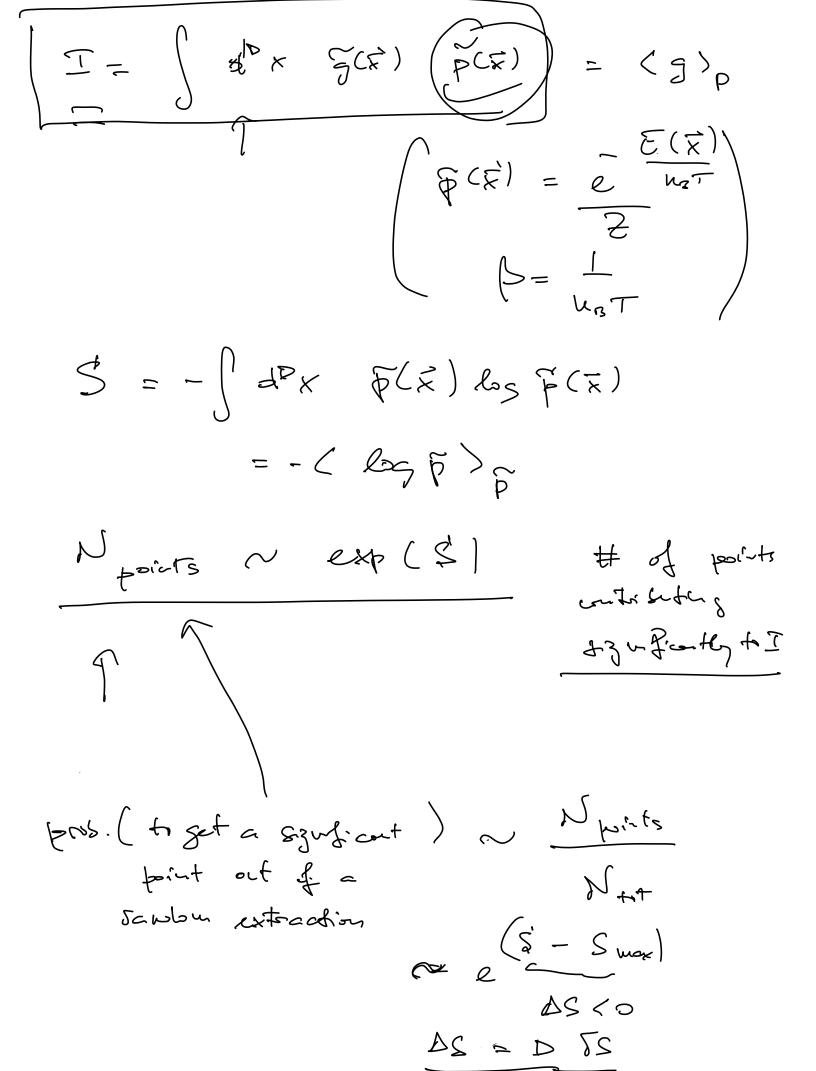
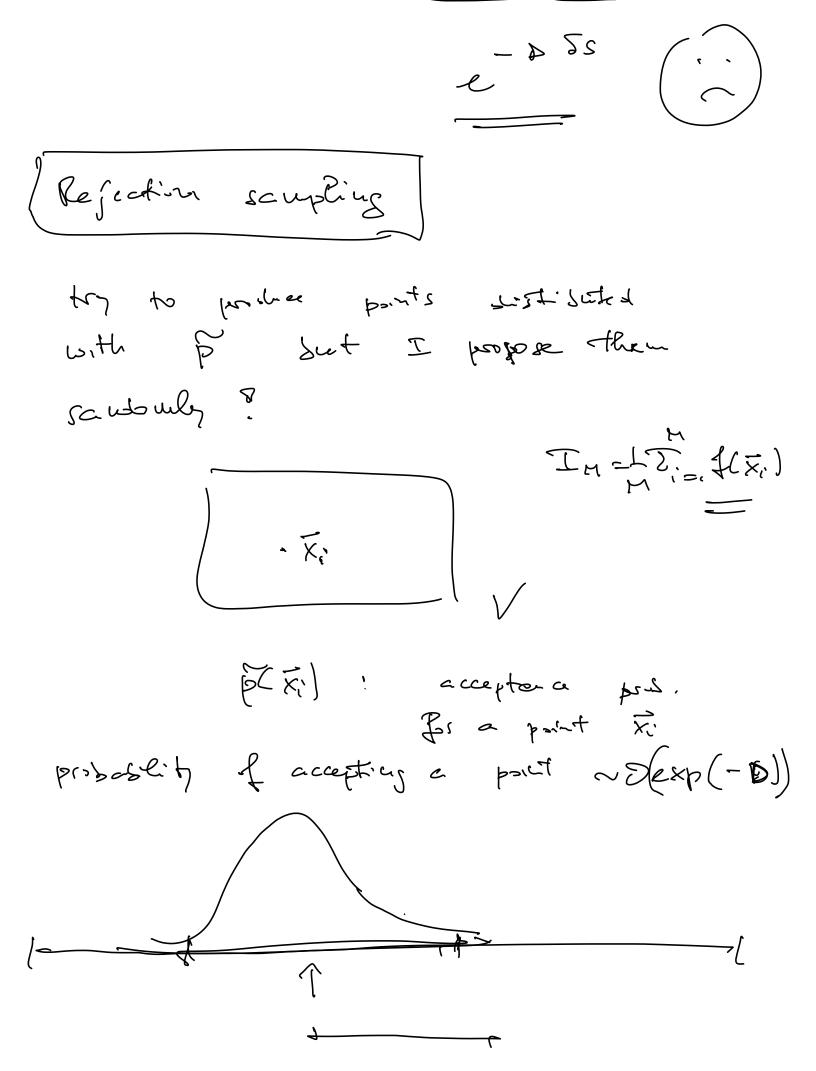
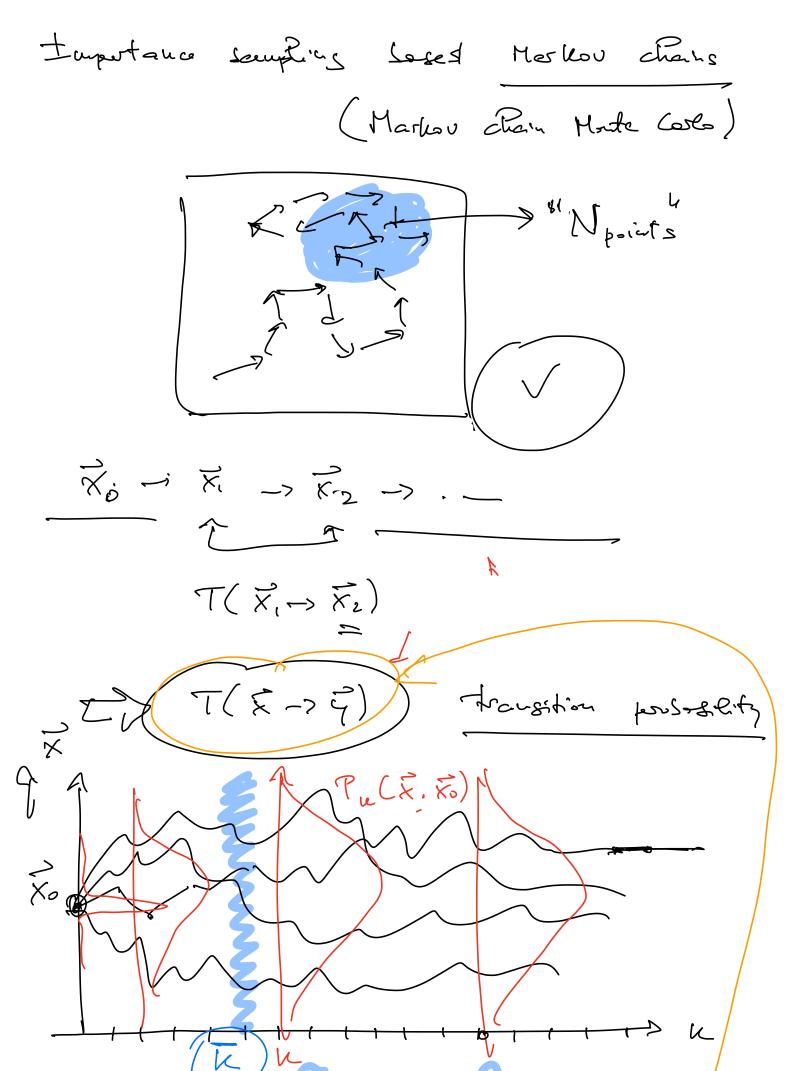
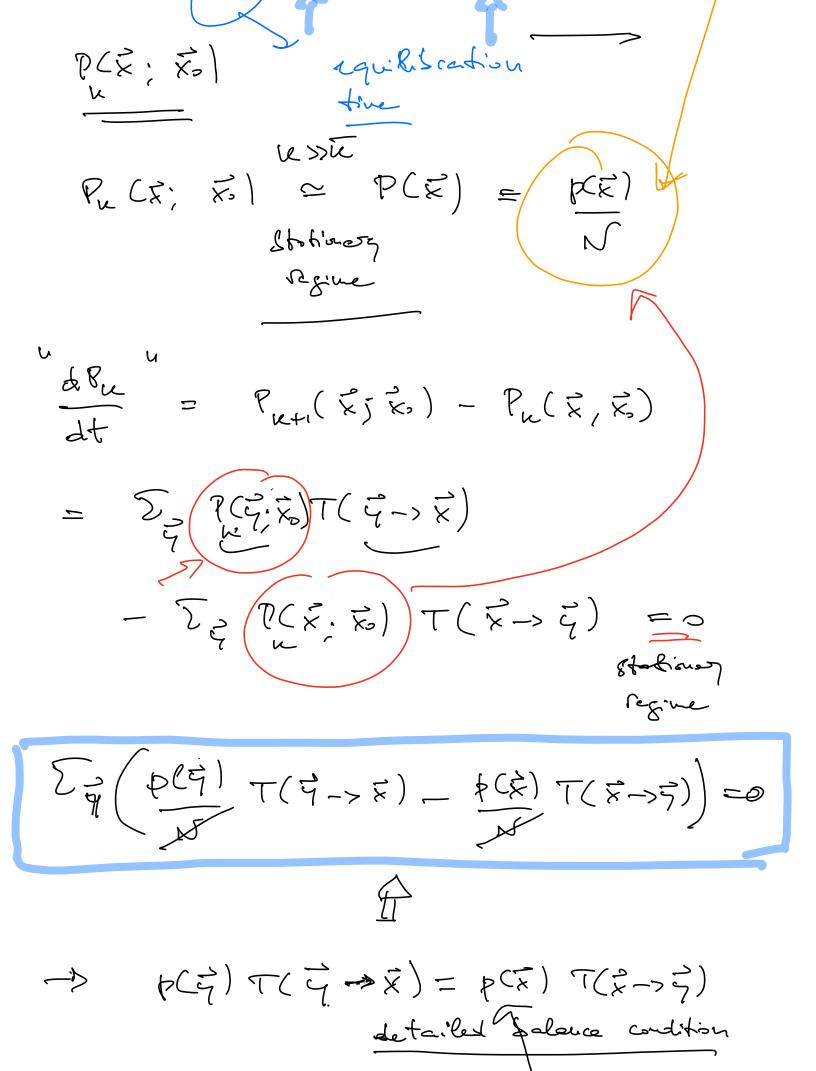
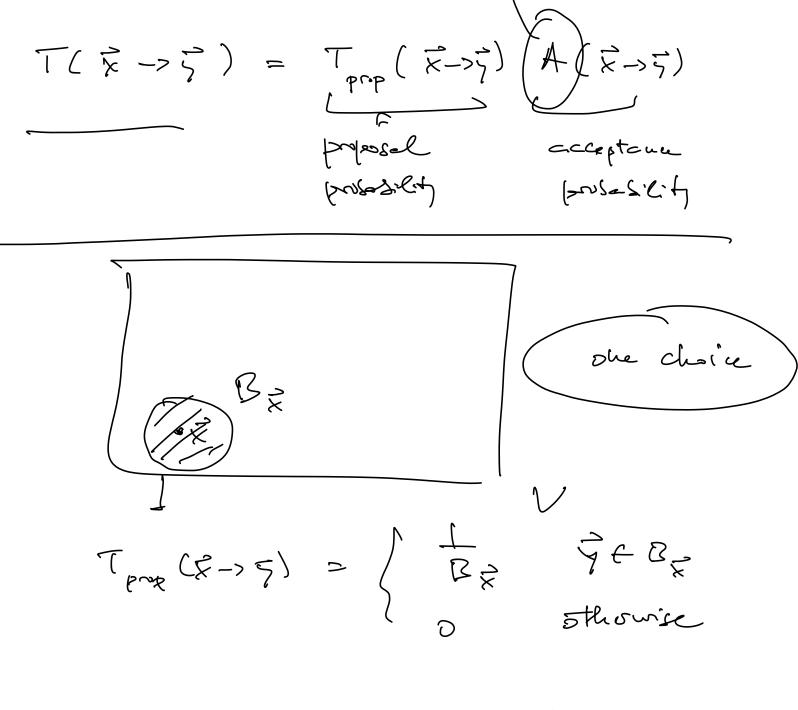
Monte Coslo method for nerverical ritigration $= \int_{V} d^{*} \times \left(\sqrt{\frac{f(\vec{x})}{p(\vec{x})}} \right) \frac{p(\vec{x})}{N}$ p(x) > 0 je choren to as to select the important region of V for the integral I. Raudom scupling $-7 p(k) = \frac{1}{\sqrt{k}} \left\{ \frac{1}{k} \right\}$ random points $I_n = \int_M \overline{Z} f(\vec{x}_i) \rightarrow$ $\left[\Box_{M^{-}} \Box \right] \sim \mathcal{O}\left(\frac{1}{M^{-}} \right) \overset{A}{\Rightarrow}$ A ~ D(exp(D))







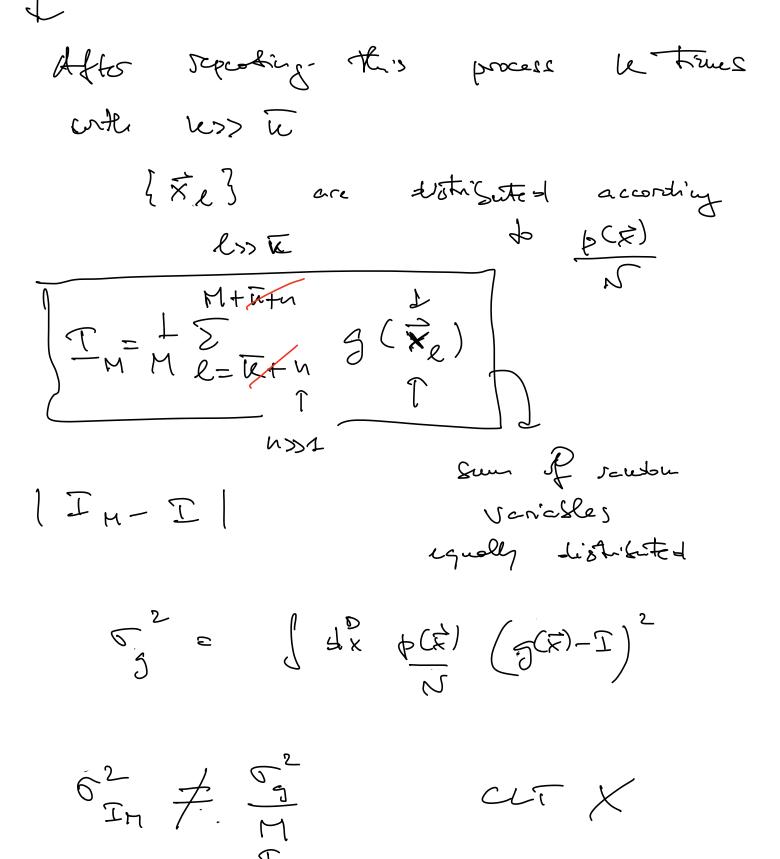


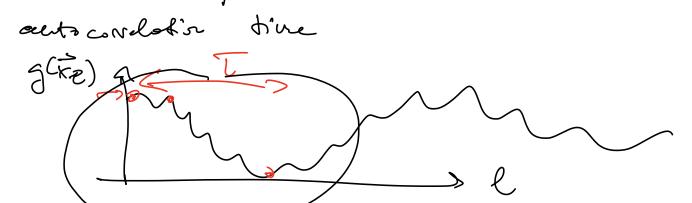


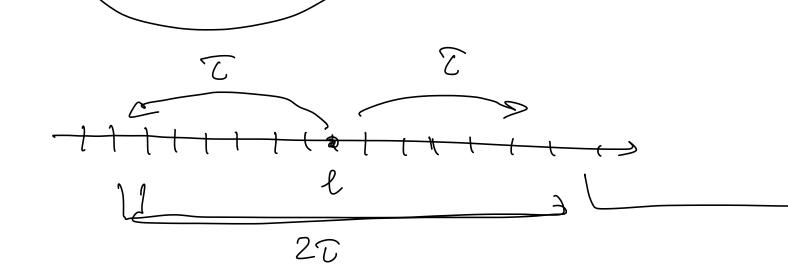
 $T_{perg}(\vec{x} \rightarrow \vec{q}) = T_{perg}(\vec{q} \rightarrow \vec{k})$

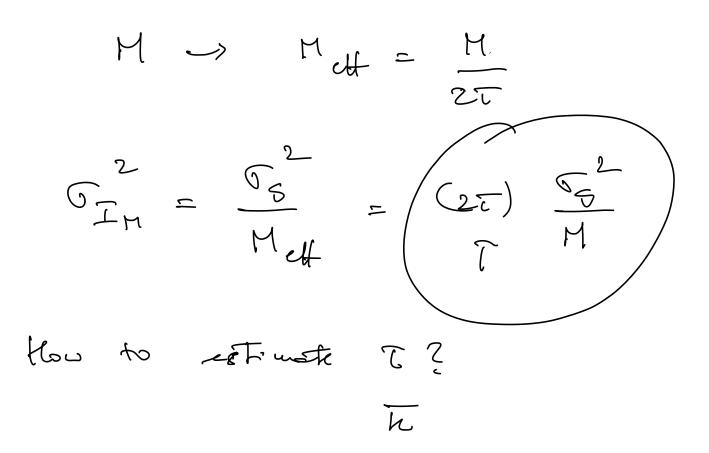
