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We present a simple and stable quantum Monte Carlo approach for computing forces between atoms
in a molecule. In this approach we propose to use as Monte Carlo estimator of the force the standard
Hellmann–Feynman expression~local force expressed as the derivative of the total potential energy
with respect to the internuclear coordinates!. Invoking a recently introduced zero-variance principle
it is shown how the infinite variance associated with the Hellmann–Feynman estimator can be made
finite by introducing some suitably renormalized expression for the force. Practical calculations for
the molecules H2 , Li2 , LiH, and C2 illustrate the efficiency of the method. ©2000 American
Institute of Physics.@S0021-9606~00!31330-7#

I. INTRODUCTION

Over the recent years quantum Monte Carlo~QMC!
methods have become more and more successful in comput-
ing ground-state properties of atomic and molecular systems
~see, e.g., Refs. 1–3!. However, the vast majority of applica-
tions has been limited to the calculation of the ground-state
total energy. Although this is clearly a most important quan-
tity, other properties~dipole moments, forces, polarizabil-
ities, etc.! are also of primary interest. In theory, there is no
difficulty for computing such quantities within a QMC
framework. However, in practice, the convergence of the
Monte Carlo calculations is much more slower and, there-
fore, much more computationally demanding than the case of
the energy. Thus, only a limited number of calculations of
properties can be found in the literature. The fundamental
point allowing very efficient and accurate calculations of the
energy~compared to other properties! is the existence of a
so-called ‘‘zero-variance’’ property for this special observ-
able. To understand this point, let us first briefly recall how
the energy is computed with QMC. In short, the energy is
expressed as a simple average over some suitably chosen
distribution

E05^EL&, ~1!

where the bracketŝ• • • & denote the statistical average and
EL is a local function defined as

EL~x!5HcT /cT , ~2!

and usually referred to as the local energy. Here,H denotes
the Hamiltonian under consideration andcT a trial wave
function. The distribution for the average defines the type of
quantum Monte Carlo calculation performed. In variational
Monte Carlo~VMC! schemes, the distribution is constructed

to be proportional tocT
2 and Eq.~1! is nothing but an esti-

mate of the standard quantum-mechanical variational energy
associated with the trial wave function. In diffusion Monte
Carlo ~DMC! schemes, the stochastic rules employed to gen-
erate configurations are essentially similar to those of VMC,
except that a new step—a branching process—is added to
pass from the VMC distribution to the so-called ‘‘mixed’’
distribution given byf0cT , where f0 denotes the exact
ground-state wave function. In that case, Eq.~1! realizes an
exact estimate of the energy. From expression~1! it is clear
that the statistical error on the energy is directly related to the
magnitude of the fluctuations of the local energy. In turn,
such fluctuations depend on the ‘‘quality’’ of the trial wave
function. The closer the trial wave function is to the exact
one, the smaller these fluctuations are. In the limit of an
exact trial wave function the local energy becomes strictly
constant and the statistical error vanishes completely. This is
the result which is known as the ‘‘zero-variance’’ property.
In practice, this property is of great importance: very accu-
rate calculations can be performed with a reasonable amount
of computer time only if accurate enough trial wave func-
tions are at our disposal. When no particular trial wave func-
tion is used@cT51 in the preceding formula,~1!# the local
energy reduces to the total potential energy. In this case the
statistical error on the energy is very important since the bare
potential fluctuates enormously. Introducing a trial wave
function can be viewed as defining a ‘‘renormalizing proce-
dure’’ applied to the bare potential in order to reduce its
fluctuations. Of course, such a process is allowed only be-
cause both the bare potential~the total potential energy! and
the renormalized one~the local energy! have the same aver-
age.

Very recently, we have generalized this zero-variance
property to any observable defined on the configuration
space.4 DenotingO some rather arbitrary observable we have
shown that it is possible to constructin a systematic waya
renormalized observableÕ verifying:
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^Õ&5^O& ~3!

and

s2~Õ!,s2~O! ~4!

wheres2(A) represents the variance of operatorA

s2~A![^~A2^A&!2&. ~5!

