
Light & Matter (part 2) 

Semiclassical approach to atom-light interactions



Atoms:  hydrogen and hydrogen-like (alkali)

Brandsen & Joachain: Physics of Atoms and Molecules (2003)

main structure fine, hyperfine structure and Lamb shift

transitions in the
optical range

optical cavities



Artificial atoms:   quantum dots

e e

semicond. nanocrystalssemiconductor heterostructures 
(InAs islands in a GaAs matrix)

The core material is chosen with respect to the required

emission wavelength range (e.g. CdS for UV-blue, CdSe

for the visible spectrum and CdTe for the far red and near

infrared ! NIR) (9), thus fluorophore colour is size

dependent and controlled during synthesis (10). Synthesis

occurs by injecting liquid precursors (dimethyl cadmium

and selenium powder dissolved in tributylphosphione) in

a hot organic solvent (trioctylphosphine oxide ! TOPO)

at temperatures reaching 3008C (11). Nanocrystals initi-

ate formation immediately and the colourless starting mix

becomes coloured. The size of the nanocrystals is

adjusted by changing the amount of injected precursors

and crystal growth time in the hot TOPO mix (2, 12). A

variety of core shapes can be synthesised, but they require

an extra shell of a high band gap semiconductor material,

typically ZnS, to stabilise the core and increase the
quantum yield [QY, ratio of the amount of light emitted
from a sample to the amount of light absorbed by the
sample (13)] up to 80% (10, 14). The surface layer of the
ZnS shell is, however, hydrophobic and insoluble in
aqueous solutions (8).

Optical properties
The most characteristic optical property of the QDs is
that their colour is size dependent and thus controlled
during synthesis (10). This arises as a result of the
quantum confinement phenomenon (15), which refers
to the spatial confinement of charge carriers (electrons
and holes) within a semiconductor (16).

Because the physical size of the semiconductor nano-
crystal is considerably reduced to be much smaller than
the natural radius of the electron-hole pair, when a
semiconductor is excited to emit light, the energy
required to confine this excitation within the nanocrystal
is higher, leading to a shift in emission in shorter
wavelengths (i.e. towards the blue of emission) (13). To
better understand this, an example of two different-sized
CdSe QDs of 2.3 and 5.5 nm will be considered (Fig. 2).

Another unique property of QDs is their broad
excitation and narrow symmetric emission spectra. The
spectral width of QDs (full width at half maximum is 12
nm) (18) designate that multicolour nanocrystals of
different sizes can be excited by a single wavelength
(excitation source) that is shorter than their emission
wavelength (14, 19, 20). This cannot be achieved with
classical organic fluorophores because they have narrow
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Fig. 1. Schematic representation of a QD conjugate.
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Fig. 2. The size-dependent luminescence of quantum dots. Larger QDs have narrow band gaps (red QD, b) comparing to small
QDs (blue QD, b). In the example discussed, the 5.5 QD emits orange light (longer wavelength 590 nm), whereas the 2.3 QD
emits turquoise light (shorter wavelength 500 nm). Adapted from Jonathan (17).

Dimitris Ioannou and Darren K. Griffin

2
(page number not for citation purpose)

Citation: Nano Reviews 2010, 1: 5117 - DOI: 10.3402/nano.v1i0.5117

photonic crystal cavity



Bloch sphere, and for the fastest rotations observed an Xπ/2 gate has
a duration of 125 ps.

We now demonstrate Z-axis rotations of the qubit by per-
forming a Ramsey fringe experiment using the microwave pulse
sequence shown schematically in Fig. 2a. We first prepare the
state |Y〉 = √(1/2)(|0〉 + i|1〉) by initializing to |L〉, adiabatically
changing the detuning to δɛ = 0 to evolve the state to |0〉, and
then performing an Xπ/2 rotation at this detuning. Z-axis rotation
results from the evolution of a relative phase between states |0〉
and |1〉, given by φ = –te2Δ1/ħ, where te is the time spent at δɛ = 0.
The resulting state is rotated by a second Xπ/2 microwave pulse,
and the final probability P1 again is measured by adiabatically pro-
jecting state |1〉 to |R〉 at the readout position δɛr. Figure 2b,c shows
the resulting Ramsey fringes, which are quantum oscillations of the
qubit state around the Z-axis of the Bloch sphere. By fitting the
oscillations to an exponentially damped sine wave (red solid
curve), we extract a dephasing time T2* = 1.3 ns and an oscillation
frequency of 4.5 GHz, the latter being consistent with the spectro-
scopic measurements shown in Fig. 1b. The observed T2* times
are on the order of nanoseconds both for X (Rabi) and Z
(Ramsey) rotations, which is an important improvement arising
from the a.c. gating and the ability to perform a universal set of
single qubit operations at the sweet spot. Data in Supplementary
Section 3 show that T2* is much shorter (on the order of 100 ps)
away from the sweet spot.

Using a.c. gating we can choose the rotation axis to point in an
arbitrary direction in the X–Y plane of the Bloch sphere by control-
ling the phase of the applied microwave burst. On resonance in the
rotating frame, the Hamilton takes the formH = cos(ϕ)σx + sin(ϕ)σy,
where σiare Pauli matrices and ϕ is the relative phase of the micro-
wave burst with respect to the first pulse incident on the qubit26.
Controlling ϕ thus enables rotations of the qubit around any axis
lying in the X–Y plane of the Bloch sphere. Figure 2d presents the
measurement of P1 using such a pulse sequence as a function of
both ϕ and te, demonstrating a smooth variation in P1 arising
from changes in the control parameters. Figure 2e shows line-cuts
of P1 at ϕ = 0, 90° and 180° (corresponding to the second pulse indu-
cing a π/2 rotation around the X, Y and –X axes, respectively);
microwave phase control clearly enables control of the phase of
the resulting Ramsey fringes. Taken together, the data summarized
in Figs 1 and 2 demonstrate control of the qubit over the entire
Bloch sphere.

We characterized decoherence times by implementing a Hahn
echo17,27,28 of the a.c.-gated charge qubit by applying the pulse
sequence shown in Fig. 3a. Inserting an Xπ pulse between state
initialization and measurement corrects for noise that is static on
the timescale of the pulse sequence. In Fig. 3b,c, while keeping the
total free evolution time τ fixed, we sweep the position of the
decoupling Xπ pulse to reveal an echo envelope7,28. The maximum
amplitude of the observed envelope reveals the extent to which the
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Figure 1 | Si/SiGe quantum dot device, qubit spectroscopy and coherent Rabi oscillation measurements. a, Scanning electron microscopy image of a
device lithographically identical to the one used in the experiment24. b,c, Qubit energy levels and microwave spectroscopy. Probability P1 (b) of the state to
be |1〉 at the end of the driving sequence as a function of detuning change with respect to sweet spot δε and excitation frequency fex of the microwaves
applied to gate GR. The dashed green curve shows a fit to the calculated energy difference between the ground state and the lowest-energy excited state of
the four-level model of ref. 25 (see also Supplementary Section 2). Diagram of the calculated energy levels E versus δε (c), including the ground states of the
(2,1) and (1,2) charge configurations, |L〉 and |R〉, respectively, and logical states |0〉≈ (|L〉 + |R〉)/√2 and |1〉≈ (|L〉 − |R〉)/√2. Black solid line inset in c: pulse
sequence used for Rabi oscillation and spectroscopy measurements. The green shaded region indicates the detuning energy at which microwave pulses are
applied. d,e, Rabi oscillations. P1 as a function of voltage VGL and microwave pulse duration tb (d) with fex = 4.54 GHz and excitation amplitude Vac = 70 mV.
Line-cut of P1 near VGL = −390 mV (e), showing ∼1 GHz coherent Rabi oscillations. Red solid curve shows a fit to an exponentially damped sine wave with
best fit parameter T2* = 1.5 ns. f,g, Dependence of the Rabi oscillation frequency on microwave amplitude. P1 as a function of Vac and tb (f) with fex = 4.54
GHz. Rabi oscillation frequency fRabi as a function of Vac (g) with fixed fex = 4.54 GHz, showing good agreement of a linear fit (red dashed line) to the data.
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Bloch sphere, and for the fastest rotations observed an Xπ/2 gate has
a duration of 125 ps.

We now demonstrate Z-axis rotations of the qubit by per-
forming a Ramsey fringe experiment using the microwave pulse
sequence shown schematically in Fig. 2a. We first prepare the
state |Y〉 = √(1/2)(|0〉 + i|1〉) by initializing to |L〉, adiabatically
changing the detuning to δɛ = 0 to evolve the state to |0〉, and
then performing an Xπ/2 rotation at this detuning. Z-axis rotation
results from the evolution of a relative phase between states |0〉
and |1〉, given by φ = –te2Δ1/ħ, where te is the time spent at δɛ = 0.
The resulting state is rotated by a second Xπ/2 microwave pulse,
and the final probability P1 again is measured by adiabatically pro-
jecting state |1〉 to |R〉 at the readout position δɛr. Figure 2b,c shows
the resulting Ramsey fringes, which are quantum oscillations of the
qubit state around the Z-axis of the Bloch sphere. By fitting the
oscillations to an exponentially damped sine wave (red solid
curve), we extract a dephasing time T2* = 1.3 ns and an oscillation
frequency of 4.5 GHz, the latter being consistent with the spectro-
scopic measurements shown in Fig. 1b. The observed T2* times
are on the order of nanoseconds both for X (Rabi) and Z
(Ramsey) rotations, which is an important improvement arising
from the a.c. gating and the ability to perform a universal set of
single qubit operations at the sweet spot. Data in Supplementary
Section 3 show that T2* is much shorter (on the order of 100 ps)
away from the sweet spot.

Using a.c. gating we can choose the rotation axis to point in an
arbitrary direction in the X–Y plane of the Bloch sphere by control-
ling the phase of the applied microwave burst. On resonance in the
rotating frame, the Hamilton takes the formH = cos(ϕ)σx + sin(ϕ)σy,
where σiare Pauli matrices and ϕ is the relative phase of the micro-
wave burst with respect to the first pulse incident on the qubit26.
Controlling ϕ thus enables rotations of the qubit around any axis
lying in the X–Y plane of the Bloch sphere. Figure 2d presents the
measurement of P1 using such a pulse sequence as a function of
both ϕ and te, demonstrating a smooth variation in P1 arising
from changes in the control parameters. Figure 2e shows line-cuts
of P1 at ϕ = 0, 90° and 180° (corresponding to the second pulse indu-
cing a π/2 rotation around the X, Y and –X axes, respectively);
microwave phase control clearly enables control of the phase of
the resulting Ramsey fringes. Taken together, the data summarized
in Figs 1 and 2 demonstrate control of the qubit over the entire
Bloch sphere.

We characterized decoherence times by implementing a Hahn
echo17,27,28 of the a.c.-gated charge qubit by applying the pulse
sequence shown in Fig. 3a. Inserting an Xπ pulse between state
initialization and measurement corrects for noise that is static on
the timescale of the pulse sequence. In Fig. 3b,c, while keeping the
total free evolution time τ fixed, we sweep the position of the
decoupling Xπ pulse to reveal an echo envelope7,28. The maximum
amplitude of the observed envelope reveals the extent to which the
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Figure 1 | Si/SiGe quantum dot device, qubit spectroscopy and coherent Rabi oscillation measurements. a, Scanning electron microscopy image of a
device lithographically identical to the one used in the experiment24. b,c, Qubit energy levels and microwave spectroscopy. Probability P1 (b) of the state to
be |1〉 at the end of the driving sequence as a function of detuning change with respect to sweet spot δε and excitation frequency fex of the microwaves
applied to gate GR. The dashed green curve shows a fit to the calculated energy difference between the ground state and the lowest-energy excited state of
the four-level model of ref. 25 (see also Supplementary Section 2). Diagram of the calculated energy levels E versus δε (c), including the ground states of the
(2,1) and (1,2) charge configurations, |L〉 and |R〉, respectively, and logical states |0〉≈ (|L〉 + |R〉)/√2 and |1〉≈ (|L〉 − |R〉)/√2. Black solid line inset in c: pulse
sequence used for Rabi oscillation and spectroscopy measurements. The green shaded region indicates the detuning energy at which microwave pulses are
applied. d,e, Rabi oscillations. P1 as a function of voltage VGL and microwave pulse duration tb (d) with fex = 4.54 GHz and excitation amplitude Vac = 70 mV.
Line-cut of P1 near VGL = −390 mV (e), showing ∼1 GHz coherent Rabi oscillations. Red solid curve shows a fit to an exponentially damped sine wave with
best fit parameter T2* = 1.5 ns. f,g, Dependence of the Rabi oscillation frequency on microwave amplitude. P1 as a function of Vac and tb (f) with fex = 4.54
GHz. Rabi oscillation frequency fRabi as a function of Vac (g) with fixed fex = 4.54 GHz, showing good agreement of a linear fit (red dashed line) to the data.
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Bloch sphere, and for the fastest rotations observed an Xπ/2 gate has
a duration of 125 ps.

