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General rule for the TD sessions: the TD sessions are fully hands-on — namely, in every TD
session you are supposed to write computer codes to learn about the phenomenology and efficiency of
important algorithms for problems in quantum physics. You should choose a programming platform
(Python, Matlab, Mathematica, C, Fortran, etc.), and you should be able to plot your results in the
form of two-dimensional functions y = f(z) (using matplotlib in Python, the plotting utilities of
Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form. We assume
that you have some familiarity with at least one programming platform; if this is not the case, you
should be able to familiarize yourself rapidly e.g. by attending online tutorials.

TD5: Quantum Monte Carlo for the quantum Ising model

In this exercise sheet, we shall use the Trotter-Suzuki mapping of the thermodynamics of
the quantum Ising model in d dimensions onto that of the classical Ising model in d 4 1
dimensions; and we will perform a numerical evaluation of the statistical averages of the
quantum model via the standard Monte Carlo approach.

We shall focus on the one-dimensional version of the model, with Hamiltonian
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where the index 4 runs on a ring of IV sites with periodic boundary conditions, N + 1 = 1.
The Trotter-Suzuki mapping relates the partition function of this model to that of a two-
dimensional classical Ising model with spatially anisotropic interactions:

7 =1r ()  cosh(Bg/MYNM | 37 e M) 1 0(82 /M) 2
{F%}
where M
Hes({6i}) 1 Jr
= ZI: ; O kOit1,k — T ZL: Zk: (0ikOik+1 — 1) (3)
and

T2 = "2L |log [tanh 39/ M) (1)

Notice that the system has periodic boundary conditions also in the extra (Trotter) dimen-
sion (k=M + 1 = 1), due to the cyclic property of the trace.

1 Setting up the code for the quantum Ising chain

1.1

Define an array spin(i,k) of integer (+1) numbers containing the spin configuration, with
i=1,Nand k=1, M.
Define also dimensionless parameters

Z e=77="a7 (<D (5)

1



such that J./J = (t/2)|log tanh(e)|. By experience, a good choice is ¢ = 1072 to keep the
Trotter error under control; and ¢ = 1/N to observe the physics of the ground state of the
system.

Fixing N fixes ¢; and, moreover, fixing g/J fixes M = (g/J)/(te).

For the choice of N, you can start small (e.g. N = 10), and then go up with the size if time
permits.

1.2

Choose a random initial configuration. Program a single-spin-flip Metropolis algorithm,
by choosing a spin at random, proposing its flip, and accepting it with probability p =
min(1, exp(—SAHcg). A single MC step is defined as N x M attempts to flip randomly
chosen spins. You should perform Piperm thermalization steps in which you do nothing;
and Ppeas measurement steps during which you accumulate the averages of estimators (see
below) — and, if you have time, you can also calculate the error bars on them! Good choices
for the parameters could be Piperm = 10% + 10* and Ppeas = 10* + 105,

You want to keep track as well of the acceptance rate of the spin flips (ratio of accepted
spin flips to proposed ones), and understand how the value of g affects this rate.

1.3

For the measurement part of your simulation, keep track of a few observables

1. The longest-distance correlations Cy/p = (aizaf+ N /2>, which captures the existence
(or not) of long-range ferromagnetism. For this quantity, you can use the estimator
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where i+ N /2 should be read as min(i+N/2, N —i) in a system with periodic boundary
conditions, and (...)nc denotes the Monte Carlo average.

2. The transverse magnetization m* = (o7). To write an estimator for it, one can use
the fact that
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2 Reconstructing the quantum phase transition

2.1

Choose a value of N, and for a grid of field values g/J (centered around g/J = 1), calculate
Cny2 and m®. Plot the resulting values as a function of g/J. You should observe that the
two quantities have a complementary behavior, and you may guess where the critical field
sits.



2.2

If you repeat this study for several values of N —e.g. N =8, 16, 24, ... — then you can try
and reconstruct the quantum critical behavior by testing the finite-size scaling Ansatz
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where § = 1/8 and v = 1 for a transition of the 2d Ising type. Namely, if you plot CN/QNQW”

vs. g — g¢|N /v you should see that the data for different system sizes collapse onto the
same universal curve F'(z), provided that you have properly guessed the critical field g..

3 Looking at spectral properties

The correlations in imaginary time contain precious information about the gap over the
ground state. You can look at the correlation function C-(p) = (0; k0 k+p), Which, in the
quantum paramagnetic phase, is supposed to decay as

Cr(p) ~ exp(—pBA/M)  (p>1) (11)

where A is the spectral gap between the ground state and the first excited state. You can

3.1

test this behavior on your data, by working at a fixed g/J (e.g. g/J = 2); and trying to
extract the gap from an exponential fit to the data; or via the second-moment estimator
A/J =~ &1 where
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& is the correlation length in imaginary time, and
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And then

3.2

repeat the calculation for a few values of g/J, to observe that a) the gap grows linearly with
g, for large g; and b) the gap is closing at the quantum critical point (in the thermodynamic
limit).