 $A(\overline{x} \rightarrow \overline{y}) = P(\overline{z})$ A (7 -> ×) **赵**氏)

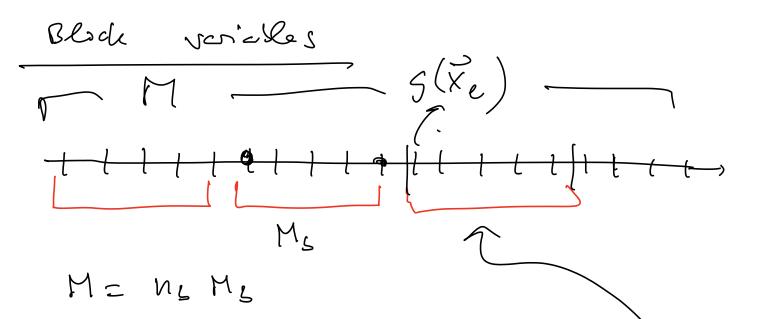
Metropolis - Hostings solution $A(\vec{x} \rightarrow \vec{\zeta}) = win \left(1, \frac{t(\vec{\gamma})}{\vec{\tau}(\vec{x})}\right)$ practical algorithm $X_3 \longrightarrow X_1$ ht1 extend \vec{x}_1 with $\vec{T}_1(\vec{x}_0 \rightarrow \vec{x}_1)$ extract ZE []] vander under if $t < win \left(1, \frac{p(\overline{x_i})}{p(\overline{x_i})}\right)$ heart pout is Ki sthowing XI = Xo



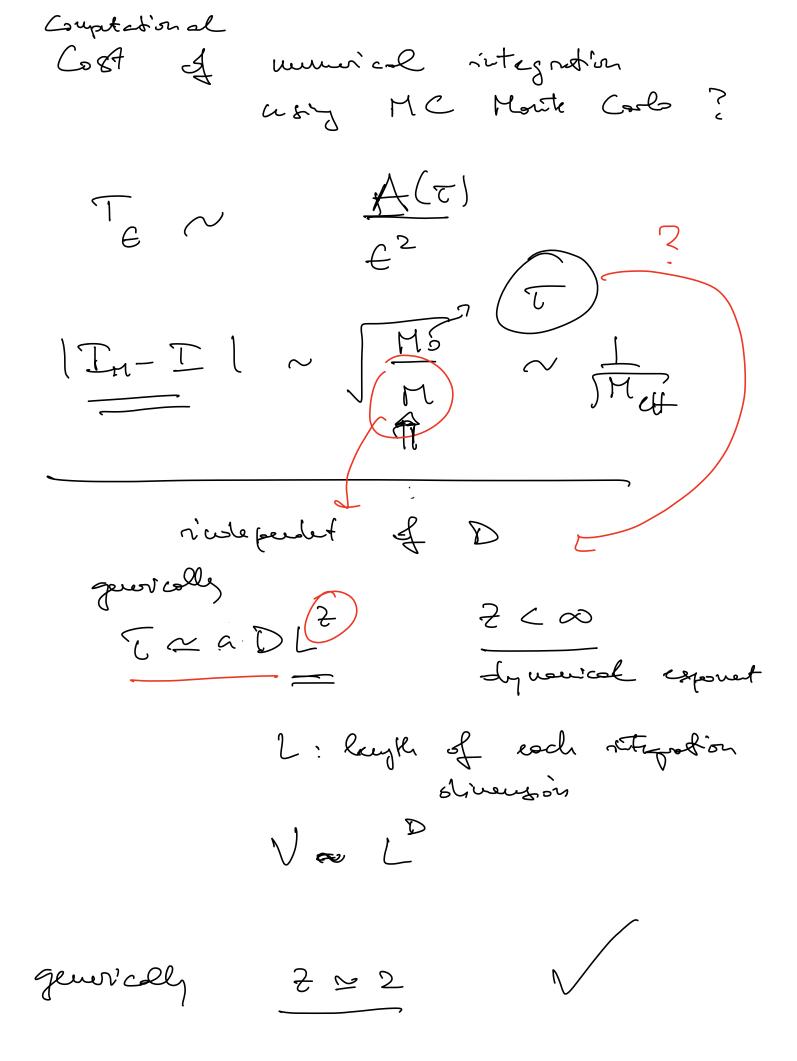


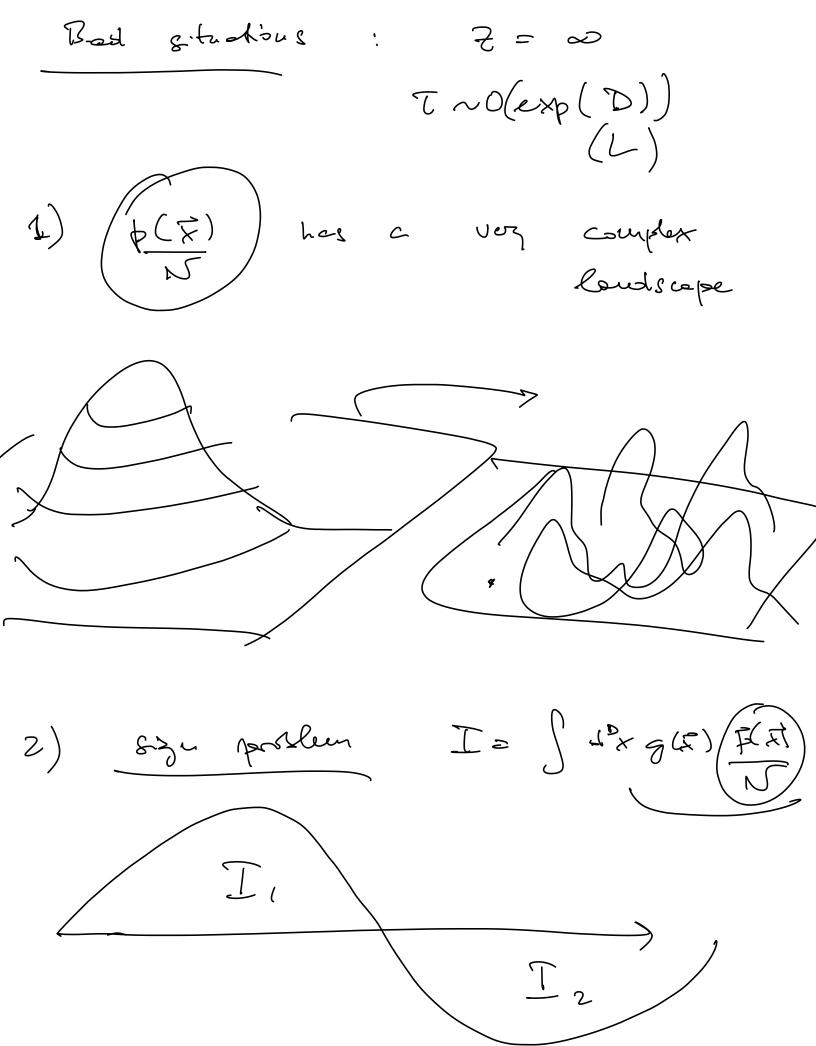


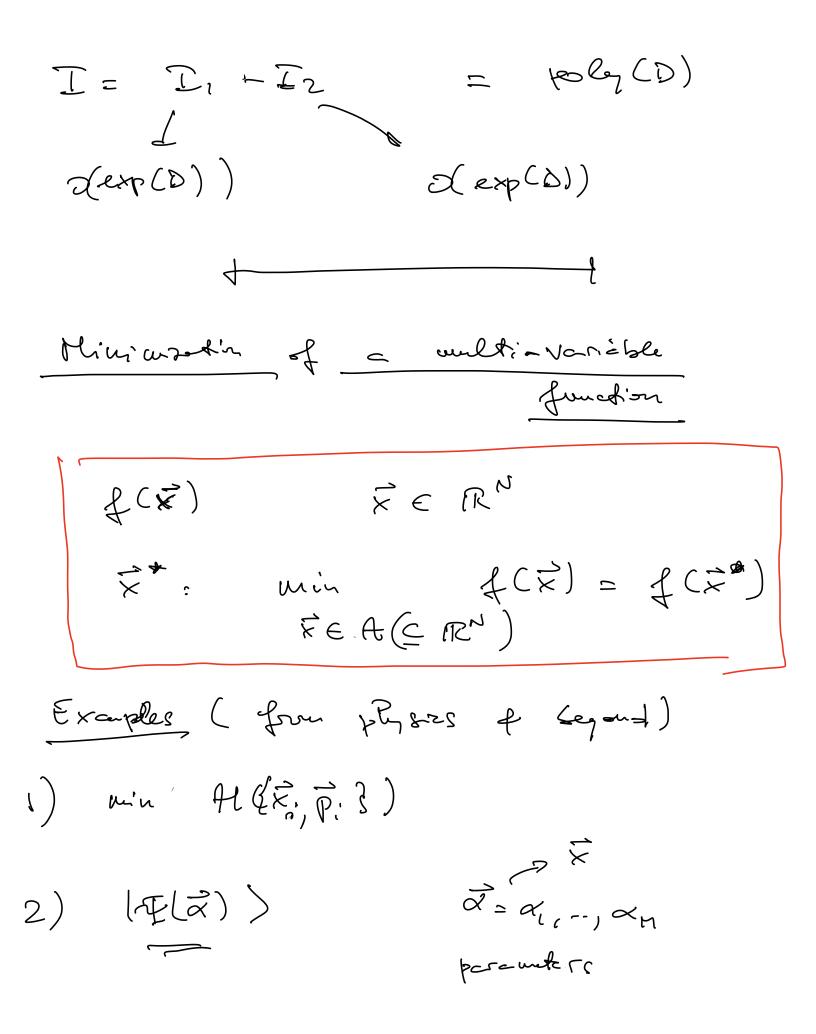


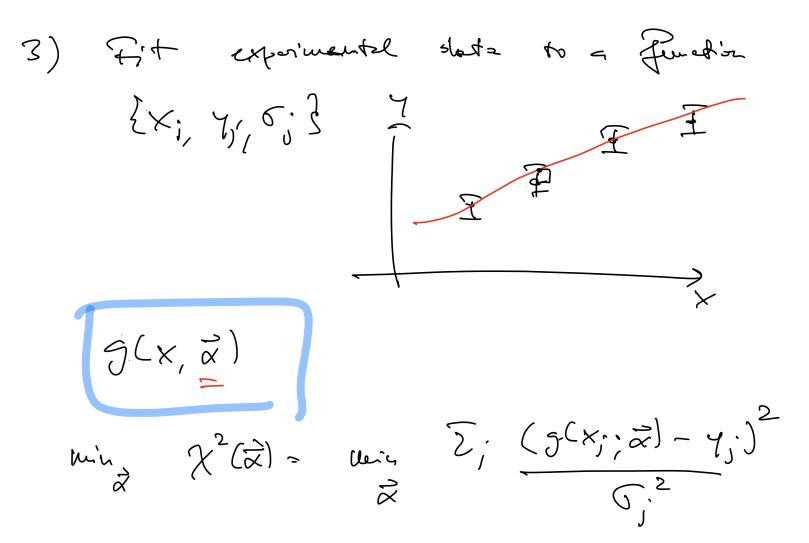