We now demonstrate Z-axis rotations of the qubit by per-
forming a Ramsey fringe experiment using the microwave pulse
sequence shown schematically in Fig. 2a. We first prepare the
state |Y〉 = √(1/2)(|0〉 + i|1〉) by initializing to |L〉, adiabatically
changing the detuning to δɛ = 0 to evolve the state to |0〉, and
then performing an Xπ/2 rotation at this detuning. Z-axis rotation
results from the evolution of a relative phase between states |0〉
and |1〉, given by φ = –te2Δ1/ħ, where te is the time spent at δɛ = 0.
The resulting state is rotated by a second Xπ/2 microwave pulse,
and the final probability P1 again is measured by adiabatically pro-
jecting state |1〉 to |R〉 at the readout position δɛr. Figure 2b,c shows
the resulting Ramsey fringes, which are quantum oscillations of the
qubit state around the Z-axis of the Bloch sphere. By fitting the
oscillations to an exponentially damped sine wave (red solid
curve), we extract a dephasing time T2* = 1.3 ns and an oscillation
frequency of 4.5 GHz, the latter being consistent with the spectro-
scopic measurements shown in Fig. 1b. The observed T2* times
are on the order of nanoseconds both for X (Rabi) and Z
(Ramsey) rotations, which is an important improvement arising
from the a.c. gating and the ability to perform a universal set of
single qubit operations at the sweet spot. Data in Supplementary
Section 3 show that T2* is much shorter (on the order of 100 ps)
away from the sweet spot.

Using a.c. gating we can choose the rotation axis to point in an
arbitrary direction in the X–Y plane of the Bloch sphere by control-
ling the phase of the applied microwave burst. On resonance in the
rotating frame, the Hamilton takes the formH = cos(ϕ)σx + sin(ϕ)σy,
where σiare Pauli matrices and ϕ is the relative phase of the micro-
wave burst with respect to the first pulse incident on the qubit26.
Controlling ϕ thus enables rotations of the qubit around any axis
lying in the X–Y plane of the Bloch sphere. Figure 2d presents the
measurement of P1 using such a pulse sequence as a function of
both ϕ and te, demonstrating a smooth variation in P1 arising
from changes in the control parameters. Figure 2e shows line-cuts
of P1 at ϕ = 0, 90° and 180° (corresponding to the second pulse indu-
cing a π/2 rotation around the X, Y and –X axes, respectively);
microwave phase control clearly enables control of the phase of
the resulting Ramsey fringes. Taken together, the data summarized
in Figs 1 and 2 demonstrate control of the qubit over the entire
Bloch sphere.

We characterized decoherence times by implementing a Hahn
echo17,27,28 of the a.c.-gated charge qubit by applying the pulse
sequence shown in Fig. 3a. Inserting an Xπ pulse between state
initialization and measurement corrects for noise that is static on
the timescale of the pulse sequence. In Fig. 3b,c, while keeping the
total free evolution time τ fixed, we sweep the position of the
decoupling Xπ pulse to reveal an echo envelope7,28. The maximum
amplitude of the observed envelope reveals the extent to which the
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Figure 1 | Si/SiGe quantum dot device, qubit spectroscopy and coherent Rabi oscillation measurements. a, Scanning electron microscopy image of a
device lithographically identical to the one used in the experiment24. b,c, Qubit energy levels and microwave spectroscopy. Probability P1 (b) of the state to
be |1〉 at the end of the driving sequence as a function of detuning change with respect to sweet spot δε and excitation frequency fex of the microwaves
applied to gate GR. The dashed green curve shows a fit to the calculated energy difference between the ground state and the lowest-energy excited state of
the four-level model of ref. 25 (see also Supplementary Section 2). Diagram of the calculated energy levels E versus δε (c), including the ground states of the
(2,1) and (1,2) charge configurations, |L〉 and |R〉, respectively, and logical states |0〉≈ (|L〉 + |R〉)/√2 and |1〉≈ (|L〉 − |R〉)/√2. Black solid line inset in c: pulse
sequence used for Rabi oscillation and spectroscopy measurements. The green shaded region indicates the detuning energy at which microwave pulses are
applied. d,e, Rabi oscillations. P1 as a function of voltage VGL and microwave pulse duration tb (d) with fex = 4.54 GHz and excitation amplitude Vac = 70 mV.
Line-cut of P1 near VGL = −390 mV (e), showing ∼1 GHz coherent Rabi oscillations. Red solid curve shows a fit to an exponentially damped sine wave with
best fit parameter T2* = 1.5 ns. f,g, Dependence of the Rabi oscillation frequency on microwave amplitude. P1 as a function of Vac and tb (f) with fex = 4.54
GHz. Rabi oscillation frequency fRabi as a function of Vac (g) with fixed fex = 4.54 GHz, showing good agreement of a linear fit (red dashed line) to the data.
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Bloch sphere, and for the fastest rotations observed an Xπ/2 gate has
a duration of 125 ps.

We now demonstrate Z-axis rotations of the qubit by per-
forming a Ramsey fringe experiment using the microwave pulse
sequence shown schematically in Fig. 2a. We first prepare the
state |Y〉 = √(1/2)(|0〉 + i|1〉) by initializing to |L〉, adiabatically
changing the detuning to δɛ = 0 to evolve the state to |0〉, and
then performing an Xπ/2 rotation at this detuning. Z-axis rotation
results from the evolution of a relative phase between states |0〉
and |1〉, given by φ = –te2Δ1/ħ, where te is the time spent at δɛ = 0.
The resulting state is rotated by a second Xπ/2 microwave pulse,
and the final probability P1 again is measured by adiabatically pro-
jecting state |1〉 to |R〉 at the readout position δɛr. Figure 2b,c shows
the resulting Ramsey fringes, which are quantum oscillations of the
qubit state around the Z-axis of the Bloch sphere. By fitting the
oscillations to an exponentially damped sine wave (red solid
curve), we extract a dephasing time T2* = 1.3 ns and an oscillation
frequency of 4.5 GHz, the latter being consistent with the spectro-
scopic measurements shown in Fig. 1b. The observed T2* times
are on the order of nanoseconds both for X (Rabi) and Z
(Ramsey) rotations, which is an important improvement arising
from the a.c. gating and the ability to perform a universal set of
single qubit operations at the sweet spot. Data in Supplementary
Section 3 show that T2* is much shorter (on the order of 100 ps)
away from the sweet spot.

Using a.c. gating we can choose the rotation axis to point in an
arbitrary direction in the X–Y plane of the Bloch sphere by control-
ling the phase of the applied microwave burst. On resonance in the
rotating frame, the Hamilton takes the formH = cos(ϕ)σx + sin(ϕ)σy,
where σiare Pauli matrices and ϕ is the relative phase of the micro-
wave burst with respect to the first pulse incident on the qubit26.
Controlling ϕ thus enables rotations of the qubit around any axis
lying in the X–Y plane of the Bloch sphere. Figure 2d presents the
measurement of P1 using such a pulse sequence as a function of
both ϕ and te, demonstrating a smooth variation in P1 arising
from changes in the control parameters. Figure 2e shows line-cuts
of P1 at ϕ = 0, 90° and 180° (corresponding to the second pulse indu-
cing a π/2 rotation around the X, Y and –X axes, respectively);
microwave phase control clearly enables control of the phase of
the resulting Ramsey fringes. Taken together, the data summarized
in Figs 1 and 2 demonstrate control of the qubit over the entire
Bloch sphere.

We characterized decoherence times by implementing a Hahn
echo17,27,28 of the a.c.-gated charge qubit by applying the pulse
sequence shown in Fig. 3a. Inserting an Xπ pulse between state
initialization and measurement corrects for noise that is static on
the timescale of the pulse sequence. In Fig. 3b,c, while keeping the
total free evolution time τ fixed, we sweep the position of the
decoupling Xπ pulse to reveal an echo envelope7,28. The maximum
amplitude of the observed envelope reveals the extent to which the
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Figure 1 | Si/SiGe quantum dot device, qubit spectroscopy and coherent Rabi oscillation measurements. a, Scanning electron microscopy image of a
device lithographically identical to the one used in the experiment24. b,c, Qubit energy levels and microwave spectroscopy. Probability P1 (b) of the state to
be |1〉 at the end of the driving sequence as a function of detuning change with respect to sweet spot δε and excitation frequency fex of the microwaves
applied to gate GR. The dashed green curve shows a fit to the calculated energy difference between the ground state and the lowest-energy excited state of
the four-level model of ref. 25 (see also Supplementary Section 2). Diagram of the calculated energy levels E versus δε (c), including the ground states of the
(2,1) and (1,2) charge configurations, |L〉 and |R〉, respectively, and logical states |0〉≈ (|L〉 + |R〉)/√2 and |1〉≈ (|L〉 − |R〉)/√2. Black solid line inset in c: pulse
sequence used for Rabi oscillation and spectroscopy measurements. The green shaded region indicates the detuning energy at which microwave pulses are
applied. d,e, Rabi oscillations. P1 as a function of voltage VGL and microwave pulse duration tb (d) with fex = 4.54 GHz and excitation amplitude Vac = 70 mV.
Line-cut of P1 near VGL = −390 mV (e), showing ∼1 GHz coherent Rabi oscillations. Red solid curve shows a fit to an exponentially damped sine wave with
best fit parameter T2* = 1.5 ns. f,g, Dependence of the Rabi oscillation frequency on microwave amplitude. P1 as a function of Vac and tb (f) with fex = 4.54
GHz. Rabi oscillation frequency fRabi as a function of Vac (g) with fixed fex = 4.54 GHz, showing good agreement of a linear fit (red dashed line) to the data.
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Microwave-driven coherent operation of a
semiconductor quantum dot charge qubit
Dohun Kim1, D. R. Ward1, C. B. Simmons1, John King Gamble2, Robin Blume-Kohout2, Erik Nielsen2,
D. E. Savage3, M. G. Lagally3, Mark Friesen1, S. N. Coppersmith1 and M. A. Eriksson1*

An intuitive realization of a qubit is an electron charge at two
well-defined positions of a double quantum dot. This qubit is
simple and has the potential for high-speed operation
because of its strong coupling to electric fields. However,
charge noise also couples strongly to this qubit, resulting in
rapid dephasing at all but one special operating point called
the ‘sweet spot’. In previous studies d.c. voltage pulses have
been used to manipulate semiconductor charge qubits1–8 but
did not achieve high-fidelity control, because d.c. gating
requires excursions away from the sweet spot. Here, by
using resonant a.c. microwave driving we achieve fast
(greater than gigahertz) and universal single qubit rotations
of a semiconductor charge qubit. The Z-axis rotations of the
qubit are well protected at the sweet spot, and we demonstrate
the same protection for rotations about arbitrary axes in
the X–Y plane of the qubit Bloch sphere. We characterize the
qubit operation using two tomographic approaches: standard
process tomography9,10 and gate set tomography11.
Both methods consistently yield process fidelities greater
than 86% with respect to a universal set of unitary
single-qubit operations.

Coherent control of qubits with resonant microwaves plays an
essential role in realizing precise single10,12,13 and two14 qubit gates
in solid-state quantum computing architectures15. In electrically
controlled quantum dots, driven coherent oscillations have been
demonstrated in spin-based qubits using electron spin reson-
ance16–18, electric-dipole spin resonance19–22 or resonant exchange
gates23, with typical rotation rates (Rabi frequencies) of
<100 MHz. Here we demonstrate fast and coherent operation of a
charge qubit in a double quantum dot in a silicon/silicon-germanium
(Si/SiGe) heterostructure.

The charge qubit we study is formed by three electrons in a
Si/SiGe double quantum dot (Fig. 1a)7,24. Figure 1c presents the
qubit energy level diagram as a function of detuning with respect
to the sweet spot, δε ≡ ε − ε0, where we define the sweet spot detun-
ing ε0 with ∂E01 /∂ε|ε0 = 0, where E01 is the difference in energy
between the qubit states. Experimentally, the sweet spot is identified
by finding the minimum resonant frequency in a microwave spec-
troscopy measurement performed as a function of detuning (see
below). Detuning ε is controlled by gate GL or GR (Fig. 1a).
States |2,1〉 = |L〉 and |1,2〉 = |R〉 (the ground states of the system at
negative and positive ε, respectively) anticross near ε0. A low-lying
excited state outside the qubit space25 and not visible in the
energy range shown in the figure affects the dispersion of the
energy levels shown and leads to non-zero ε0, but is otherwise unim-
portant, because its occupation is negligible for the resonant driving
demonstrated here.

Near the sweet spot ε0, an avoided crossing is formed between
states |L〉 and |R〉 with tunnel coupling strength Δ1. The logical
qubit states are the energy eigenstates at ε0, which are approximately
|0〉 ≈ (|L〉 + |R〉)/√2 and |1〉 ≈ (|L〉 – |R〉)/√2. As shown schematically
by the black solid line in Fig. 1c, state |L〉 is first prepared by waiting
longer than the charge relaxation time (T1 = 23.5 ns) at a detuning
appropriate for initialization and readout, δɛr ≈ –160 µeV (ref. 25).
Ramping the gate voltage over a time of 4 ns changes the detuning
to a value near δɛ = 0, adiabatically evolving state |L〉 to state |0〉,
completing the qubit initialization. A 10 ns microwave burst is
then applied to gate GR. When the microwave frequency is resonant
with the splitting between the qubit energy levels, excitation occurs
from |0〉 to |1〉. The resulting probability of state |1〉, P1, is measured
by ramping the detuning adiabatically over ∼2 ns back to δɛr , which
transforms |0〉 to |L〉 and |1〉 to |R〉, and measuring the change in
IQPC (ref. 25), where QPC indicates the quantum point contact.
Details of the measurement procedure and conversion to probability
are presented in Supplementary Section 1. By simulating the time
evolution of the density matrix under the initialization and
measurement ramp sequences, we estimate that the transformation
of state |L〉 (|R〉) to state |0〉 (|1〉) is performed with a fidelity of over
99.99% (92%), with the lower fidelity for the transformation
between |R〉 and |1〉 arising because of charge relaxation during
the ramp (Supplementary Section 2). Figure 1b presents the result-
ing spectroscopy of the qubit energy levels. We find good agreement
between the spectroscopic measurement and the calculated lowest-
energy excitation spectrum (green dashed curve), with Hamiltonian
parameters as measured in ref. 25. At the sweet spot ∂E01 /∂ε = 0, the
energy levels are first-order insensitive to detuning noise5,7,23.