When usingÕ instead ofO as estimator of the observable,
the convergence of the calculations can be improved since
the statistical error on a finite Monte Carlo sample is directly
proportional to the variance of the quantity to be averaged.
As we shall see later, the renormalized observable depends
on two auxiliary quantities,H̃ andc̃ which play a role simi-
lar to that played byH andcT in the renormalized version of
the bare potential, Eq.~2!. Some preliminary classical and
quantum Monte Carlo calculations on simple systems have
shown that very important reduction of the computational
effort can be achieved by using this general zero-variance
principle.4 In the present paper we apply this idea to the
problem of calculating forces between atoms in molecules.
The calculation of forces is known to be a very difficult task
for QMC methods.3 Some calculations limited to very small
molecules ~typically H2 and LiH! have been reported.5,6

However, their extension to bigger systems is essentially not
realistic. Note that very recently Filippi and Umrigar have
presented a new method for computing forces.7 Their method
is based on a special transformation coordinates and a corre-
lated sampling approach. Here, we follow a quite different
route. It is shown that forces can be computed in a very
natural way by using the standard Hellmann–Feynman~HF!
theorem. More precisely, the force is computed as the aver-
age of the local force, a quantity defined as the gradient of
the potential energy with respect to the internuclear coordi-
nates. In previous works~see, e.g., discussion in Ref. 3! such
a possibility was excluded because of the uncontrolled sta-
tistical fluctuations associated with the bare force~infinite
variance!. Here, it will be shown that with the help of the
generalized zero-variance principle, the pathological part of
the force responsible for the infinite variance can be removed
exactly in a simple and general way. Once this is achieved, it
is possible to perform stable calculations of the forces by
using standard variational and diffusion Monte Carlo meth-
ods. The first applications presented here illustrate the accu-
racy and efficiency of the method.

II. METHOD

To compute forces between atoms in a molecule we take
advantage of the Hellmann–Feynman theorem. According to
this theorem the average force defined as

^Fq&[2¹qE0~q! ~6!

is given by the expectation value of the gradient of the po-
tential ~local force!

^Fq&5
*dx f0

2~x,q!Fq~x,q!

*dx f0
2~x,q!

, ~7!

with

Fq~x![2“qV~x,q!. ~8!

In these formulasq represents the set of the 3Nnucl nuclear
coordinates (Nnucl being the number of nuclei!, V the total
potential energy operator of the problem,E0(q) the total
ground-state energy for a given molecular geometry, andf0

the corresponding ground-state wave function.
As remarked by a number of authors, one of the major

difficulties in computing forces by QMC via formulas~7!
and~8! is the presence of uncontrolled statistical fluctuations
~see, e.g., Ref. 3!. Indeed, the variance of the Hellmann–
Feynman estimator of the force is infinite. This is a simple
consequence of the fact that at short electron-nucleus dis-
tancesr, the local force behaves asF;1/r 2, so that^F2&
5`. Various solutions to this problem have been proposed.
A common idea consists in introducing some sort of cutoff
when the electrons approach the nuclei.6 However, by doing
this a systematic error is introduced. In addition, to control
this error is a very tricky problem since any extrapolation
procedure~cutoff going to zero! is ill-defined.

To escape from this difficulty we propose to replace the
standard expression of the local forceFq(x) by a ‘‘renormal-
ized’’ expression, F̃q(x), having the same average but
smaller fluctuations. It should be emphasized that the de-
crease in fluctuations will be dramatic here since, in contrast
with the bare expression, the renormalized version will have
now finite fluctuations. Let us give the explicit expressions
for the renormalized quantities. We shall consider two dif-
ferent cases. The first case corresponds to variational Monte
Carlo ~VMC! calculations. The distribution of walkers in
configuration space,p(x) is given by

pVMC~x!;cT
2~x!. ~9!

The second case corresponds to calculations within the dif-
fusion Monte Carlo~DMC! approach. In that case the distri-
bution employed is the so-called mixed distribution given by

pDMC~x!;cT~x!f0~x!. ~10!

In the variational case and for a particular componentq we
consider the following renormalized expression:

F̃q~x!5Fq~x!1F H̃c̃

c̃
2

H̃cT

cT
G c̃

cT
, ~11!

whereH̃ is some rather arbitrary auxiliary Hermitian opera-
tor and c̃ an arbitrary auxiliary function~supposed to be
square-integrable!. Note that the choice of the auxiliary
quantities depends on the particular componentq considered.
BecauseH̃ is Hermitian we havêcTuH̃uc̃&5^c̃uH̃ucT& and
it is an elementary exercise to check that the average value of
the bare and renormalized expressions over the VMC distri-
bution ~9! are identical

^F̃q&5^Fq&. ~12!

Note that this result requires that both the trial function and
its first derivatives are continuous over the whole configura-
tion space. These conditions are fulfilled by the trial wave
functions used in VMC schemes. Now, regarding the vari-
ances we have the following expression:

4029J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Forces with quantum Monte Carlo
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s2~ F̃q![^~ F̃q2^F̃q&!2&

5s2~Fq!12^Fq DH w&1^DH2 w2&, ~13!

where, for the sake of simplicity, we have used the following
notations:

DH[F H̃c̃

c̃
2

H̃cT

cT
G ~14!

and

w[
c̃

cT
~15!

