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Abstract

At Tλ = 2.17K, helium 4 undergoes a phase transition from quantum origin. This
transition is signed by a speci�c heat singularity called the lambda point. The existing
phase above Tλ is namedHe I or normal �uid helium, whereas helium under this point
is called He II or super�uid helium. Super�uid helium exhibits some interesting
properties such as an apparent absence of resistance to �ow, which makes it worthy
of studying theoretically and experimentally. As for today, He I and He II lack a
precise microscopic description. However, phenomenology has yielded a satisfying
description of the transition, with good agreement with experiments. In this essay
I will �rst describe helium II through an experimental approach, before exploring
the usual models for helium II such as Bose-Einstein Condensation, the elementary
excitations and the two-�uid model. In a third time I will present the phenomenology
of the transition, and �nally exhibit some of the consequences of this phase transition.
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1 Experimental approach of the properties of helium

II

1.1 Phase diagrams of helium

(FIG)
There are only two stable isotopes of helium: helium 3 and helium 4. Those two

isotopes have the lowest boiling points among all known substances : Tb = 4.21K for
helium 4, Tb = 3.19K for helium 3. Another particularity is that the solid phases of
both isotopes are only stable at pressure above 30bar, even at low temperatures ; thus
the liquid phases are the only stable phases down to absolute zero for usual pressure
conditions.

Under the boiling point, liquid helium can go through a new phase transition. This
transition occurs at Tλ = 2.17K for helium 4 and is characterized by a singularity of
the speci�c heat. Helium 4 above Tλ is named He I or normal liquid helium, whereas
helium under this point is calledHe II or super�uid helium. Helium II can be observed
experimentally by cooling normal liquid using a simple evaporating technique : a pump
lowers the pressure of a helium I bath at equilibrium with its vapor. As the pressure
goes lower and lower the system at equilibrium follows the liquid-gas coexistence line
on the phase diagram, thus lowering the temperature of the gas and liquid. The
transition can be observed either by measuring the speci�c heat anomaly or simply by
looking at the liquid : helium I is in permanent ebullition as the gas is pumped out,
but the ebullition stops as soon as Tλ is reached thanks to the particular heat transfer
mechanism of helium II, which will be described in a later paragraph.

Helium 3 undergoes a similar transition, but for a much lower lambda point :
Tλ = 2.49mK for helium 3. Such temperatures cannot be reached using evaporating
techniques : it requires more advanced technology such as optical or magnetic traps.
Thus the super�uidity of helium 3 was only discovered in the 1970s by Lee, Oshero�
and Richardson, whereas Kapitsa discovered super�uid helium 4 in 1937 [3]. For this
reason and others that will be depicted in the next paragraphs, this essay will focus
on super�uid helium 4 only.

1.2 Experimental observations

1.2.1 Viscosity

Gas and liquid helium are highly interesting �uids for hydrodynamics experiments and
especially turbulence, as they present a strong dependence of viscosity with tempera-
ture. As a consequence, helium is frequently used when an experiment needs a wide
range of controllable viscosity. When the techniques for obtaining helium II were fully
developed, hydrodynamics and turbulence experiments followed naturally.

Two types of experiments were built up for the measurement of helium II viscosity
: via measure of its resistance to �ow (velocity measurement) or via measure of the
drag exerted on a object (e�ort measurement). Those two types of experiment led to
apparently contradictory results, and to the elaboration of the most used models for
the description of helium II.

Resistance to �ow is quanti�ed by forcing helium II to �ow through small capil-
laries. This was achieved as soon as 1939 by Allen & Misener [5] by emptying a vessel
of helium II through a porous material and measuring the liquid's velocity. Results
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showed no viscous resistance to �ow for small enough capillaries, suggesting a zero
viscosity of helium II.