Coherent oscillations between qubit states |0〉 and |1〉 are
implemented by applying the microwave sequence shown in
Fig. 1c using an a.c. excitation frequency of fex ≈ 4.5 GHz, which is
resonant with the qubit at the sweet spot. Figure 1d shows the result-
ing microwave-driven Rabi oscillations in P1, measured as a func-
tion of the microwave burst duration tb and gate voltage VGL,
which determines the base level of δɛ. Figure 1e shows periodic
oscillations in P1 at a frequency of fRabi ≈ 1 GHz. The dependence
of P1 on tb is well fit by an exponentially damped sine wave
(Fig. 1e, red solid curve), with the best fit yielding a coherence
time of T2* = 1.5 ns.

Figure 1f shows P1 as a function of tb and the peak-to-peak
microwave amplitude Vac (measured at the output of the waveform
generator). The observed oscillation frequency varies linearly with
Vac, as expected for Rabi oscillations. Accounting for the filtering
and attenuation in the dilution refrigerator, we estimate the peak-
to-peak amplitude at the sample for Vac = 120 mV to be 1.1 mV.
These oscillations correspond to X-rotations of the qubit on the
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been used to manipulate semiconductor charge qubits1–8 but
did not achieve high-fidelity control, because d.c. gating
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qubit are well protected at the sweet spot, and we demonstrate
the same protection for rotations about arbitrary axes in
the X–Y plane of the qubit Bloch sphere. We characterize the
qubit operation using two tomographic approaches: standard
process tomography9,10 and gate set tomography11.
Both methods consistently yield process fidelities greater
than 86% with respect to a universal set of unitary
single-qubit operations.
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essential role in realizing precise single10,12,13 and two14 qubit gates
in solid-state quantum computing architectures15. In electrically
controlled quantum dots, driven coherent oscillations have been
demonstrated in spin-based qubits using electron spin reson-
ance16–18, electric-dipole spin resonance19–22 or resonant exchange
gates23, with typical rotation rates (Rabi frequencies) of
<100 MHz. Here we demonstrate fast and coherent operation of a
charge qubit in a double quantum dot in a silicon/silicon-germanium
(Si/SiGe) heterostructure.

The charge qubit we study is formed by three electrons in a
Si/SiGe double quantum dot (Fig. 1a)7,24. Figure 1c presents the
qubit energy level diagram as a function of detuning with respect
to the sweet spot, δε ≡ ε − ε0, where we define the sweet spot detun-
ing ε0 with ∂E01 /∂ε|ε0 = 0, where E01 is the difference in energy
between the qubit states. Experimentally, the sweet spot is identified
by finding the minimum resonant frequency in a microwave spec-
troscopy measurement performed as a function of detuning (see
below). Detuning ε is controlled by gate GL or GR (Fig. 1a).
States |2,1〉 = |L〉 and |1,2〉 = |R〉 (the ground states of the system at
negative and positive ε, respectively) anticross near ε0. A low-lying
excited state outside the qubit space25 and not visible in the
energy range shown in the figure affects the dispersion of the
energy levels shown and leads to non-zero ε0, but is otherwise unim-
portant, because its occupation is negligible for the resonant driving
demonstrated here.

Near the sweet spot ε0, an avoided crossing is formed between
states |L〉 and |R〉 with tunnel coupling strength Δ1. The logical
qubit states are the energy eigenstates at ε0, which are approximately
|0〉 ≈ (|L〉 + |R〉)/√2 and |1〉 ≈ (|L〉 – |R〉)/√2. As shown schematically
by the black solid line in Fig. 1c, state |L〉 is first prepared by waiting
longer than the charge relaxation time (T1 = 23.5 ns) at a detuning
appropriate for initialization and readout, δɛr ≈ –160 µeV (ref. 25).
Ramping the gate voltage over a time of 4 ns changes the detuning
to a value near δɛ = 0, adiabatically evolving state |L〉 to state |0〉,
completing the qubit initialization. A 10 ns microwave burst is
then applied to gate GR. When the microwave frequency is resonant
with the splitting between the qubit energy levels, excitation occurs
from |0〉 to |1〉. The resulting probability of state |1〉, P1, is measured
by ramping the detuning adiabatically over ∼2 ns back to δɛr , which
transforms |0〉 to |L〉 and |1〉 to |R〉, and measuring the change in
IQPC (ref. 25), where QPC indicates the quantum point contact.
Details of the measurement procedure and conversion to probability
are presented in Supplementary Section 1. By simulating the time
evolution of the density matrix under the initialization and
measurement ramp sequences, we estimate that the transformation
of state |L〉 (|R〉) to state |0〉 (|1〉) is performed with a fidelity of over
99.99% (92%), with the lower fidelity for the transformation
between |R〉 and |1〉 arising because of charge relaxation during
the ramp (Supplementary Section 2). Figure 1b presents the result-
ing spectroscopy of the qubit energy levels. We find good agreement
between the spectroscopic measurement and the calculated lowest-
energy excitation spectrum (green dashed curve), with Hamiltonian
parameters as measured in ref. 25. At the sweet spot ∂E01 /∂ε = 0, the
energy levels are first-order insensitive to detuning noise5,7,23.

Coherent oscillations between qubit states |0〉 and |1〉 are
implemented by applying the microwave sequence shown in
Fig. 1c using an a.c. excitation frequency of fex ≈ 4.5 GHz, which is
resonant with the qubit at the sweet spot. Figure 1d shows the result-
ing microwave-driven Rabi oscillations in P1, measured as a func-
tion of the microwave burst duration tb and gate voltage VGL,
which determines the base level of δɛ. Figure 1e shows periodic
oscillations in P1 at a frequency of fRabi ≈ 1 GHz. The dependence
of P1 on tb is well fit by an exponentially damped sine wave
(Fig. 1e, red solid curve), with the best fit yielding a coherence
time of T2* = 1.5 ns.

Figure 1f shows P1 as a function of tb and the peak-to-peak
microwave amplitude Vac (measured at the output of the waveform
generator). The observed oscillation frequency varies linearly with
Vac, as expected for Rabi oscillations. Accounting for the filtering
and attenuation in the dilution refrigerator, we estimate the peak-
to-peak amplitude at the sample for Vac = 120 mV to be 1.1 mV.
These oscillations correspond to X-rotations of the qubit on the
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FIG. 1: Experimental setup. A high performance objective
lens creates a tightly focussed optical dipole trap, which also
acts as one of the Raman beams. The second Raman beam is
generated using two additional diode lasers, and is superim-
posed with the trapping beam on a polarising beam splitter
(PBS). A single polarization-maintaining fibre carries both
beams to the experiment. Inset shows the relevant energy
levels of 87Rb. The quantisation axis is defined by a 0.36 mT
magnetic field along the x-axis.

sequence.

Once a single atom has been detected in the trap, it
is prepared in the logical state |0⟩ using optical pumping
on the D2 line. For this we use a π-polarized Zeeman
pumping beam resonant with the F = 1 → F ′ = 1 tran-
sition and a hyperfine repumping beam resonant with
the F = 2 → F ′ = 2 transition. The quantization axis
is defined by a 0.36 mT magnetic field along the x-axis.
After 200 µs of optical pumping the atom is prepared in
the logical state |0⟩ with 85% efficiency. We have deter-
mined that all of the atoms not prepared in |0⟩ are left in
the other F = 1 sublevels. These atoms are not affected
by the Raman beams due to the Zeeman shift.

We perform single qubit rotations by coupling the log-
ical states |0⟩ and |1⟩ using a two-photon stimulated Ra-
man transition. Driving the Raman transition requires
two phase-locked laser beams separated by the hyperfine
transition frequency ωhf/2π ≃ 6.8 GHz. In our experi-
ment, the optical dipole trap forms one of these beams.
The trapping light is produced using a grating stabilised
external cavity diode laser. To generate the second Ra-
man beam we use two additional 810 nm diode lasers as
shown in Fig. 1. The frequency offset is obtained by
modulating the current of the bridge laser at 3.4 GHz,
adding two sidebands to its output with the desired fre-
quency separation. The bridge laser is phase-locked to
the dipole trap laser by injection locking on one of the
sidebands [21]. A Mach-Zender interferometer is used to

remove 90 % of the carrier power from the output of the
bridge laser, which is then used to injection lock a third
slave laser tuned to the other sideband. An acousto-optic
modulator allows intensity control of the Raman beam as
well as fine tuning of the frequency difference between the
two beams. The two beams are sent to the experiment
through the same polarization-maintaining optical fibre.
The optical dipole trap and the Raman beam have or-
thogonal linear polarizations in the z − y plane in order
to drive ∆mF = 0 transitions.

After the Raman beams have been applied, we mea-
sure the state (|0⟩ or |1⟩) of the atom. A probe laser
beam resonant with the 52S1/2 F = 2 → 52P3/2 F ′ = 3
cycling transition is used to state-selectively push atoms
in state |1⟩ out of the trap by radiation pressure. During
the 100 µs that the probe beam is applied, the depth of
the trap is lowered to 0.4 mK to make sure that atoms
in |1⟩ are rapidly removed from the trap before they can
be pumped into the F = 1 hyperfine level by off-resonant
excitation. Atoms that are initially in state |0⟩ are unaf-
fected by this procedure and remain in the trap [22]. We
then turn on the molasses cooling light for 10 ms and de-
termine whether or not the atom is still in the trap. The
states |0⟩ and |1⟩ are therefore mapped onto the presence
(absence) of the atom at the end of the sequence, as was
shown in similar experiments with caesium atoms [5, 23].

This technique actually measures whether the atom
is in the F = 1 or F = 2 hyperfine level at the end
of the sequence. Therefore, atoms that are left in the
F = 1, mF ± 1 sublevels after optical pumping also con-
tribute to the signal, leading to a 15 % background on
the probability that the atom remains after the push-out
laser is applied. To independently check how accurately
we can determine whether an atom is in the F = 1 or
F = 2 hyperfine state, we prepare the atom in either
F = 1 or F = 2 by blocking one of the optical pumping
beams. We measure that the probability that we have
incorrectly assigned the hyperfine level of the atom at
the end of a single sequence is less than 2%.

At the end of a single qubit operation, the qubit is
in general in a superposition α|0⟩ + β|1⟩. In order to
measure the coefficients α and β we repeat each exper-
iment (trapping, preparation, qubit operation and read-
out) 100 times under identical conditions. In the absence
of technical noise, the statistical error on the mean recap-
ture probability after N identical experiments should be
given by the standard deviation of the binomial distribu-
tion σ =

√

p(1 − p)/N where p is the probability that the
atom is in F = 1. We have checked experimentally that
this is the case for values of p between 0.005 and 0.95,
and for N up to 1000. Our measurements of the coeffi-
cients α and β are therefore limited solely by quantum
projection noise.

The combined performance of these techniques was
investigated by performing Rabi rotations between the
states |0⟩ and |1⟩. The results for two different Raman
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FIG. 2: Single-atom Rabi oscillations. We measure the frac-
tion of atoms in F = 1 as a function of the Raman pulse
length, at low (a) and high (b) intensity. We observe damped
Rabi oscillations between the two qubit states with Rabi fre-
quencies of Ω = 2π × 18 kHz (a) and Ω = 2π × 6.7 MHz
(b). In (b) we could not observe the first 400 ns due to the
response time of the acousto-optic modulator. The error bars
correspond to the quantum projection noise.

beam intensities are shown in Fig. 2. At our maximum
intensity, we reach a Rabi frequency of Ω = 2π×6.7 MHz,
which corresponds to a π/2 rotation time of 37 ns. The
15 % background is due to the imperfect optical pump-
ing discussed above. At both high and low power the
oscillations are strongly damped, decaying after approx-
imately 5 complete periods. We attribute this damping
to intensity fluctations in the Raman beams, due both
to technical intensity noise (we measure ≈ 2 % RMS on
each beam), and to the time varying intensity seen by the
atom due to its motion. The latter is modelled by aver-
aging the Rabi frequency over the motion of the atom,
assumed to be thermal [23]. The solid lines in Fig. 2(a)
and (b) are fits using a model which includes both ef-
fects. For both curves the temperature is fixed at 90 µK
and the total technical intensity noise (both beams) is
fixed at 2.5 %. The initial contrast and the Rabi fre-
quency are the only adjustable parameters. The model
is in good agreement for both curves, despite the 130, 000
fold reduction in the Raman beam intensity (using neu-
tral density filters) between the two curves

We have also investigated the coherence properties of
this qubit using Ramsey spectroscopy. We apply two π/2
pulses separated by a variable time t, with a fixed value of
the Raman detuning δ. In the limit δτ ≪ 1 where τ is the
π/2 pulse length, the population measured in the |1⟩ state
varies as P (t) = cos2(δt/2). The results of this measure-
ment with τ = 1.2 µs and δ = 2π × 20.8 kHz are shown
in Fig. 3. The contrast of the interference fringes decays
as the time between the two π/2 pulses is increased, with
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FIG. 3: Ramsey fringes recorded with a π/2 pulse length of
1.2 µs and a detuning δ = 2π × 20.8 kHz. The solid line is a
fit using the model presented in [23], which yields a dephasing
time T ∗

2 = 370 µs. The dotted line is the envelope of this fit.

a 1/e decay time of approximately 370 µs due to dephas-
ing of the atomic qubit compared to the Raman beams.
The dephasing mechanisms that operate in optical dipole
traps have been extensively studied [23]. In our case,
the dominant dephasing mechanism arises from the finite
temperature of the atoms in the trap. Due to the 6.8 GHz
hyperfine splitting, the detuning of the dipole trap ∆ is
slightly different for the |0⟩ and |1⟩ states, which there-
fore experience slightly different AC Stark shifts. This
gives rise to a position dependence of the qubit transition
frequency ω(r) = ωhf + ηU(r)/!, where the differential
AC Stark shift coefficient η (≈ ωhf/∆) = 7 × 10−4 for
our trap. Averaged over the motion of the atom in the
trap, this effect shifts the detuning δ between the atomic
resonance and the Raman beams by an amount which is
different for each atom in a thermal ensemble, depend-
ing on its energy. As shown in [23], this gives rise to a
decay of the contrast with a characteristic (1/e) decay
time T ∗

2 = 1.94!/ηkBT . We measure a dephasing time
of T ∗

2 = 370 µs, which is longer than the theoretical value
T ∗

2 = 220 µs that we would expect at 90 µK. By varying
the temperature we have confirmed that the dephasing is
due to the motion of the atom, although this quantitative
disagreement remains unexplained.