Now, let us show that, from an arbitrary auxiliary function
c̃, we can always construct a renormalized expression hav-
ing a smaller variance. For that we consider the multiplica-
tive constant ofc̃, denoted herea, as a variational param-
eter. Minimizing the variances2(F̃,a) with respect toa we
get the following optimal value:

aopt52^Fq DH w&/^DH2 w2& ~16!

and, therefore,

s2~ F̃,aopt!5s2~F !2^F DH w&2/^DH2 w2&, ~17!

In general, the quantitŷF DH w& will not be equal to zero.
As a consequence, equation~17! shows that, whatever the
quality of the auxiliary functionc̃ chosen, the use of the
optimized prefactor~16! always leads to a decrease of the
statistical fluctuations. Clearly, this gain in variance can be
small but let us emphasize that it is a systematic gain. Of
course, this is only by choosing appropriate auxiliary func-
tions that large gains can be expected.

In the case of a diffusion Monte Carlo scheme the sta-
tionary distribution, Eq.~10!, is no longer known analytically
since it involves the unknown exact wave function which is
stochastically sampled, and our general procedure which
supposes the knowledge of the distribution cannot be readily
applied to. However, in the particular case of the mixed dis-
tribution, a renormalized expression can still be defined.4 A
natural choice is

F̃q~x!5Fq~x!1FHc̃

c̃
2E0G c̃

cT

, ~18!

whereE0 is some unbiased estimator of the exact ground-
state energy. In this case also, it is quite easy to verify that
the averages of the bare and renormalized estimators over the
mixed distribution~10! are equal

^F̃q&5^Fq&. ~19!

It should be emphasized that this result is valid only if the
wave functionf0 and its first derivatives are continuous ev-
erywhere. This is true for the exact solution of the problem.
However, in general it will not be the case for the approxi-
mate solution obtained with a fixed-node diffusion Monte
Carlo calculation. We shall return to this important point in
the next section.

To make the connection with the variational case, re-
mark that the latter expression can be rewritten as

F̃q~x!5F̃q
VMC~x!1@EL2E0#w , ~20!

where EL represents the local energy function associated
with the trial wave functioncT , Eq. ~2!, andF̃q

VMC(x) is the
variational Monte Carlo expression of the renormalized
force, Eq.~11!. Note that the correction between the VMC
and DMC estimators in formula~20! consists of a product of
two quantities, namelyEL2E0 and w. The quantityEL

2E0 has a vanishing average and its statistical fluctuations
are in general much smaller than those ofw. Accordingly, it
is quite efficient to introduce a centered version of the vari-
ablew. Indeed, it can be easily shown that the fluctuations of
the product are in this way greatly reduced. Our final version
of the DMC force used in our calculations is therefore

F̃q~x!5F̃q
VMC~x!1@EL2^EL&#@w2^w&#. ~21!

Finally, it should be noted that the force calculated according
to the preceding formulas are not exact since the DMC dis-
tribution is the mixed distribution instead of the exact one.
This point is discussed later.

Now, in order to illustrate the method we consider the
case of a diatomic moleculeAB consisting of an atomA
~nucleus chargeZA) located at (R,0,0) and an atomB
~nucleus chargeZB) located at the origin. Note that the gen-
eral case corresponding to an arbitrary number of nuclei does
not involve particular difficulties. It can be obtained by
straightforward generalization of what is presented below.
For a diatomic molecule we have the following expression of
the force:F5(F,0,0), with

F~x!5
ZAZB

R2
2ZA (

i 51

Nelect ~xi2R!

ur i2Ru3
, ~22!

whereNelect is the total number of electrons andr i represents
the position of electroni. The second term on the right-hand
side of Eq.~22! is responsible for the infinite variance con-
tribution. Let us now show that this contribution can be ex-
actly removed. In what follows we shall write the auxiliary
function as

c̃~x!5QcT, ~23!

whereQ is some arbitrary function. Using this form it can be
verified that the simplest form forQ canceling the pathologi-
cal part of the bare force is the following:

Q5ZA (
i 51

Nelect ~xi2R!

ur i2Ru
. ~24!

Finally, we get for the renormalized force in the variational
case@Eq ~11!#:

F̃~x!5
ZAZB

R2
2“Q•“cT /cT , ~25!

with a similar expression in the DMC case@see Eqs.~18! and
~20!#. It can be checked that this latter expression has now a
finite variance.
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As already mentioned the QMC calculations presented
here are done at two different levels of approximation. First,
we present variational Monte Carlo calculations of the force.
The average of the force is then obtained as

^F &VMC5
*dx cT

2~x!F~x!

