0; k < M ; k + +)
{

Randomly select a bead j;
Propose a new position for the selected bead:

xnewj =
xj+1+xj−1

2 + g(
√
τ/2);

Perform Metropolis acceptance (rejection) test and update (or not) xj ;
}
new configuration obtained;

The above pseudo-code where g(
√
τ/2) is a random number distributed according to a

gaussian with zero mean and standard deviation equal to
√
τ/2 provides a simple “recipe”

to generate a new global configuration by means of M sequential local updates. In the
following, the procedure of attempting M sequential single-bead updates will be referred to
as the proposition of a global update.

Within the scheme discussed above the displacement of a single bead j is accepted, for our
model in Eq. (1), with probability

A(xj → xnewj) = min
(

1, e−
τ
2
[(xnewj)2−(xj)2]

)
. (8)

2.2

After having implemented the sampling strategy introduced in this section you can do a
first numerical exercise:
Initialize the system setting e.g., xi = 0 ∀ i = 0, · · · ,M − 1. Propose several global updates
(e.g., 5 × 105) and plot the final configuration for β = 1.0 and β = 10−2, as well as the
initial one (use M = 10). What do you observe? [You may need to rigidly shift one of the
two world lines to visualize both in the same spatial range].

3 Estimating observables: Energy

We can now evaluate physical observables as averages over the sampled configurations of
the corresponding estimators. For the total energy E of our particle the estimator reads:

E(x) =
1

M

M∑
j=1

[
1

2τ
− 1

2

(
xj+1 − xj

τ

)2

+ v(xj)

]
. (9)

Hence,
E ' 〈E(x)〉 (10)

3.1

Set β = 0.5 and M = 10. Propose a large number NTHERM of global updates to thermal-
ize the system. Then, generate via global updates Nc configurations and compute the energy
and its uncertainty. Compare your result with the exact one: Eex(β = 0.5) = 2.04149.

3

3.2

Here we will explore the dependence of E on M . Set, for example, β = 5.0 and estimate
the energy and its uncertainty for a few values of M in the interval [1, 50]. What do you
expect to obtain for M = 1? Plot E(M) and compare your estimates with the exact result
Eex(β = 5.0) = 0.50678.

3.3

Estimate E(β) for a few values of β, for example, in the interval [0.5, 10]. Plot E(β) and
compare it with the exact result:

Eex(β) =
1

2 tanh(β/2)
. (11)

In this exercise you can use τ = β/M = 0.1.

4 Generalizing the code

At this point you should have a working code for the case of a single particle. Such a code
can be easily extended to the case of 2 and more distinguishable particles. To this goal you
should:
1) Add an index to your configuration array x: xj → xi,j where i, and j are the particle
and slice index, respectively.
2) Use the straightforward generalization of the propagator in Eq. (4):

〈
xk|e−τHN |xk+1

〉
' (2πτ)−

N
2 e

∑N
i=1

[
−(xi,k+1−xi,k)

2

2τ
−τv(xi,k)

]
(12)

where xk ≡ {x1,k, · · · , xN,k} and HN =
∑N

i=1

(
−1

2
∂2

∂x2i
+ v(xi)

)
.

3) Define a global update as the propsition of N×M single-bead updates where the particle
and the bead to update are both randomly chosen each time.
4) Use the generalized form of Eq. (9), obtainable by simply taking an extra summation
over the number of particles. The energy estimator will then read:

E(x) =

N∑
i=1

1

M

M∑
j=1

[
1

2τ
− 1

2

(
xi,j+1 − xi,j

τ

)2

+ v(xi,j)

]
(13)

4.1 The swap update

In order to account for particle indistinguishability, we have to introduce an additional up-
date known as the swap update. Here we will illustrate a very basic implementation of this
update.

Let us consider two particles 1 and 2, and the corresponding world lines

x1 ≡ x1,0, · · · , x1,M−1 (with x1,M ≡ x1,0) and

x2 ≡ x2,0, · · · , x2,M−1 (with x2,M ≡ x2,0). (14)

4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9

x

bead

part. 1
part. 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9

x

bead

perm. cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9

x

bead

part. 1
part. 2

Figure 1: Illustration of the swap update: Two distinct world lines of M = 10 beads (left
panel) are involved in a permutation cycle after the acceptance of a swap update (middle
panel). A subsequent swap destroys the cycle and the resulting world lines are again separate
(right panel).

The attempt of a swap update consists in randomly selecting a bead k (with k 6= 0) and
proposing a new configuration xnew ≡ {xnew1 ,xnew2 } such that

xnew1 ≡ x1,0, · · · , x1,k−1, x2,k, · · · , x2,M−1 (with xnew1,M ≡ x2,0) and

xnew2 ≡ x2,0, · · · , x2,k−1, x1,k, · · · , x1,M−1 (with xnew2,M ≡ x1,0). (15)

Figure 1 illustrates the effect of two consecutive swap updates on a given two-particle
configuration. Starting from two separate world lines (each comprising M = 10 beads) a
swap has the effect of “gluing” them in a permutation cycle (middle panel). In this peculiar
configuration one can come back to a given initial bead following the path only after having
visited all the beads of the the two particles. The permutation cycle disappears after the
acceptance of a second swap which leads to a configuration where each world line is again
a distinct imaginary-time-periodic entity (right panel).

4.2

Implement the swap update explained above and add it to your code. After this, you should
be able to investigate the physics of our model of interest in the case of distinguishable,
or indistinguishable bosonic particles. You may organize the sampling making use of the
following strategy for a global update:

for (j = 0; j < Ns; j + +)
{

Randomly select a bead k (with k 6= 0);
Extract a random number ε uniformly distributed in [0, 1];
If (ε < THR) {Propose swap;}
else {Propose displacement;}
Perform Metropolis test and update (or not) the configuration;
}
new configuration obtained;

In the above pseudo-code Ns is the number of single updates proposed (you can set, for
example, Ns = αMN with α = 0.5− 1.0), THR is a real number in [0, 1] which determines
the probability of proposing a swap or a displacement single update Test your code by
computing the energy per particle for N = 2 at an inverse temperature β = 0.5. Compare
your result with the exact one: eexBs(β = 0.5) = 1.8527 and that of question 3.1. What can
you conclude?

5