The dephasing due to the motion of the atoms in the
trap can be reversed using the “spin-echo” technique
[23, 24]. An additional population-inverting π pulse ap-
plied midway between the two π/2 pulses ensures that
the phase accumulated during the second period of free
evolution is the opposite of that acquired during the first.
The echo signals that we obtain are shown in Fig. 4. The
echo signal decays due to the decay of the populations
(T1 processes) and the loss of atoms to other Zeeman
states, as well as irreversible dephasing caused by fluc-
tuations in the experimental parameters. To illustrate
this, we repeated the spin echo experiments with a re-
duced trap depth and a smaller magnetic field. Lowering
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2.2.1 Apparatus

The general layout of this standard is similar to that of
the conventional, magnetic-selection standard shown in
Fig. 1, except that the state-preparation and state-detec-
tion magnets are replaced with laser systems, and the
atom detector is replaced with a fluorescence detector.
NIST-7 is described in greater detail elsewhere [15,16].
Briefly, it has a Ramsey cavity 1.55 m long and an
atomic beam diameter of 3 mm. An axial C field is
employed for field uniformity and control of the Rabi-
pedestal shape. The cavity ends are designed so that the
Poynting vector vanishes at the center of the atomic-
beam window [13], thus minimizing distributed-cavity
phase-shift effects.

The laser system uses two distributed-Bragg-reflec-
tion (DBR) lasers. One is frequency-referenced to the
F = 4 → F' = 5 (F refers to a level in the 2S1/2 state and
F' refers to a level in the 2P3/2 state) saturated absorption
feature in an evacuated cesium cell. The second laser is
frequency-referenced to the F = 4 → F' = 3 transition.

The digital servo system for locating and locking to
the center of the resonance uses a microwave synthesis
scheme that involves the addition of a 10.7 MHZ offset
near the top of the multiplication chain. This frequency
comes from a computer-controlled direct-digital
synthesizer (DDS). The entire system is frequency
referenced to an active hydrogen maser and the output
is in the form of a table of offset values sent to the DDS.

This system uses slow, square-wave frequency modula-
tion (≈0.5 Hz) with blanking during the signal transients
[17]. Its advantage is its extreme frequency agility
that allows interrogation of a number of features in the
cesium spectrum.

2.2.2 Magnetic-Field Effects

The C field is operated under closed-loop servo
control. This low-duty-cycle (1 %) servo maintains the
frequency of the first field-dependent transition to
within 10 mHz of a preselected value. This contributes
an uncertainty in the second-order Zeeman shift on the
clock transition of <1!10–16. Field measurements made
during assembly [16] showed a fractional field variation
at the position of one Ramsey cavity of 5!10–4 relative
to the mean field. This nonuniformity produces a shift
of <1!10–17 at all microwave power levels. Measure-
ments of the offsets of the field-dependent Ramsey lines
from the centers of their corresponding Rabi pedestals
confirm the size of the inhomogeneity shift [14].

2.2.3 Second-Order Doppler Effect

The second-order Doppler shift is of order 3!10–13.
To achieve the accuracy goal requires a measurement of
the effective, ensemble-averaged velocity with an uncer-
tainty of <1 %. This has been done using both a Ramsey
lineshape-inversion technique [18] and a pulsed optical-
pumping technique [19]. The second-order Doppler
correction was computed for several microwave power
levels using the two methods. While the corrections
varied by nearly 2!10–13 over the 7.5 dB power range,
the shifts computed from the two methods were in
excellent agreement (within 2!10–15).

To maintain stability of the second-order Doppler
shift to this level requires control of the microwave
power experienced by the atoms to much less than
0.1 dB. This is achieved using a power-level servo
system with a precision power splitter and a stable power
meter. The computer determines the optimum power
level through measurement of the signal intensity as a
function of microwave power. The Ramsey-inversion
program used to measure the velocity profile also
returns a measure of the absolute power. The value
returned by the Ramsey-inversion program and that
determined by the power-level servo system are in
excellent agreement.

2.2.4 Cavity-Related Errors

The end-to-end cavity phase shift is measured by
reversing the beam direction. The fractional frequency
shift on beam reversal is !1.2!10–12, with an uncer-

Fig. 2. NIST-7 Ramsey pattern (F = 3 ↔ F = 4) transition in the
ground state). The central fringe has a full linewidth at half maximum
of about 65 Hz.
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2. Cesium-Beam Frequency Standards
2.1 Standards Based on Magnet State Preparation

and Detection

Figure 1 shows a schematic diagram of a conventional
cesium-beam frequency standard. The cesium oven,
operated near 100 !C, creates a vapor of atoms that are
collimated and passed successively through the state-
preparation region (the A magnet in Fig. 1), the
microwave cavity, and then the state-detection region
(the B magnet and detection system). As they emerge
from the oven the 133Cs atoms are evenly distributed in
the 16 mF states of the 2S1/2 ground electronic state. In
the state-preparation region, a magnet with an inhomo-
geneous field (Stern-Gerlach magnet) spatially sepa-
rates atoms in the various mF states, and atoms in one of
the ground-state levels (F = 3, mF = 0 or F = 4, mF = 0,
often designated as !3,0" or !4,0") are transmitted
through the microwave cavity. Because of the velocity
spread in the atomic beam, this separation is not perfect,
so some atoms in other mF states are mixed in with the
ground-state atoms that go through the cavity. This type
of state preparation naturally involves a rejection of most
of the atoms entering the system. State detection uses an
identical Stern-Gerlach magnet arranged so that atoms
are directed to the hot-wire detector only if they have
been stimulated by the microwave field to the other
ground, mF = 0 level.

The designs of the seven NBS/NIST cesium-beam
frequency standards, developed between 1950 and 1993,
were influenced by a need to reduce and control system-
atic frequency shifts while maintaining the highest prac-
tical signal-to-noise performance. The linewidths of
these standards were reduced by extending the length of
the microwave cavity, which grew to 3.74 m for NBS-5.
This increase in length was achieved at a cost of signal
intensity. Furthermore, these long beam tubes, being
horizontal, also suffered gravitational dispersion on the
order of 1 cm (the slower atoms fall further than the
faster ones, which spreads out the beam), thereby com-
plicating the dispersion associated with the magnetic
focusing produced by the state-preparation magnet.
Reduction of the uncertainty for these beam standards
was achieved through a variety of incremental develop-
ments, but a gradual improvement in the theory also
contributed to improved ways of evaluating and
controlling systematic frequency shifts.

2.2 NIST-7, An Optically Pumped Cesium-Beam
Standard

The use of optical pumping to replace state-selection
magnets was first suggested by Kastler in 1950 [12],
although it was not made practical until tunable lasers
were developed. There are a number of ways in which
to apply optical pumping to the cesium-beam standard,

Fig. 1. Diagram of a cesium-beam frequency standard using magnetic state selection and detection. The form of
Ramsey interrogation involves a U-shaped microwave cavity, called a Ramsey cavity, where the oscillatory fields are
spatially separated.
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Measurement of the !4,1"→!3,1" transition deter-
mines the temporal average of the magnetic field B over
the flight time. However, the temporal average of B 2 is
needed to correct the second-order Zeeman shift. If the
magnetic field is modeled as seen by the atoms as
H (t ) = H0[1–! f (t ) where f (t ) is a function with
!f (t )! " 1, and ! is a scaling factor, then the difference
between the mean square and the square of the mean
leads to a frequency shift given by

#$

$0

=
(427 % 108 H 2

0)! 2

$0

[#f (t )"2–#f (t )2"] (3)

From the magnetic field model, ! can be shown to be of
order 0.1, and from consideration of atom ballistics,
#f (t )"2 – #f (t )2" is found to be " 0.01. The maximum
inhomogeneity frequency shift is then less than
#$ /$0 = 10–17 .

The uncertainty associated with the quadratic
Zeeman shift is therefore dominated by problems
associated with location of the central fringe and is
conservatively assigned a value equivalent to the mis-
assignment of one whole fringe in the mF = 1 manifold,
that is, 3% 10–16.

3.2.2 Spin-Exchange Frequency Shift

The evaluation of the spin-exchange frequency shift
requires a measurement of the atomic density, which is
determined using several methods. This involves care-
fully calibrating the entire detection system including
the size of the detection beams and their intensity, the
solid angle for collection of photons from the atomic
sample, and finally a calibration of the photodiode and
its associated amplifier. The average density is deter-
mined from a measurement of the number of atoms

Fig. 4. NIST-F1 Ramsey pattern. The upper portion of the figure shows the entire ground state
(F = 3 ↔ F = 4) pattern, while the lower portion of the figure shows an expanded view of the central
fringe. The full linewidth at half maximum is about 1 Hz.
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Sub-Doppler cooling. Sub-recoil cooling 293

Fig. 13.2 Example of experimental results obtained by the time-of-flight method. The variations
with the detuning of the measured temperatures (data points and solid line) are not in agreement
with the prediction deduced from the theory of Doppler cooling (dashed curve). The temperatures
are much lower than expected and do not pass through a minimum when the detuning is increased.
Figure adapted from [Lett et al. (1988)]. Copyright: American Physical Society.

In this chapter, we also address another fundamental limit, the so-called recoil
limit. In most laser cooling schemes, fluorescence cycles never stop. Since the
random recoil !k communicated to the atom by the spontaneously emitted photon
cannot be controlled, it seems impossible to reduce the atomic momentum spread
below a value corresponding to a single photon momentum !k. Another motivation
of this chapter is to show that this fundamental limit can also be overcome, and
that one can obtain atomic momentum spreads smaller than !k. The corresponding
cooling schemes are called “sub-recoil” (cooling below the single photon recoil limit)

(∆p)sub-recoil < !kL or, equivalently (∆v)sub-recoil <
! kL
M

. (13.5)

13.2 Sub-Doppler cooling

13.2.1 The basic ingredients of sub-Doppler cooling

The new mechanisms that will be described in this section use two important fea-
tures that were not included in the description of laser cooling given in Chap. 12.

(1) The temperature measurements described above are performed on alkali atoms,
which have several Zeeman sublevels in the ground state. This introduces new
internal times. Atoms can absorb one photon from one Zeeman sublevel and
fall, by spontaneous emission of a photon, into another Zeeman sublevel. This
optical pumping process has been described in Chap. 3. At low intensity, the
photon absorption rate γg from the ground state can be much smaller than the
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Fig. 9.9 (a) The mechanism of a
magneto-optical trap illustrated for the
case of an atom with a J = 0 to
J = 1 transition. In the magnetic field
gradient the Zeeman splitting of the
sub-levels depends on the atom’s posi-
tion. Two counter-propagating beams
of circularly-polarized light illuminate
the atom and the selection rules for
transitions between the Zeeman states
lead to an imbalance in the radiative
force from the laser beams that pushes
the atom back towards the centre of
the trap. (Not to scale; the Zeeman
energy is much smaller than the opti-
cal transition energy.) (b) A magneto-
optical trap is formed from three or-
thogonal pairs of laser beams, as in the
optical molasses technique, that have
the requisite circular polarization states
and intersect at the centre of a pair
of coils with opposite currents. The
small arrows indicate the direction of
the quadrupole magnetic field produced
by the coils (as shown in more detail in
Fig 9.8).

(a)

(b)

Coils
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Magneto-optical trap (MOT)



From laser cooling to BEC



Ion trap physics 451

1.0 mm

6 mm

(a)

(b)

z

y

x

Fig. 8.3 Linear ion trap. (a) Photograph of the actual trap, together with a scheme of the

electrode configuration. (b) Linear strings of two, five and eight ions in the trap. Courtesy of
R. Blatt.

We should note that Paul traps need not be sophisticated devices in an ultra-
high vacuum cryogenic environment. Building a Paul trap able to hold small charged
dust particles is fairly simple. Figure 8.2(b) shows the trajectory of an aluminium
dust particle suspended in a Paul trap operating with moderate voltages and a rough
vacuum in an early experiment (Wuerker et al. 1959).