*dx cT
2~x!

, ~26!

wherecT is the trial wave function, andF represents here
either the bare force,F5F, Eq.~7!, or the renormalized one,
F5F̃, Eq. ~11!. We also consider averages over the mixed
distribution as obtained in a diffusion Monte Carlo scheme:

^F &mixed5
*dx f0~x!cT~x!F~x!

*dx f0~x!cT~x!
, ~27!

wheref0 is the exact wave function. Here,F is given either
by Eq. ~7! or by Eq. ~18!. In order to get a more accurate
approximation of the unbiased exact force, corresponding to
the densityf0

2, we shall also have recourse to the following
‘‘hybrid’’ formula:

^F &.2^F &mixed2^F &VMC . ~28!

This formula is constructed so that the first-order contribu-
tions in the differencef0(x)2cT(x) for the quantities
^F &mixed and^F &VMC compensate exactly~see, e.g., Ref. 3!.
From a practical point of view, expression~28! is particu-
larly interesting. Both quantities involved can be straightfor-
wardly computed in routine DMC and VMC calculations.
Note that in principle it is also possible to get an exact esti-
mate of ^F & but it requires some more elaborate scheme
involving some kind of forward-walking.3,8 We shall not
consider here such calculations, but let them for future pub-
lication.

III. A FEW REMARKS REGARDING THE PRACTICAL
IMPLEMENTATION

As seen in the preceding section we use both VMC and
DMC approaches in our actual computations. Regarding
variational Monte Carlo no particular difficulties arise. In
practice, the main weakness of the VMC approach lies in the
fact that the average force obtained according to Eq.~26! is
quite dependent on the trial wave function used. This is par-
ticularly true sincecT is optimized in order to improve the
total electronic energy but not its derivatives with respect to
the internuclear coordinates. However, as illustrated by the
practical calculations presented below~see Table II!, com-
bining DMC and VMC calculations of the force according to
the hybrid formula, Eq.~28!, seems to represent a simple but
accurate solution to this problem.

Let us now consider the specific difficulties associated
with DMC calculations. In order to avoid the famous ‘‘sign
problem’’ for fermions9 all calculations presented here are
done using the stable but approximate fixed-node~FN!
method. In this approach the Schro¨dinger equation is solved
separatelyin each nodal domain~or ‘‘pocket’’ ! where cT

has a definite sign. When the trial wave function satisfies the
tiling property10,11 all nodal domains are equivalent and re-
lated by the permutational symmetry. When this is not the
case, energies associated with each nodal domain can be dif-

ferent and the FN solution corresponds to the eigensolution
defined in the domain corresponding to the lowest energy.
Without entering more into the details of the fixed-node ap-
proach~for that, see, e.g., Refs. 12 and 3! we just remark that
a most important point with FN calculations is that the
sampled fixed-node solution displays in general some dis-
continuous derivatives at the nodes~zeroes ofcT). Because
of that, some mathematical care is necessary when integrat-
ing quantities~energy, derivatives of the energy, etc.! that are
defined over the entire configuration space; in other words,
the various nodal domains must be properly connected. A
first example illustrating this remark is the problem of the
validity of the Hellmann–Feynman~HF! theorem in fixed
node QMC calculations, a point which has raised some dis-
cussion very recently.13–15Due to the presence of the discon-
tinuity at nodes the HF theorem is not true in general in that
case. It can be shown that the theorem is valid only when the
derivative of the total fixed-node energy with respect to the
coordinateq is done without changing the nodes of the trial
wave function when varyingq.14 However, since in the
present work no finite difference expressions for the fixed-
node energy are used, this point is in fact of no practical
importance. Let us just mention that the average force ob-
tained in our fixed-node DMC calculations corresponds to
the Hellmann–Feymnan force we would obtain by perform-
ing such finite differences fixed-node calculations with the
nodes kept fixed.

A second example of difficulties, which is here of fun-
damental importance, concerns the validity of the equality
between the bare and renormalized expressions, Eq.~19!. To
clarify this point let us have a closer look at the condition we
would like to fulfill. Using expression~18! the condition can
be written as

^F̃&2^F&5^f0
FNu

~H2E0
FN!c̃

cT
ucT&50, ~29!

where E0
FN is the fixed-node energy. DenotingV a nodal

domain of the fixed-node solution we can write

^F̃&2^F&5E
V

dx f0
FN~H2E0

FN!c̃ . ~30!