The other type of experiment consists in forcing an object to move in super�uid
helium and measuring the drag that it su�ers from the liquid. In 1938 Keesom and
MacWood [6] measured the viscous drag exerted by helium II on rotating discs : they
obtained a small but �nite value for the super�uid viscosity, comparable to that of
helium I just under the boiling point. This result being in contradiction with the one
from �ow resistance measurement, it led to the hypothesis that helium II is actually
composed of two inseparable liquid phases : the super�uid phase of zero viscosity and
the normal �uid phase of �nite viscosity. This assumption is the start of the two-�uid
model which will be discussed later on.

1.2.2 Thermal properties

As mentioned previously, the super�uid transition is marked by an anomaly of the
�uid's speci�c heat called the lambda point. This anomaly leads to very high values
of heat capacity for helium II under the lambda point : more than 5kJ·mol−1·K−1

close to the transition.
High values of thermal conductivity are also observed and can be interpreted thanks

to the two-�uid model. The model predicts a new heat transport mechanism for helium
II : heat is transported by convection of the normal �uid phase, with super�uid current
in the opposite direction. Such convection is called a counter-�ow and leads to the
propagation of temperature in a wave-like manner called second sound rather than
the usual di�usive or convective mechanism. This new mechanism makes the thermal
conductivity of helium II unusually high ; it is described in 4.

2 Models of super�uid

This section presents the main models of super�uid used to describe helium II. In
1938 London [7] proposed the application of the Bose-Einstein Condensation theory to
helium II. In 1941 Landau [8] proposed a dispersion curve for the excitations in helium
II which led to the phonon-roton model. From those two models can be derived the
two-�uid model, yet they have been perceived as rivals until 1947 when Bogoliubov's
theory of the weakly interacting Bose gas which proved them to be compatible.

2.1 Bose-Einstein Condensation

The theory of Bose-Einstein condensation describes the behaviour of an ideal gas of
bosons at small temperatures. Under some transition temperature Tb the fundamental
energy level becomes signi�cantly populated, because of bosons ability to occupy a
same quantum state. The gas can the be described as the union of two phases :
the condensate that is composed of all particles in the fundamental state, and the
remaining particles that are still in excited levels of energy. As the temperature gets
smaller and smaller, the fundamental level is increasingly occupied and the condensate
proportion grows. At absolute zero, the whole gas is in the condensate. As the
condensate is contained in one single-particle state, it is reasonable to assume that
it can be described by a single wave function that shall be called the macroscopic

wave function. The existence of such a wave function suggests a certain order in
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the condensate phase : that is why Bose-Einstein condensation is considered as an
order-disorder phase transition.

Let us recall that it can be assumed that helium II is actually constituted of a
super�uid phase with no viscosity and a normal viscous �uid phase. The super�uid
phase only appears under Tλ and its proportion grows as T decreases. These obser-
vations make it hard not to think of the super�uid phase transition as an example of
Bose-Einstein condensation. Indeed it should be notice that atoms of helium 4 are
composite bosons, thus should be able to go through a Bose-Einstein condensation.
This was the �rst idea for modeling helium 4 by London and Tisza in 1938. It identi-
�es the super�uid phase with a Bose condensate and the normal phase with particle
in excited states.

It can then be assumed than the super�uid phase can be described with a macro-
scopic wave function ψ(x, t), and that this wave function obeys a Schrödinger equation:

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V (x)ψ (1)

Under the Madelung transformation : ψ = ψ0 e
iϕ with ψ0 and ϕ reals, the real and

imaginary part of this equation lead respectively to a Bernoulli equation and a mass
conservation equation :

~
m

∂ϕ

∂t
+

1

2
(∇ϕ)2 + V

m
− ~2

2m

∆ψ0

ψ0
= 0 (2)

∂

∂t
ψ2
0 +

~
m
∇ (∇ϕ) = 0 (3)

for an ideal irrotational �uid of density ψ2
0 , which current derives from a potential

: v = ~
m∇ϕ. The condensate phase can thus be described a non viscous �uid, which

current is created by the gradient in the phase of the macroscopic wave function. The
movement of condensate particles issuing from the phase of one single wave function
strengthen the order-disorder picture for the super�uid phase transition of helium 4.