The quadrupolar trap geometry can be modified by changing the shape of the trap
electrodes to confine ions in different spatial configurations. The linear trap shown in
Fig. 8.3(a) is used in the quantum information experiments of the Innsbruck group
(Gulde et al. 2003). Four elongated electrodes, symmetrically arranged around the z
axis, create a quadrupolar potential in the xOy plane, almost invariant by translation
along Oz. A strong radiofrequency voltage applied across these electrodes provides a
tight transverse confinement. The typical transverse oscillation frequencies, ωx,y/2π
are in the two to four Megahertz range. The longitudinal confinement along the z axis
is provided by a weak positive d.c. potential applied on the two needles closing the
structure. The corresponding oscillation frequency, ωz/2π, is below 1 MHz. When this
trap is loaded with a few cold ions (see cooling procedure below), they stay close to
trap axis, with negligible contribution from the micro-motion in the transverse direc-
tion. The longitudinal motion along trap axis is ruled by electrostatic forces, without
any micro-motion in that direction. The fast evolution at the rf frequency is thus com-
pletely negligible and the ions motion is fully described by the slow macromotion at
frequencies ωx,y,z/2π.

Linear Paul trap for ions



Coulomb crystals in Paul traps

A series of measurements on near spheric crystals with
different numbers of ions were done to investigate the size
effect of the observation of three-dimensional long-range
structures. A few resulting images of this study are pre-
sented in Figs. 2(d)–2(f). Here one observes long-range-
order for as few as 770 ions [Fig. 2(e)], and even some
structure is present in the core for the case of 290 ions
[Fig. 2(f)].

When comparing the images in Fig. 2, it is evident that
the relative number of ions in the regular structure de-
creases with the size of the crystals, as may be expected
since the outer layer of the crystals is always spheroidal
shaped. Another size dependent quantity noticed is the
frequency at which ordered structures are indeed observed:
the smaller the crystals the more unlikely it is to observe
the regular structures. The rate at which the long-range
ordered structures are observed in crystals of a few thou-
sand ions is !0:1 Hz and the lifetime of the structure is a
few hundred ms. In all cases, since the exposure time of
100 ms is many orders of magnitude larger that both the rf
period and the time scale of crystal vibrations (!1=!plasma,
with !plasma ! 1 MHz being the plasma frequency), the
crystal structures are at least to be considered as metastable
states.

Molecular dynamics (MD) simulations of ground state
configurations of Coulomb crystals in static spherical har-
monic potentials have proven only to have a pronounced
bcc structure when the number of ions exceeds !5000
[28,29]. However, in contrast to such ground state simula-
tions, a certain thermal energy is always present in experi-
ments, and configurations different from the ground state

may occur. In order to understand the observed long-range-
ordered structures, we have made several MD simulations
using a static spherical harmonic potential where we ini-
tially kept a core of the ions fixed in a bcc structure and
cooled the surrounding ions slowly until !> 100 000 was
reached. For an ion system of !1000 ions, the excess
potential energy (relative to the ground state configuration)
of such artificially created cold configurations is even with
more than one tenth of the ions kept fixed in a bcc structure,
several times smaller than the thermal energy of the system
at the typical experimental temperature of a few mK.
Simulations where all the ions were subsequently slowly
heated to !! 400 (a few mK) furthermore showed that the
artificially made configurations could be metastable on the
time scale of the exposure time of the images, !10 ms.
Figure 3(a) is an example of a constructed image based on
the results of a MD simulation of a crystal of 2685 ions
heated to ! " 400 (temperature: 5 mK), where initially
10% of the ions were kept fixed in a bcc structure. With the
10 ms integration time of this simulation, the central bcc
structure is seen to be well preserved, and the image
resembles very much the experimentally obtained image
of a Coulomb crystal with about the same number of ions
[Fig. 3(b)].

For crystals with more than !2000 ions, images are
observed, which suggests three-dimensional long-range
ordering different from bcc. In Fig. 4, two images of the
same ion ensemble (!13 000 ions) at two different in-
stants are presented. While the hexagonal structure of
Figs. 4(a) and 4(b) with d" 17:2# 0:8 !m again is com-
patible with a bcc structure, the rectangular structure ob-
served in Figs. 4(c) and 4(d) cannot be interpreted as
another projection of a bcc structure, but has to relate to
another structure. The sides of the rectangle are h "
15:2# 0:5 !m and w " 9:7# 0:2 !m, which yields a
ratio of the sides of h=w " 1:55# 0:06. We do not find
that any projection of cubic crystal structures exactly
complies with this ratio, but the fcc structure projected
in the $211% direction comes close as this has the ratio

FIG. 2. Images of Coulomb crystals. The first column shows
three crystal images of the same ensemble of!2000 ion with the
trap potentials being Urf " 500 V and (a) Uend" 27 V,
(b) Uend" 33 V, and (c) Uend" 40 V, respectively. The second
column represents images near spherical crystals for the same
trap potentials Urf " 400 V and Uend" 21 V. The number of
ions in the crystals is (d) 1700, (e) 770, and (f) 290.

FIG. 3. Images of Coulomb crystals. (a) Time averaged image
based on data from MD simulations of Coulomb clusters with
2685 ions at !! 400 (temperature: !5 mK). The averaging
time is 10 ms. (b) Image from experiments with clusters con-
taining !2700 ions.
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FIG. 2 Colour -coded images of crystal-
line structures of laser -cooled 24Mg+ 
ions. The intensity increases from vio-
let to blue. yellow and red. Individual 
ions could be resolved in these images. 
The ions arrange themselves in 
minimum energy configurations. a. For 
low ion density (A =0.29) the ions form 
a string along the field axis; b. increas-
ing the ion density changes the 
configuration to a zig-zag (A =0.92). At 
still higher ion densities the ions form 
ordered helical structures on the sur-
face of a cylinder: e. two interwoven 
helices at A = 1.9; d, three interwoven 
helices at A = 2.6. Experimental images 
are displayed above. visualizations 
below. 
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FIG. 3 Images and intensity profiles of (a) string. (b) one shell 
(pi a = 1.05. total ion number in the ring N = 5 X 104). (e) one 
shell plus string (pi a = 1.8. N = 1 x 105 ). (d) two shells (pi a = 
2.7.N = 2 X 105

). (e) two shells plus string(pla=3.4. N = 3 X 

105
) and (f) four shells (pi a = 6.2. N = 8 X 105

). The ions 
are not individually resolved. The structures can be identified 
with the help of the radial intensity profiles (right). The images 
are colour-coded as in Fig. 2. Integration times are longer 
than 3 min each. 
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Coherent control of the ion motion

lieved to be in part due to uncontrolled magnetic-field
fluctuations at the position of the ion and frequency and
intensity fluctuations of the two Raman light fields used
in the experiment. One example of such noise sources,
the magnetic fields due to currents switching at the
60-Hz line frequency and its harmonics, was successfully
suppressed by producing a compensation field of the
right amplitude and phase with extra coils close to the
trap.

Another source of dissipation was an unexpectedly
high heating rate out of the motional ground state in
these experiments. The observed heating rate was about
one quantum per millisecond, about three orders of
magnitude higher than expected from thermal electronic
noise (Wineland et al., 1998; Turchette, Kielpinski, et al.,
2000).

The n0.7 scaling of the damping constants with number
state was extracted from fits to the data in this experi-
ment. Theoretical work has incorporated spontaneous
emission and heating to explain the observed scaling
(Plenio and Knight, 1996, 1997; Bonifacio et al., 2000; Di
Fidio and Vogel, 2000; Budini, de Matos Filho, and
Zagury, 2002).

The second experiment on number states was carried
out at the University of Innsbruck (Roos et al., 1999).
There a single 40Ca! ion was cooled to the ground state
on the S1/2→D5/2 quadrupole transition (see also Sec.
IV.B), leaving the ion in the n"0 number state 99.9% of
the time. The n"1 number state was created by apply-
ing a ! pulse on the blue sideband and then incoherently
repumping the excited electronic state !e" (in this ex-
periment corresponding to the mf"#5/2 sublevel of the

D5/2 state) via the P3/2 level with light at 854 nm. Since
the repumping was done inside the Lamb-Dicke
regime,5 it did not change the motional state for most of
the experiments, thus leaving the ion in the !g"!n"1"
number state with high probability. Figure 12 shows the
Rabi flopping dynamics on the blue sideband for the two
prepared number states [(a) n"0 and (b) n"1]. The
Rabi frequency #0,1 is 21(1) kHz and the frequency ratio
is #1,2 /#0,1$1.43, close to & , with the asymptotic value
of Eq. (77) for the Lamb-Dicke parameter approaching
zero. In this experiment a contrast over 0.5 was main-
tained for about 20 periods. Since a heating rate of
about one quantum in 190 ms (1/70 ms) was measured
along the axial (radial) direction for the Innsbruck trap,
heating was not believed to play a leading role during
the $1-ms duration of individual experiments. The de-
cay in contrast was mainly attributed to magnetic-field
fluctuations in the laboratory and intensity fluctuations
in the laser beams.

2. Creation of coherent states

Coherent states of motion can be produced from the
!n"0"state by a spatially uniform classical driving field
(Carruthers and Nieto, 1965), by a ‘‘moving standing
wave’’ (Wineland et al., 1992), by pairs of standing waves
(Cirac, Blatt, and Zoller, 1994), or by a nonadiabatic
shift of the trap center (Janszky and Yushin, 1986; Yi
and Zaidi, 1988; Heinzen and Wineland, 1990). In ex-
periments of the NIST group, the first two approaches
were taken. For the classical drive, a sinusoidally varying
potential at the trap oscillation frequency was applied to
one of the trap compensation electrodes for a fixed time
of typically 10 %s with varying amplitudes. This gave rise
to an approximately spatially homogeneous force on the
ion of the form

F&t'"eE0 sin&(drivet#)', (138)

which can be associated with an interaction potential

HI"# x̂F&t'"#! *

2m+
,âu*&t'! â†u&t'-F&t'.

(139)

5.854$0.03 for the D5/2→P3/2 transition and .393$0.09 for the
spontaneous decay, so the probability for two carrier transi-
tions is (1#.854

2 )(1#.393
2 )"0.99.

FIG. 11. Number states in the NIST experiment (Meekhof
et al., 1996): (a) Rabi oscillations on the blue sideband for the
ground state in the trap (n"0); (b) !, measured ratio of Rabi
frequencies for different number states; solid lines, theoretical
predictions for several Lamb-Dicke parameters.

FIG. 12. Number states in the Innsbruck experiment (Roos
et al., 1999): (a) Rabi oscillations on the blue sideband for the
ground state (n"0); (b) Rabi oscillations as in (a) but now for
the number state !n"1".
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Vacuum Rabi oscillations

An atom–photon entangling machine 279
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Fig. 5.29 Important atom–cavity interac-
tion times in the vacuum Rabi oscillation.

First period of curve (A) in Fig. 5.26 with

π/2-, π- and 2π-quantum Rabi pulses high-

lighted. Reprinted with permission from

Brune et al. (1996b). c⃝ American Physical
Society.

with our CQED set-up. After a quarter of a period (π/2-quantum Rabi pulse), a
maximally entangled atom–cavity state is prepared. Half a period pulse (π-pulse)
corresponds to an energy swap between the atom and the field. Finally, a full period
(2π-pulse) brings the system back to its initial state. It corresponds to a 2π-rotation
of the atom–cavity pseudo-spin and, hence, to a reversal of the sign of the initial state.

Complex atom–field manipulations can be performed by combining these three
pulses which constitute the elementary ‘stitches’ implemented to ‘knit’ entanglement.
We illustrate this knitting process by describing three experiments combining various
π- and π/2-stitches: realization of a quantum memory (Section 5.4.3), of an atomic
EPR pair (5.4.4) and of a two-mode entangled state (5.4.5).

This step-by-step entangling method requires a very large cavity quality factor,
conserving the atom–field coherence throughout the successive knitting stitches. It
might be advantageous, in some cases, to replace this progressive procedure by an
alternative method, achieving entanglement in a single non-resonant operation and
thus less demanding in terms of cavity damping times. We describe this alternative
procedure in Section 5.4.6. Other applications of the quantum Rabi oscillation to
information processing in CQED experiments are described in Chapter 6.

5.4.1 Quantum circuit equivalent to vacuum Rabi oscillation

It is natural to describe the vacuum Rabi oscillation as resulting from the coupling
of an atomic qubit (with |e⟩ and |g⟩ standing for |1⟩ and |0⟩) and a field qubit (with
|0⟩ and |1⟩ represented by the vacuum and the one-photon states).9 This immediately
raises a difficulty. If the atom can be considered a bona fide two-level system, the field
has an infinite numbers of levels besides |0⟩ and |1⟩. Even if the mode is initially pre-
pared within the {|0⟩ , |1⟩} subspace, the evolution induced by the Jaynes–Cummings
Hamiltonian does not leave invariant the tensor product of the atom and field sub-
spaces defined above. Calling U(tri ) the unitary operator describing this evolution, we
see immediately that U(tri ) |e, 1⟩ is generally a linear combination of |e, 1⟩ and |g, 2⟩.
In more physical terms, bringing the atom in |e⟩ in a cavity containing one photon

9We choose in this section an atomic qubit assignment different from that of Chapter 3. The lower
state |g⟩ is now |0⟩. With this convention, the ground state of the atom–field system is |0,0⟩.

252 Photons in a box

R
2

C

R
1

B

S'

S

O

D

L
1

L'
1

L
2

!