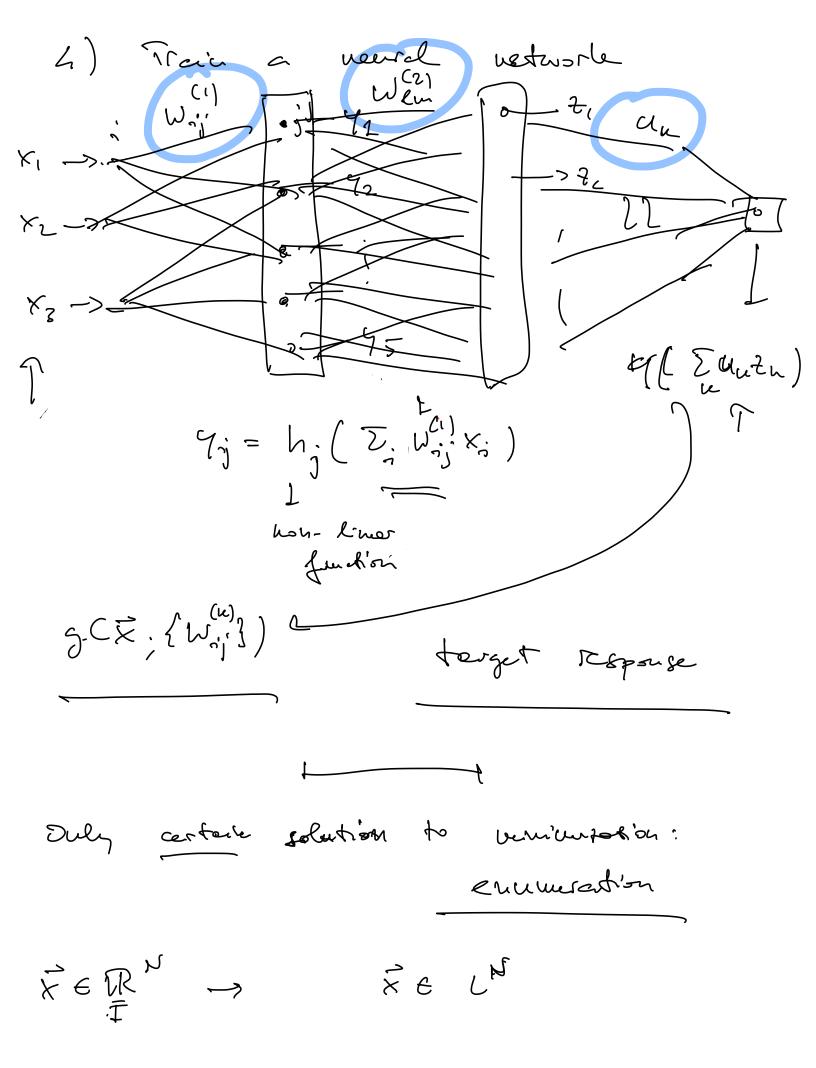
 $\frac{1}{\pi} \sum_{k=i} \hat{g}(\tilde{x}_{e})$ 1_M = aM NS $L \Sigma$ $M_{L} l = (a - i J M_{1} + i g(X_{R}))$ L Z NS a=1 $L \tilde{\mathcal{D}}_{g=1}^{N_{\mathcal{L}}}$ 5g Sa Shoh average M, >> t tro block averages ore shat the cally s'use peudent $\begin{array}{cccc}