Let's note that this interpretation in terms of a Bose-Einstein condensation is
possible because helium 4 is a composite boson. Helium 3 on the other hand is
a composite fermion, so it should not allow such an interpretation. Actually the
super�uid transition in helium 3 can be interpreted in a Bose-Einstein condensation
with a pairing mechanism like Cooper pairs in superconductors. That is a completely
di�erent mechanism form the one described previously, and this is an other reason for
this essay to focus on helium 4 only.

2.2 The phonon-roton model

The Bose-Einstein condensation picture was �rst criticized by Landau because of its
assumptions. Indeed, it lays on the model of the ideal gas, that is to say without
interactions : this picture certainly isn't compatible with the liquid nature of helium
II, in which interactions play an important role. For Landau, those interactions are
essential to the super�uidity of helium 4, as they allow collective excitations : Lan-
dau proved that super�uidity requires thermal excitations with a particular shape of
dispersion curve [8]. His proposition for the dispersion relation is what we call the
phonon-roton model.

First, it is clear that the dispersion relation should present a phonon branch as
longitudinal phonon waves are allowed to propagate in liquids. Landau then added
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another prescription : the dispersion curve should exhibit a local energy minimum for
a non-zero wave-number value. Those well-de�ned excitations are called rotons and
are a necessary condition to super�uidity. This dispersion relation has been widely
con�rmed by experiments such as neutron di�usion in helium II. The roton minimum
has been precisely measured. The accepted values for the energy and wave number of
this minimum are ϵ0/kB = 8.65K, k0 = 19.1nm−1.

So as to make this point, let's imagine a solid body moving in a helium II bath.
The object su�ers a viscous drag from the liquid if and only if it is able to exchange
momentum and energy with the bath. This energy-momentum exchange is performed
by excitation emission in the �uid and thus is only allowed for excitations verifying
the dispersion relation. Let's write the momentum and energy conservation laws for
the interaction:

1

2
MV 2 =

1

2
MV ′2 + ϵ (4)

MV =MV′ + ~k (5)

withM the mass of the object, V and V′ the original and �nal speed of the object
respectively, and ϵ and k the energy and wave-number of the excitation respectively,
which have to verify the dispersion relation to exist. The �nal speed can be eliminated
thanks to the second equation, and then the �rst one gives :

1

2
MV 2 =

1

2
M

(
V − ~

M
k

)
+ ϵ (6)

which gives, for ~k ≪MV :

V ≥ ϵ

~k
(7)

which is the condition for the emission of an excitation in the liquid, and therefore
for a drag to exist. As a consequence, if the object velocity is smaller than the
minimum value of ϵ

~k allowed by the dispersion relation, it doesn't su�er any viscous
drag : the liquid is therefore super�uid. It can be easily proven that the existence
of such a minimum of ϵ

~k is equivalent to the existence of a roton minimum. The
accepted values of the roton minimum give 59.5m·s−1 for the upper velocity bound
of the super�uid domain. At those speeds though, this model may not hold, and
interactions between excitations should be held into account.

3 The lambda point transition

The super�uid transition stills lack a precise microscopic description : although the
Bose-Einstein condensation model is promising, especially in the Bogolyubov interact-
ing picture, it still fails to describe the properties of the transition. The heat capacity
anomaly is not well-described by the Bose-Einstein model for example. This section
�rst presents the successes and fails of the statistical mechanics of Bose-Einstein con-
densation applied to helium II, and then exhibits the phenomenology and measured
of the lambda transition.
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3.1 Success and fail of the Bose-Einstein picture

So as to calculate characteristics of the lambda transition, let's start from the Bose-
Einstein statistics. A state of energy ϵi is, at temperature T , populated in average by
< n(ϵi, T ) > particles. The Bose-Einstein distribution function gives:

< n(ϵi, T ) >=
1

exp[(ϵi − µ)/kBT ]− 1
(8)∑

i

< n(ϵi, T ) >= N (9)

For a system of N particles in a large volume V , we can treat the energy levels as
a continuum and rewrite the normalization relation:

N =< n(0, T ) > +

∫ ∞

0

D(ϵ) < n(ϵ, T ) > dϵ (10)

with D(ϵ) = V
4π2

(
2m
~2

)3/2
ϵ1/2 the density of states of the system. The number of

particles in the condensate is given by N0(T ) =< n(0, T ) >, the integral N ′(T ) gives
the number of particles in excited states. This integral can be calculated numerically
[3]. An upper bound N ′

m(T ) is given for µ = 0 :

N ′
m(T ) = 2.612V

(
mkBT

2π~2

)3/2

(11)

At the transition point T = Tλ, N
′
m(Tλ) = N , which gives an expression of Tλ:

Tλ =
2π~2

mkBT

(
N

2.612V

)2/3

(12)

The numerical calculation gives Tλ = 3.1K, which is qualitatively close to the
experimental value Tλ = 2.17K. The combination of equations (11) and (12) gives the
temperature dependance of N ′(T ):

N ′(T )

N
∝

(
T

Tλ

)3/2

(13)

which gives N0(T ) ∝ 1−
(

T
Tλ

)3/2

, which gives for small values of T −Tλ : N0(T ) ∝
(Tλ − T ). However, the temperature dependance observed experimentally is N0(T ) ∝
(Tλ−T )2/3 with a good precision : this is an important di�erence that marks the �rst
fail of the Bose-Einstein model at depicting the lambda transition. An other point
that this model fails to describe properly is the temperature dependance of the heat
capacity. The Bose-Einstein model does not describe the lambda anomaly but rather
a cusp singularity [3].

These fails of the Bose-Einstein picture show that it isn't a satisfying microscopic
description. Here we only considered the ideal Bose gas, but even the Bogolyubov
interacting model fails to describe the lambda transition. As for today there is no
satisfying microscopic description for the lambda transition, which would allow calcu-
lations of its critical exponents.
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3.2 Phenomenology and measures of the lambda transition

The main phenomenological model for studying the lambda transition is the Ginzburg-
Landau picture [4]Tilley. In this model we consider an order parameter ψ describing
the transition. As seen previously, observations are in favor of describing the lambda
transition as an order-disorder transition. Because of the quantum nature of the
problem, the order parameter ψ is assumed to be complex : we'll see that it plays a
role similar to that of the macroscopic wave function in the Bose-Einstein picture.

In the Ginzburg-Landau model it is assumed that in a region where ψ is small, the
free energy density can be developed in even powers of the order parameter and its
gradient:

f(x) = f1 + α|ψ(x)|2 + 1

2
β|ψ(x)|4 + ~2

2m
|∇ψ(x)|2 (14)

with f1 the free energy density of helium I. So as to have an ordered phase for
T < Tλ, the simplest expression of α and β are α = A(T − Tλ) with A positive and β
a constant. To know the stable state of the system for a given temperature, we have
to minimize the total free energy :

F =

∫
f(x)dx (15)

which is a functional of the order parameter ψ. Its minimization with respect to
ψ leads to Euler-Lagrange equations for the Lagrangian density f(x). Those are the
following :

0 = − ~2

2m
∆ψ + α(T )ψ + β|ψ|2ψ (16)

which is a Ginzburg-Landau equation. Solving this equation would lead to the
shape of the order parameter ψ(x) in the stable state at a given temperature. One
can notice the resemblance of this equation with a Schrödinger equation. It seems
like we obtain a stationary Schrödinger equation with a linear potential term αψ
and a non-linear potential term |ψ|2ψ. The linear potential α(T ) only depends on
temperature : it is a control parameter that will give the stable state for temperature
T . The nonlinear term can be interpreted by identifying the order parameter with the
macroscopic wave function of the Bose-Einstein condensate. In fact in the Bogolyubov
interacting picture, the Hamiltonian of the Bose gas contains a pair potential term
that describes the interaction. By choosing a local interaction, that is to say a pair
potential that is a Dirac distribution, the equation of motion that derives from such a
Hamiltonian is precisely equation (16). Such an equation is called in the instationnary
case the local Gross-Pitaevskii equation [1].