Fig. 5.15 General scheme of the CQED experiments with circular Rydberg atoms.

explained in simple classical terms. It is somewhat paradoxical that their coupling
will lead us in an exploration of entanglement and non-locality, which are – arguably
– the deepest expressions of the quantum.

A typical scheme of a cavity QED microwave experiment with circular atoms is
shown in Fig. 5.15. Atoms effusing from oven O are velocity-selected (by lasers L1 and
L′

1). They are then prepared into a circular state in box B, by a combination of laser
(L2) and microwave excitation. They then interact with the superconducting cavity C
before being counted in the detector D. The cavity C is coupled to a classical source
S, which can be used to inject a small coherent field in the mode. Two low-quality
cavities R1 and R2, driven by the classical source S′, make it possible to manipulate
the atomic state before or after the interaction with C. The set-up, from B to D, is
enclosed in a cryogenic environment and shielded from room-temperature blackbody
radiation.

We will now analyse the main components of this set-up. In Section 5.2.1 we discuss
the properties of the circular Rydberg atoms and describe how they are prepared and
detected. Section 5.2.2 is devoted to the description of the superconducting cavities
and of the field stored in them. In Section 5.2.3, we analyse the atom–field coupling.
We then describe (Section 5.2.4) how the cavities are tuned in resonance with the
atoms, how their Q factors are measured and how they can be fed with coherent
fields. We conclude by discussing the present and future limitations imposed by the
finite cavity damping time.

5.2.1 Circular Rydberg atoms

Main properties of circular Rydberg states

A circular Rydberg state (Hulet and Kleppner 1983; Gallagher 1994) is a very high-
lying alkali atom level (rubidium in our experiments), in which the single valence
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Single-photon pistol

change of the dark state, j!0
1i, during the initial stage of the

pump pulses and therefore optimal adiabaticity with mini-
mal losses to the other eigenstates. The linear slope of the
recycling pulses suppresses higher Fourier components
and therefore reduces photon emission into the detuned
cavity. Note that the recycling process is finished before the
end of the pulse is reached, so that the final sudden drop in
Rabi frequency does not influence the atom.

Also shown in Fig. 2 are two measured arrival-
time distributions of the photons and a simulation of the
photon-emission rate for typical experimental parameters.
The simulation is based on a numerical solution of the
system’s master equation [22] which takes into account the
decay of the relevant states. The simulation [Fig. 2(c)]
reveals that the pump-pulse duration of 2 "s is slightly
too short, as the emitted photon pulse is not completely
finished. This is also observed in the photon arrival-time
distribution [Fig. 2(b)]. Here, the measured data agree well
with the simulation if only photons from strongly coupled
atoms are considered (solid line). For these, we assume that
several photons are detected within the atom-cavity inter-
action time. If solitary photons, which we attribute to
weakly coupled atoms, are included in the analysis, the
arrival-time distribution is given by the dotted line. Note
that the envelope of the photon pulses is well explained by
the expected shape of the single-photon wave packets, and
therefore cannot be attributed to an uncertainty in emission
time, which is not present for a unitary process. Assuming
transform-limited Gaussian pulses, we infer a single-
photon linewidth of !# ! 340 kHz (FWHM) from the
1:3 "s photon-pulse duration (FWHM). We emphasize
that the pump-pulse duration was adjusted to maximize
the number of photons per atom. Longer pump pulses
would not truncate the photon pulses and, hence, would
slightly increase the emission probability per pulse, but due
to the limited atom-cavity interaction time, the total num-
ber of photons per atom would be reduced.

Figure 3 displays an example of the photon stream
recorded while single atoms fall through the cavity one
after the other. Obviously, the photon sequence is different
for each atom. In particular, not every pump pulse leads to
a detected photon, since the efficiencies of photon genera-
tion and photon detection are limited. The second-order

intensity correlation function of the emitted photon stream
is shown in Fig. 4. Displayed is the cross correlation of the
photon streams registered by the two photodiodes D1 and
D2. It is defined as g"2#"!t# ! hPD1"t#PD2"t $ !t#i=
"hPD1"t#i hPD2"t#i#, where PD1"t# and PD2"t# are the
probabilities to detect a photon at time t with photodiode
D1 and D2, respectively. Note that all photon-arrival times
are recorded to calculate the full correlation function,
without the otherwise usual restriction of a simple start/
stop measurement which would consider only neighboring
events. Of course, g"2# includes not only correlations be-
tween photons emitted from the cavity but also those
involving detector-noise counts. This last contribution
has been determined from an independent measurement
of the detector-noise count rate. The result is indicated by
the time-independent hatched area in Fig. 4. Only the
excess signal, ~gg"2#"!t# ! g"2#"!t# $ g"2#noise, reflects the
true photon statistics of the light emitted from the atom-
cavity system.

The correlation function, ~gg"2#"!t#, oscillates with the
same periodicity as the sequence of pump pulses. This
indicates that photons are emitted only during the pump
pulses, and no emissions occur when recycling pulses are
applied. The nearly Gaussian envelope of the comblike
function is obviously a consequence of the limited atom-
cavity interaction time. The most remarkable feature in
Fig. 4 is the missing correlation peak at !t ! 0. In fact,
photon antibunching together with ~gg"2#"0# % 0 is observed.
This clearly demonstrates the nonclassical character of the
emitted light, and proves that (a) the number of emitted
photons per pump pulse is limited to one, and (b) no further
emission occurs before the atom is recycled to its initial
state. Note that the relatively large noise contribution is no
intrinsic limitation of our system but reflects only the low
atomic flux through the cavity in the present experiment.

We emphasize that the detection of a first photon signals
the presence of an atom in the cavity and fixes the atom
number to one. The photons emitted from this atom during
subsequent pump pulses dominate the photon statistics and
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a
b 
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FIG. 3 (color online). Photon sequence: clip of the photon
streams arriving at the photodiodes D1 and D2 (traces a and
b, respectively,). Several sequences of two (2) and five (5)
photon emissions are observed, with durations comparable to
the atom-cavity interaction time. The solitary events (s) are
either dark counts, or, more likely, photons coming from
atoms that are only weakly coupled to the cavity.
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FIG. 4 (color online). Second-order intensity correlation of
the emitted photon stream, averaged over 15 000 experimental
cycles (loading and releasing of the atom cloud) with a total
number of 184 868 photon counts. The hatched area repre-
sents correlations between photons and detector-noise counts.
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Fig. 6.5 (a) Hanbury Brown–Twiss (HBT) experiment with a photon stream incid-
ent on the beam splitter. The pulses from the single-photon counting detectors D1
and D2 are fed into the start and stop inputs of an electronic counter/timer. The
counter/timer both counts the number of pulses from each detector and also records
the time that elapses between the pulses at the start and stop inputs. (b) Typical
results of such an experiment. The results are presented as a histogram showing the
number of events recorded within a particular time interval. In this case the histogram
shows the results that would be obtained for a bunched photon stream.

counting the number of pulses at each input. The results of the experi-
ment are typically presented as a histogram, as shown in Fig. 6.5(b).
The histogram displays the number of events that are registered at each
value of the time τ between the start and stop pulses.

In Section 6.3 we discussed the g(2)(τ) function classically in terms of
intensity correlations. Since the number of counts registered on a photon-
counting detector is proportional to the intensity (cf. eqn 5.2), we can
rewrite the classical definition of g(2)(τ) given in eqn 6.6 as:

The correct normalization of g(2)(τ)
is very important for establishing non-
classical results with g(2)(0) < 1. The
counter/timer arrangement shown in
Fig. 6.5 produces a histogram that is
proportional to g(2)(τ) but does not
give its exact value. From an experi-
mental point of view, the normaliza-
tion can be performed by assuming
that g(2)(τ) = 1 for very long time
delays. Alternatively, the non-classical
source can be replaced by a Poisso-
nian source of the same average inten-
sity and the coincidence rates com-
pared. Single-mode laser light can serve
as a convenient Poissonian calibration
source.

g(2)(τ) =
⟨n1 (t)n2(t + τ)⟩
⟨n1 (t)⟩⟨n2(t + τ)⟩ , (6.16)

where ni(t) is the number of counts registered on detector i at time t.
This shows that g(2)(τ) is dependent on the simultaneous probability of
counting photons at time t on D1 and at time t + τ on D2. In other
words, g(2)(τ) is proportional to the conditional probability of detecting
a second photon at time t = τ , given that we detected one at t = 0. This
is exactly what the histogram from the HBT experiment with photon-
counting detectors records. Hence the results of the HBT experiment also
give a direct measure of the second-order correlation function g(2)(τ) in
the photon interpretation of light.

A moment’s thought makes us realize that completely different results
are possible with photons at the input port of the beam splitter than
with a classical electromagnetic wave. Let us suppose that the incoming
light consists of a stream of photons with long time intervals between
successive photons. The photons then impinge on the beam splitter one
by one and are randomly directed to either D1 or D2 with equal proba-
bility. There is therefore a 50% probability that a given photon will be
detected by D1 and trigger the timer to start recording. The generation
of a start pulse in D1 implies that there is a zero probability of obtain-

We are, of course, assuming here that
the detectors have unity quantum effi-
ciencies. Less perfect detectors would
reduce the overall count rate, but would
not affect the essential gist of the
argument. ing a stop pulse from D2 from this photon. Hence the timer will record

no events at τ = 0. Now consider the next photon that impinges on the

A. Kuhn et al., Phys. Rev. Lett. 2002

contribution of the excited state, jei, and is therefore not
affected by spontaneous emission.

The dark state j!0
1i is now used to generate a single-

photon inside the cavity. This is achieved by establishing a
large atom-cavity coupling constant, g, before turning on
the pump pulse. In this case, the system’s initial state,
ju; 0i, coincides with j!0

1i. Provided the pump pulse rises
slowly, the system’s state vector adiabatically follows any
change of j!0

1i, and for a lossless cavity a smooth transition
from ju; 0i to jg; 1i is realized as soon as !P ! 2g. Hence,
a single photon is generated in the relevant cavity mode.
This photon leaves the cavity through that mirror which is
designed as an output coupler. The emission starts as soon
as the decaying state, jg; 1i, contributes to j!0

1i, i.e., al-
ready with the rising edge of the pump pulse, because the
contribution from jg; 1i is proportional to !2

P"t#. If the
pump pulse rises slowly, the emission can therefore end
even before !P > 2g. The dynamics of the simultaneous
excitation and emission processes determines the duration
and, hence, the linewidth of the photon. When the photon is
emitted, the final state of the coupled system, jg; 0i, is
reached. This state is not coupled to the one-photon mani-
fold, and the atom cannot be reexcited. This limits the
number of photons per pump pulse and atom to one.

To emit a sequence of photons from one and the same
atom, the system must be transferred back to ju; 0i once an
emission has taken place. To do so, we apply recycling
laser pulses that hit the atom between consecutive pump
pulses. The recycling pulses are resonant with the jgi $
jei transition and pump the atom to state jei. From there, it

decays spontaneously to the initial state jui. Note that state
jei populated by the recycling laser couples to the cavity.
However, spontaneous emission into the cavity is sup-
pressed by deliberately choosing a large cavity detuning,
"C. The pump laser is detuned by the same amount to
assure Raman resonance. If an atom that resides in the
cavity is now exposed to a sequence of laser pulses, which
alternate between triggering single-photon emissions and
reestablishing the initial condition by optical pumping, a
sequence of single-photon pulses is produced.

Figure 1(b) shows the apparatus. Atoms are released
from a magneto-optical trap and pass through the TEM00
mode of the optical cavity, where they are exposed to the
sequence of laser pulses. On average, 3:4 atoms=ms enter
the cavity [24], so that the probability of finding a single
atom inside the cavity is 5.7%, while the probability of
having more than one atom is only 0.18% which is negli-
gible. The cavity is 1 mm long and has a finesse of 60 000.
One mirror has a 25 times larger transmission coefficient
than the other. Therefore, photons are preferentially emit-
ted into one direction. These photons are counted by two
avalanche photodiodes which are placed at the output ports
of a beam splitter. For each experimental cycle, all photon-
arrival times are recorded with transient digitizers with a
time resolution of 8 ns.

In the experiment, the electric field amplitudes and,
hence, the Rabi frequencies of the pump and recycling
pulses have the shape of a sawtooth and increase linearly,
as displayed in Fig. 2(a). This leads to a constant rate of
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FIG. 2 (color online). Pulse shapes. (A) The atoms are
periodically illuminated with 2 "s-long pulses from the
pump (solid line) and the recycling laser (dotted line).
(B) Measured arrival-time distribution of photons emitted
from the cavity (dotted line). The solid line shows the
arrival-time distribution of photons emitted from strongly
coupled atoms (see text). (C) Simulation of the pro-
cess with "g;!0

P;R;"P;C;#;## $ 2$ % "2:5; 8:0; & 20:0; 6:0;
1:25# MHz, where !0

P;R are the peak Rabi frequencies of the
pump and recycling pulses, and # and # are the atom and
cavity-field decay rates, respectively.
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FIG. 1 (color online). Scheme of the experiment.
(A) Relevant energy levels and transitions in 85Rb. The
atomic states labeled jui, jei, and jgi are involved in the
Raman process, and the states j0i and j1i denote the photon
number in the cavity. (B) Setup: a cloud of atoms is released
from a magneto-optical trap and falls through a cavity 20 cm
below in about 8 ms with a velocity of 2 m=s. The interaction
time of a single atom with the TEM00 mode of the cavity
(waist w0 $ 35 "m) amounts to about 17:5 "s. The pump
and recycling lasers are collinear and overlap with the cavity
mode. Photons emitted from the cavity are detected by a pair
of photodiodes with a quantum efficiency of 50%.
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Dynamics induced by an arbitrary state in the cavity274 Photons in a box
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Fig. 5.26 Rabi oscillation in a small coherent field. (A), (B), (C) and (D): Rabi signal

representing Pe(t
r
i ), for fields with increasing amplitudes. (A): no injected field (B), (C) and

(D): coherent fields with 0.40 (±0.02), 0.85 (±0.04) and 1.77 (±0.15) photons on average.