2 & 2 \\
\hline & & \\
\end{array}$ = 25 05 $\nabla_{\overline{j}}^{2} = \frac{L}{N_{S}} \sum_{a} \left(\overline{\overline{g}_{a}} - \overline{\underline{I}} \right)$ $\frac{1}{2} \left(\frac{M_{L}}{M_{L}} \right) \frac{\sigma_{s}^{2}}{\sigma_{s}^{2}}$ ~ ~ ~

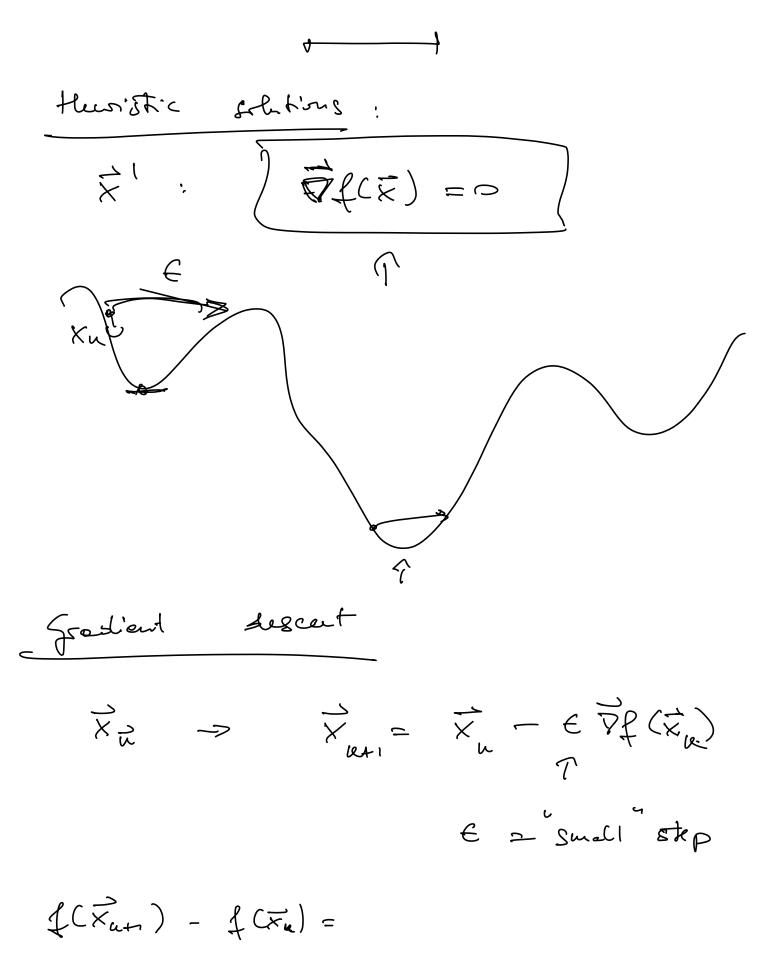












 $f(\vec{x}_n - \vec{e}\vec{\partial}f) - f(\vec{x}_n)$

 $= -\varepsilon \|\nabla f\|^{2} + \frac{\varepsilon^{2}}{2} \nabla f_{\mu} H \nabla f_{\mu} + o(\varepsilon^{3})$ to le steps I(E) JE 4 $f(\mathbf{x}_{u}) - f(\mathbf{x}_{u}) \sim O(\frac{1}{\kappa})$ prove : world-cose semarb $\exp\left(-\frac{k}{k}\right)$