In 1958 Pitaevskii added a kinetic energy term to the Ginzburg-Landau free energy
density and derived equations of motion for a two-�uid model close to the lambda
point. In 1969 Khalatnikov used the minimization of Pitaevskii's total free energy
to describe the attenuation of �rst and second sound close to the lambda point. He
obtained temperature dependances of (Tλ − T )−1 and (Tλ − T )−1/3 respectively, with
good agreement with experiments [3].
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4 Application to heat transport

As presented previously, the two �uid model predicts a new mechanism for heat trans-
fer called second sound. This section aims at describing this phenomenon.

To explain second sound let's start with simpli�ed two-�uid equations. The super-
�uid phase motion is driven by gradients of the chemical potential :

∂vs

∂t
+ (vs · ∇)vs = −∇µ (17)

The entropy density s is only transported by the normal phase, because of its
thermal excitation nature:

∂

∂t
(ρs) +∇ · (ρsvn) = 0 (18)

The total mass current of helium II is the sum of currents of both phases :

j = ρsvs + ρnvn (19)

First, let's rewrite the gradient of chemical potential in terms of the temperature.
Thermodynamical identities give dµ = −sdT + 1

ρdP . Assuming there is no pressure

gradient we obtain ∇µ = −s∇T . Equation (17) becomes:

∂vs

∂t
+ (vs · ∇)vs = s∇T (20)

Now let's take the system in a uniform equilibrium state (T = T0,vs = 0, s =
s0) and make a small perturbation (T1,vs1, s = s1) around that equilibrium state.
Assuming the absence of density �uctuations ∂tρ = 0, we can linearize the previous
equations and yield :

∂vs1

∂t
= s0∇T (21)

∂s1
∂t

− s0∇ · (vn) (22)

Assuming there is no local mass transport, we can put j to zero in equation (19).
The normal velocity can the be eliminated from the last equation. In addition, the
time variation of s1 can be rewrote :

∂s1
∂t

=
∂T1
∂t

∂s1
∂T1

≈ cp
T0

∂T1
∂t

(23)

which �nally gives :

∂vs1

∂t
= s0∇T (24)

cp
T0

∂T1
∂t

− s0ρs
ρn

∇ · (vs) (25)

Those two last equations can be combined into :

∂2T1
∂t2

− ρs
ρn

s20T0
cp

∆T1 = 0 (26)
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which is a wave equation for T1. Hence temperature propagates in a wave-like
manner in helium II according to the two-�uid model. This mechanism is called second

sound and its velocity is c2 =
√

ρs

ρn

s20T0

cp
. Second sound as been widely observed in

helium II and is very useful for the measurement of critical exponents. The critical
exponents for super�uid density and heat capacity have been precisely measured by
second sound experiments. As for today, the most precise measurement of the heat
capacity critical exponent as been achieved for the lambda transition in a space shuttle
so as to minimize pressure di�erences in the sample [10]Ferell2Tilley
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Conclusion

The super�uid transition in helium 4 was discovered more than seventy years ago, yet
it still imposes challenges on today's physicists. A satisfying microscopic description is
still to be established, so as to justify theoretically the two-�uid model and to describe
the transition more precisely. It is the bosonic nature of the problem that makes it so
di�cult to have this microscopic description, contrary to superconductivity or helium 3
super�uidity which are fermionic problems for which the microscopic description is well
known. However, phenomenology has been proven to still be e�cient for predicting
critical exponents of the lambda transition with great agreement with experiments.
Helium II also have a lot of other physics challenges that could not be mentioned in
this essay, such as quantum turbulence.
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