The points are experimental [errors bars in (A) only for clarity]; the solid lines correspond to
a theoretical fit. (a), (b), (c), (d): corresponding Fourier transforms. Frequencies Ω0/2π = 47

kHz,
√

2Ω0/2π,
√

3Ω0/2π and 2Ω0/2π are indicated by vertical dotted lines. Vertical scales are

proportional to 4, 3, 1.5 and 1 from (a) to (d). (α), (β), (γ), (δ): Photon number distributions

p(n) inferred from the experimental signals (points). Solid lines show the theoretical thermal

(α) or coherent [(β), (γ), (δ)] distributions which best fit the data. The inferred residual

thermal photon number is nth = 0.06 for (A). Reprinted with permission from Brune et al.
(1996b). c⃝ American Physical Society.
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Vacuum Rabi splitting

E. Coupling to a third level

The previous sections described the coupling of a two-level
atom (with states jci and jei) to the cavity field at a rate g. This
section introduces an additional uncoupled ground-state level
jui detuned by Δu from the resonator frequency, as illustrated
in Fig. 1(b). AssumingΔu ≫ g, the direct coupling of the third
level to the resonator mode is negligible. In addition, there is
no decay between the two ground states jci ↮ jui. Such a
three-level system is often termed to display aΛ configuration.
Now an external laser field is applied at a frequency

ωL ¼ ωa þ Δu þ Δac, i.e., in two-photon resonance with
the resonator mode and detuned from the atomic level jei
by Δac. This control laser is irradiated from the side of the
cavity and leads to a coupling jui↔jei with a Rabi frequency
of ΩL. Setting the energy origin at jc; 0i results in the
following Hamiltonian:

HΛ ¼ ℏωaσee þ ℏΔuσuu|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
atom

þ ℏωca†a|fflfflfflffl{zfflfflfflffl}
cavity

þ ℏgða†σce þ σecaÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jaynes-Cummings coupling

þ ℏ
ΩL

2
ðσue þ σeuÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
external laser

. ð20Þ

The analysis is restricted to the experimentally most
relevant case where only a single excitation is present in

the system. Here the energy eigenstates of the coupled system
are

E 0 ¼ ℏωc; ð21aÞ

E % ¼ ℏωc þ
ℏ
2
ðΔac %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

ac þ Ω2
L

q
Þ. ð21bÞ

In analogy to the Jaynes-Cummings doublets introduced in
Sec. I.B, there are now state triplets. One of the states is
located on the cavity resonance. The splitting of the other two
states increases with increasing laser power. The width of the
resonances can again be calculated by solving the master
equation of the system, cf. Eq. (13). Potential decay or
dephasing of the ground states can be included as additional
jump operators.
Similar to the Jaynes-Cummings results [see Eq. (12)], the

eigenstates of the coupled three-level system are linear
combinations of the uncoupled states ju; 0i, jc; 1i, and
je; 0i. Note that one of these new eigenstates is a dark state
that does not contain a contribution from the excited state and,
hence, is not subject to spontaneous emission. This state reads

jΛ0i ¼ cos θju; 0i−sin θjc; 1i. ð22Þ

Here the mixing angle θ is given by tan θ ¼ ΩL=2g. The
coherent dark state allows one to control the interaction
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FIG. 6 (color online). (a) Transmission and (b) reflection spectra of a single-sided, overcoupled cavity in the strong-coupling regime.
Without the presence of an atom (black circles and black fit curves), the cavity exhibits a Lorentzian transmission resonance, which is
also observed as a drop in reflection. The sum of transmission and reflection is less than 100% due to mirror absorption and scattering.
With an atom trapped in the mode (gray squares and gray theory curves), the vacuum-Rabi peaks are clearly resolved. The discrepancy
of the data points from the theory curve is explained by inhomogeneous broadening of the atomic transition frequency. (c), (d) Phase
response in the coupled (gray) and uncoupled (black) cased in (c) transmission and (d) reflection. On resonance, a phase shift of π is
observed in reflection for the case of an empty cavity.
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85Rb atom in a cavity

mission and give rise to additional peaks in the spectrum owing to
transitions between higher excited doublets30. The transmission
spectrum calculated for a thermal photon number of n ¼ 0.5 (see
green curve in Fig. 4b) is clearly incompatible with our experimental
data, indicating that the coupled system has in fact cooled to near its
ground state, and that wemeasure the coupling of a single qubit to a
single photon. The nonlinearity of the cavity QED system is also
observed at higher probe beam powers, as transitions are driven
between states higher up the dressed state ladders (not shown).
We also observe the anti-crossing between the single photon

resonator state and the first excited qubit state by tuning the qubit
into and out of resonance with a gate charge near ng ¼ 1 and
measuring the transmission spectrum (see Fig. 4c). The vacuum
Rabi peaks evolve from a state with equal weight in the photon and
qubit at ng ¼ 1 (as shown in Fig. 4b) to predominantly photon
states for ng .. 1 or ng ,, 1: The observed peak positions agree well
with calculations considering the qubit with level separation na, a
single photon in the resonator with frequency n r and a coupling
strength of g/2p ; see solid lines in Fig. 4c. For a different value of flux
bias Fb such that E a/h , n r at n g ¼ 1, two anti-crossings are
observed (see Fig. 4d) again in agreement with theory.
The observation of the vacuum Rabi mode splitting and the

corresponding avoided crossings demonstrates that the strong
coupling limit of cavity QED has been achieved, and that coherent
superpositions of a single qubit and a single photon can be
generated on a superconducting chip. This opens up many new
possibilities for quantum optical experiments with circuits. Possible
applications include using the cavity as a quantum bus to couple
widely separated qubits in a quantum computer, or as a quantum
memory to store quantum information, or even as a generator
and detector of single microwave photons for quantum
communication. A
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Figure 4 Vacuum Rabi mode splitting. a, Measured transmission T 2 (blue line) versus

microwave probe frequency n RF for large detuning ðg2=Dk,, 1Þ and fit to lorentzian
(dashed red line). The peak transmission amplitude is normalized to unity. The inset shows

the dispersive dressed states level diagram. b, Measured transmission spectrum for the

resonant case D ¼ 0 at n g ¼ 1 (blue line) showing the vacuum Rabi mode splitting

compared to numerically calculated transmission spectra (red and green lines) for thermal

photon numbers of n¼ 0.06 and 0.5, respectively. The dashed red line is the calculated

transmission for g¼ 0 and k/2p ¼ 0.8MHz. The inset shows the resonant dressed

states level diagram. c, Resonator transmission amplitude T plotted versus probe
frequency nRF and gate charge ng forD ¼ 0 at ng ¼ 1. Blue colour corresponds to small

T, red colour to large T. Dashed lines are uncoupled qubit level separation na and

resonator resonance frequency n r. Solid lines are level separations found from exact

diagonalization of H JC. Spectrum shown in b corresponds to line cut along red arrows.

d, As in c, but for EJ /h, n r . The dominant character of the corresponding eigenstates is

indicated.
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Superconducting qubit in a cavity

Of the various superconducting qubits, the Cooper pair box11 is
especially well suited for cavity QED because of its large effective
electric dipole moment d, which can be 104 times larger than in an
alkali atom and ten times larger than a typical Rydberg atom12. As
suggested in our earlier theoretical study12, the simultaneous com-
bination of this large dipole moment and the large vacuum field
strength—due to the small size of the quasi one-dimensional
transmission line cavity—in our implementation is ideal for reach-
ing the strong coupling limit of cavity QED in a circuit. Other solid-
state analogues of strong coupling cavity QED have been envisaged
in superconducting13–20, semiconducting21,22, and even micro-
mechanical systems23. First steps towards realizing such a regime
have been made for semiconductors21,24,25. To our knowledge, our
experiments constitute the first experimental observation of strong
coupling cavity QED with a single artificial atom and a single
photon in a solid-state system.

The on-chip cavity is made by patterning a thin superconducting
film deposited on a silicon chip. The quasi-one-dimensional co-
planar waveguide resonator26 consists of a narrow centre conductor
of length l and two nearby lateral ground planes, see Fig. 1a. Close to
its full-wave (l ¼ l) resonance frequency, q r ¼ 2pnr ¼ 1=

ffiffiffiffiffiffi
LC

p
¼

2p6:044GHz; where n r is the bare resonance frequency, the reso-
nator can bemodelled as a parallel combination of a capacitorC and
an inductor L (the internal losses are negligible). This simple
resonant circuit behaves as a harmonic oscillator described by the
hamiltonian H r ¼ "q r(a

†a þ 1/2), where ka†al¼ kn̂l¼ n is the
average photon number. At our operating temperature of
T , 100mK, much less than "q r/kB < 300mK, the resonator is
nearly in its ground state, with a thermal occupancy n , 0.06. The
vacuum fluctuations of the resonator give rise to a rootmean square
(r.m.s.) voltage V rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"q r=2C

p
< 1mV on its centre conductor,

and an electric field between the centre conductor and the ground
plane that is a remarkable E rms < 0.2 Vm2 1, some hundred times
larger than in the three-dimensional cavities used in atomic micro-
wave cavity QED3. The large vacuum field strength results from the
extremely small effective mode volume (,102 6 cubic wavelengths)
of the resonator12.
The resonator is coupled via two coupling capacitors C in/out, one

at each end (see Fig. 1b), to the input and output transmission lines
that allow its microwave transmission to be probed (see Fig. 2a–c).
The predominant source of dissipation is the loss of photons from
the resonator through these ports at a rate k ¼ q r/Q, whereQ is the
(loaded) quality factor of the resonator. The internal (uncoupled)
loss of the resonator is negligible (Q int < 106). Thus, the average
photon lifetime in the resonator Tr ¼ 1/k exceeds 100 ns, even for
our initial choice of a moderate quality factor Q < 104.
The Cooper pair box (CPB) consists of a several micrometre long

and submicrometre wide superconducting island which is coupled
via two submicrometre size Josephson tunnel junctions to a much
larger superconducting reservoir, and is fabricated in the gap
between the centre conductor and the ground plane of the resonator,
at an antinode of the field (see Fig. 1c). The CPB is a two-state
system described by the hamiltonian13 Ha ¼ 2 ðEeljx þ EJjzÞ=2,
where Eel ¼ 4ECð12 ngÞ is the electrostatic energy and EJ ¼
EJ;maxcosðpFbÞ is the Josephson energy. The overall energy scales
of these terms, the charging energy EC and the Josephson energy
E J,max, can be readily engineered during the fabrication by the
choice of the total box capacitance and resistance respectively, and
then further tuned in situ by electrical means. A gate voltage Vg

applied to the input port (see Fig. 2a), induces a gate charge ng ¼
VgCg*=e that controls E el, where Cg* is the effective capacitance
between the input port of the resonator and the island of the CPB. A
flux bias Fb ¼ F/F0, applied with an external coil to the loop of the
box, controls E J. Denoting the ground state of the box as j # l and the
first excited state as j " l (see Fig. 2d), we have a two-level system
whose energy separation Ea ¼ "q a can be widely varied as shown in
Fig. 3c. Coherence of the CPB is limited by relaxation from the
excited state at a rate g1, and by fluctuations of the level separation
giving rise to dephasing at a rate gJ, for a total decoherence rate
g ¼ g1/2 þ gJ (ref. 13).
The Cooper pair box couples to photons stored in the resonator

by an electric dipole interaction, via the coupling capacitance Cg.
The vacuum voltage fluctuations Vrms on the centre conductor of
the resonator change the energy of a Cooper pair on the box island
by an amount "g ¼ dE0 ¼ eVrmsCg/CS. We have shown12 that this
coupled system is described by the Jaynes–Cummings hamiltonian
H JC ¼ H r þ H a þ "g(a †j 2 þ ajþ), where jþ (j 2 ) creates
(annihilates) an excitation in the CPB. It describes the coherent
exchange of energy between a quantized electromagnetic field and a
quantum two-level system at a rate g/2p, which is observable if g is
much larger than the decoherence rates g and k. This strong
coupling limit3 g . [g, k] is achieved in our experiments. When
the detuning D ¼ q a 2 q r is equal to zero, the eigenstates of the
coupled system are symmetric and antisymmetric superpositions
of a single photon and an excitation in the CPB j^ l¼ ðj0; " l^
j1; # lÞ=

ffiffiffi
2

p
with energies E^ ¼ "(q r ^ g). Although the cavity

and the CPB are entangled in the eigenstates j ^ l, their
entangled character is not addressed in our current cavity QED
experiment which spectroscopically probes the energies E^ of the
coherently coupled system.
The strong coupling between the field in the resonator and the

CPB can be used to perform a quantum nondemolition (QND)
measurement of the state of the CPB in the non-resonant (dis-
persive) limit jDj .. g: Diagonalization of the coupled quantum
system leads to the effective hamiltonian12:

H < " q r þ
g2

D
jz

" #
a†aþ 1

2
" q a þ

g2

D

" #
jz

Figure 1 Integrated circuit for cavity QED. a, The superconducting niobium coplanar

waveguide resonator is fabricated on an oxidized 10 £ 3mm2 silicon chip using optical

lithography. The width of the centre conductor is 10 mm separated from the lateral ground

planes extending to the edges of the chip by a gap of width 5 mm resulting in a wave

impedance of the structure of Z ¼ 50Q being optimally matched to conventional

microwave components. The length of the meandering resonator is l ¼ 24mm. It is

coupled by a capacitor at each end of the resonator (see b) to an input and output feed
line, fanning out to the edge of the chip and keeping the impedance constant. b, The
capacitive coupling to the input and output lines and hence the coupled quality factor Q is

controlled by adjusting the length and separation of the finger capacitors formed in the

centre conductor. c, False colour electron micrograph of a Cooper pair box (blue)
fabricated onto the silicon substrate (green) into the gap between the centre conductor

(top) and the ground plane (bottom) of a resonator (beige) using electron beam lithography

and double angle evaporation of aluminium. The Josephson tunnel junctions are formed

at the overlap between the long thin island parallel to the centre conductor and the fingers

extending from the much larger reservoir coupled to the ground plane.
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Photon blockade

Photon blockade in an optical cavity with one
trapped atom
K. M. Birnbaum1, A. Boca1, R. Miller1, A. D. Boozer1, T. E. Northup1 & H. J. Kimble1

At low temperatures, sufficiently small metallic1 and semicon-
ductor2 devices exhibit the ‘Coulomb blockade’ effect, in which
charge transport through the device occurs on an electron-by-
electron basis3. For example, a single electron on a metallic island
can block the flow of another electron if the charging energy of the
island greatly exceeds the thermal energy. The analogous effect of
‘photon blockade’ has been proposed for the transport of light
through an optical system; this involves photon–photon inter-
actions in a nonlinear optical cavity4–13. Here we report obser-
vations of photon blockade for the light transmitted by an optical
cavity containing one trapped atom, in the regime of strong atom–
cavity coupling14. Excitation of the atom–cavity system by a first
photon blocks the transmission of a second photon, thereby
converting an incident poissonian stream of photons into a sub-
poissonian, anti-bunched stream. This is confirmed by measure-
ments of the photon statistics of the transmitted field. Our
observations of photon blockade represent an advance over
traditional nonlinear optics and laser physics, into a regime
with dynamical processes involving atoms and photons taken
one-by-one.
An analogy between electron transport in mesoscopic electronic

devices and photon transport through strongly coupled optical
systems was originally suggested in ref. 5. These authors proposed
that an effect similar to Coulomb blockade for electrons1–3 might be
possible for photons by using photon–photon interactions in a
nonlinear optical cavity5. In this scheme, strong dispersive inter-
actions enabled by electromagnetically induced transparency (EIT)
cause the presence of a ‘first’ photon within the cavity to block the
transmission of a ‘second’ photon, leading to an ordered flow of
photons in the transmitted field.
After resolution of an initial difficulty6, subsequent work has

confirmed that such photon blockade is indeed feasible for a single
intracavity atom by way of a multi-state EIT scheme7–9. Photon
blockade is possible in other settings, including in concert with
Coulomb blockade10 and via tunnelling with localized surface plas-
mons11. Photon blockade has also been predicted for a two-state
atom coupled to a cavity mode4,9,12,13. As illustrated in Fig. 1a, the
underlying mechanism is the anharmonicity of the Jaynes–
Cummings ladder of eigenstates4,15. Resonant absorption of a photon
of frequency q 2 to reach the state j1;2l (where jn;þð2Þl denotes
the higher- (lower-) energy eigenstate with n excitations) ‘blocks’ the
absorption of a second photon at q 2 because transitions to j2;^l are
detuned from resonance.
Whereas electrons interact directly via Coulomb repulsion, photon–

photon interactions must be mediated by matter. Furthermore,
verification of this effect requires measurements of the quantum
statistics of the field; in contrast, Coulomb blockade can be inferred
directly from mean transport. Scattering from a single atom in free
space, for example, provides a fundamental example of photon
blockade16, albeit with the fluorescent field distributed over 4p and

the flux limited by the rate of spontaneous decay g. In contrast,
cavity-mediated schemes offer the possibility of photon emission
into a collimated spatial mode with high efficiency and at a rate set by
the cavity decay rate k, which can be much larger than g. Achieving
photon blockade for a single atom in a cavity requires us to operate in
the regime of strong coupling, for which the frequency scale g0
associated with reversible evolution of the atom–cavity system
exceeds the dissipative rates (g, k) (ref. 14).
Here we report observations of photon blockade in the light

transmitted by an optical cavity containing one atom strongly
coupled to the cavity field. For coherent excitation at the cavity

LETTERS

Figure 1 | The atomic level structure used for implementation of the photon
blockade effect, and a simple diagram of the experiment. a, Atomic level
diagram showing the lowest-energy states for a two-state atom of transition
frequency q A coupled (with single-photon Rabi frequency g0) to a mode of
the electromagnetic field of frequency q C, with q A ¼ q C ; q 0 (ref. 15). Two-
photon absorption is suppressed for a probe field q p (arrows) tuned to excite
the transition j0l! j1;2l; q p ¼ q 0 2 g0; leading to g ð2Þð0Þ, 1 (ref. 13).
b, Eigenvalue structure for the ðF ¼ 4;mFÞ$ ðF 0 ¼ 5 0 ;m 0

FÞ transition
coupled to two degenerate cavity modes l y,z, as discussed in the
Supplementary Information. Two-photon absorption is likewise blocked for
excitation tuned to the lowest eigenstate (arrows). c, Simple diagram of the
experiment. BS, beam splitter.
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gð2Þyz ð0Þ due to these effects are small for our parameters, as discussed
in the Supplementary Information.
With these capabilities, we now report measurements of gð2Þyz ðtÞ for

the light transmitted by a cavity containing a single trapped atom.We
tune the probe 1yp to ðq p 2 q 0Þ=2p ¼234MHz; near 2g0, and
acquire photoelectric counting statistics of the field 1zt by way of
two avalanche photodiodes (D1, D2), as illustrated in Fig. 1c. From
the record of these counts, we are able to determine gð2Þyz ðtÞ by using
the procedures discussed in ref. 22. Data are acquired for each
trapped atom by cycling through probing, testing, and cooling
intervals (of durations Dtprobe ¼ 500ms; Dttest ¼ 100ms and Dtcool ¼
1:4ms; respectively) using a procedure similar to that of ref. 21. The
test beam is polarized along ẑ and resonant with the cavity. A
repumping beam transverse to the cavity axis and resonant with
6S1=2; F ¼ 3! 6P3=2; F

0 ¼ 4 0 also illuminates the atom during the
probe and test intervals. This beam prevents accumulation of
population in the F ¼ 3 ground state caused by the probe off-
resonantly exciting the F ¼ 4! F 0 ¼ 4 0 transition. All probing/cool-
ing cycles end after an interval Dttot ¼ 0:3s; at which point a new

loading cycle is initiated. We select for the presence of an atom by
requiring that Tzzðq p . q C1 Þ& 0:35 for the test beam. We use only
those data records associated with probing intervals after which the
presence of an atom was detected and for which the presence of an
atom was detected in all preceding intervals. If there is no atom and
the probe is tuned to be resonant with the cavity (q p ¼ q C1

), then the
photon number in mode l y due to 1

y
p is 0.21 and the polarizing beam

splitter at the output of the cavity (PBS in Fig. 1c) suppresses
detection of this light by a factor of ,94.
Figure 3 presents an example of gð2Þyz ðtÞ determined from the

recorded time-resolved coincidences at (D1, D2). In Fig. 3a, the
manifestly nonclassical character of the transmitted field is clearly
observed with a large reduction in gð2Þyz ð0Þ below unity, gð2Þyz ð0Þ ¼
ð0:13^ 0:11Þ, 1; corresponding to the subpoissonian character of
the transmitted field, and with gð2Þyz ð0Þ, gð2Þyz ðtÞ as a manifestation of
photon antibunching. We find that g (2)(t) rises to unity at a time
t. 45ns; which is consistent with a simple estimate of t2 ¼
2=ðgþ kÞ ¼ 48ns based upon the lifetime for the state j1;2l.
Although for small jtj our observations of gð2Þyz ðtÞ are in reasonable

agreement with the predictions from our theoretical model, there are
significant deviations on longer timescales. Modulation that is not
present in the model is evident in Fig. 3b, which arises from the
centre-of-mass motion of the trapped atom. In support of this
assertion, Fig. 3c displays the Fourier transform ~gð f Þ of gð2Þyz ðtÞ;
which exhibits a narrow peak at frequency f 0 . 535kHz just below
the independently determined frequency n0 . 544kHz for harmonic
motion of a trapped atom about an antinode of the FORT in the axial
direction x. This modulation is analogous to that observed in ref. 23
for g (2)(t) for the light from a single ion, which arose from micro-
motion of the ion in the radio-frequency trap.
Here, UðrÞ ¼U0 sin2ð2p x=lC2 Þexpð22r2=w2

C2
Þ is the FORT

potential, which gives rise to an anharmonic ladder of vibrational
states with energies {Em}. Here m ¼ 0 to mmax ¼ 99 correspond to
the bound states in the axial dimension for radial coordinate r;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
¼ 0: The anharmonicity leads to the observed offset

f0 , n0 due to the distribution of energies for axial motion in the
FORT well. Indeed, the frequency nmin ¼ ðEmmax 2 Emmax21Þ=h at the
top of the well is approximately half that at the bottom of the well,
n0 ¼ ðE1 2 E0Þ=h: By comparing the measured distribution of fre-
quencies exhibited by ~gðf Þ with the calculated axial frequencies {nm},
we estimate that those atoms from which data was obtained are
trapped in the lowest-lying axial statesm& 10;which corresponds to
a maximum energy E=kB < 250mK. This energy estimate is consist-
ent with other measurements of gð2Þyz ðtÞ that we have made, as well as
the Fourier transform of the record of the transmitted intensity and
the transmission spectra of ref. 21.
We have demonstrated photon blockade for the transmission of an

optical cavity strongly coupled to a single trapped atom4–9,12,13. The
observed nonclassical photon statistics for the transmitted field result
from strong nonlinear interactions at the single-photon level, in
analogy with the phenomena of Coulomb blockade for electron
transport1–3. Extensions of our work include operation in a pulsed
mode, as was analysed in ref. 5, thereby realizing a source for single
photons ‘on demand’22. As we improve the effectiveness of our
cooling procedure, we should be able to explore the dependence of
gð2Þyz ðtÞ on probe detuning, q p 2 q 0; as well as to move to higher levels
of excitation to increase the intracavity photon number towards
unity and the output flux towards the maximum value & k for
subpoissonian photons.

METHODS
Cavity and detection parameters. The physical length of the cavity used in this
work is 42.2 mm and the finesse is 4.3 £ 105. The cavity length is independently
stabilized such that a TEM00 longitudinal mode at lC1 is resonant with the free-
space atomic transition at lA and another TEM00 mode at lC2 is resonant at lF.
At the cavity centre x ¼ 0, the mode waists wC1;2 ¼ {23:4;24:5} mm at lC1;2 ¼
{852:4;935:6} nm:

Figure 3 | Experimental measurements of the intensity correlation function
gð2Þyz ðtÞ for incident excitation with polarization along ŷ and detection with
orthogonal polarization ẑ: a, g ð2Þyz ðtÞ over the interval jtj# 1:0ms
demonstrates that the transmitted field exhibits both subpoissonian
photon statistics g ð2Þyz ð0Þ ¼ ð0:13^ 0:11Þ, 1 and photon antibunching
g ð2Þyz ð0Þ, g ð2Þyz ðtÞ (ref. 17). b, g ð2Þyz ðtÞ over longer intervals jtj# 10ms displays a
pronounced modulation due to axial motion of the trapped atom. c, The
Fourier transform ~gðf Þ of g ð2Þyz ðtÞ with the independently determined
minimum and maximum frequencies nmin and n0 for axial motion in a
FORTwell indicated by the dotted lines. g ð2Þyz ðtÞ is plotted with 6-ns
resolution in a and with 12-ns resolution in b.
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Figure 3 | Experimental measurements of the intensity correlation function
gð2Þyz ðtÞ for incident excitation with polarization along ŷ and detection with
orthogonal polarization ẑ: a, g ð2Þyz ðtÞ over the interval jtj# 1:0ms
demonstrates that the transmitted field exhibits both subpoissonian
photon statistics g ð2Þyz ð0Þ ¼ ð0:13^ 0:11Þ, 1 and photon antibunching
g ð2Þyz ð0Þ, g ð2Þyz ðtÞ (ref. 17). b, g ð2Þyz ðtÞ over longer intervals jtj# 10ms displays a
pronounced modulation due to axial motion of the trapped atom. c, The
Fourier transform ~gðf Þ of g ð2Þyz ðtÞ with the independently determined
minimum and maximum frequencies nmin and n0 for axial motion in a
FORTwell indicated by the dotted lines. g ð2Þyz ðtÞ is plotted with 6-ns
resolution in a and with 12-ns resolution in b.

NATURE|Vol 436|7 July 2005 LETTERS

89
© 2005 Nature Publishing Group 

 

Birnbaum et al., Nature 2005



Quantum optics and Nobel prizes: Glauber & Haroche