Now, decomposingH under its kinetic and potential parts
and invoking Green’s formula this quantity can be rewritten
as an integral over the nodal hypersurface

^F̃&2^F&52
1

2E]V
~f0

FN¹¢ c̃2c̃¹¢ f0
FN!dW S. ~31!

From this expression it is seen that a nonzero bias may in-
deed appear in a fixed-node calculation of the renormalized
force. Clearly, a simple way of removing this bias is to use
auxiliary functions c̃ having the same nodes ascT and,
therefore, the same nodes asf0

FN . The actual simulations
presented below fulfill this condition.

Finally, let us end this section with some words about
the nature of the errors introduced. Since the exact nodes are
not known there is some difference between the exact and
fixed-node functions
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df[f0
FN2f0 , ~32!

wheref0 andf0
FN are the normalized exact and fixed-node

solutions. The fixed-node bias can be evaluated as

^f0
FNuFuf0

FN&2^f0uFuf0&52^dfuFuf0&1O~df2!.
~33!

In other words, the fixed-node bias forF is of order 1 indf
in contrast with the FN bias on the energy which is of order
2 in the same quantity. Finally, it is easy to see that the bias
on the mixed average, Eq.~27!, is of order O(cT2f0

FN)
1O(df) while the bias on the ‘‘hybrid’’ estimator, Eq.~28!,
is of orderO@(cT2f0

FN)2#1O(df).

IV. RESULTS AND DISCUSSION

We present a number of variational Monte Carlo~VMC!
and diffusion Monte Carlo~DMC! calculations for the di-
atomic molecules H2 , LiH, Li 2 , and C2. Standard imple-
mentations of the VMC and DMC methods have been used
and will not be detailed here. For some general presentation
of these approaches the interested reader is referred for ex-
ample to Refs. 1, 3, and 16. As already indicated in the
preceding section all DMC calculations have been done
within the fixed-node approach. Numerical experience shows
that the fixed-node error on the energy resulting from the
approximate location of the trial nodes is rather small when
good enough trial wave functions are used. As we shall see
later, this will also turn out to be true when calculating
forces. In order to remove the short-time error all DMC cal-
culations have been systematically performed with different
time-steps and extrapolated to zero time-step. Regarding the
trial wave function we have chosen a standard form consist-
ing of a determinant of single-particle orbitals multiplied by
a Jastrow factor

cT5D↑D↓ exp(
a

(
^ i , j &

U~r ia ,r j a ,r i j !, ~34!

where the sum overa denotes a sum over the nuclei and
(^ i , j & a sum over the pair of electrons. Here, the functionU is
chosen to be

U~r ia ,r j a ,r i j !5s~xi j !1p(a)~xia!1c1xia
2 xj a

2

1c2~xia
2 1xj a

2 !xi j
2 1c3xi j

2 ~35!

with

xi j 5
r i j

11bsr i j
, xia5

r ia

11bar ia
,

s~x!5s1x1s2x21s3x31s4x4,

p(a)~x!5p1
(a)x1p2

(a)x21p3
(a)x31p4

(a)x4.

bs can take two different values depending on the spin of the
pairs of electrons considered. The different parameters of the
trial wave function have been optimized using the correlated
sampling method of Umrigaret al.17 The total energies ob-
tained at the variational and DMC levels are presented in
Table I.

The calculations have been done at the experimental
bond lengths. The quality of our trial wave functions is good
since a non-negligible part of the correlation energy is recov-
ered at the variational level. Note that more sophisticated
trial wave functions could be used~see, e.g., Ref. 18!.

At the heart of the zero-variance principle employed
here is the choice of the auxiliary quantitiesH̃ and c̃. Ex-
actly in the same way as for the total energy we need to
construct some optimal choice guided by a zero-variance
equation. In the case of the energy the zero-variance equation
is nothing but the usual Schro¨dinger equation

EL~x!5HcT /cT5^EL&, ~36!

and the optimal choice~zero-variance! for cT is cT5f0 .
Here, the ideal zero-variance condition is written as

F̃q~x!5^Fq&. ~37!

In the variational case, using expression~11! this equation
can be written as

F H̃2
H̃cT

cT
G c̃52@ F̃q~x!2^F̃q&#cT . ~38!

In the DMC case, we have

@H2E0#c̃52@ F̃q~x!2^F̃q&#cT . ~39!

In this latter case we just need to construct an ‘‘accurate’’
solution of this equation. In the variational case we have
more freedom since the auxiliary operatorH̃ is also to be
chosen. Here, in order to demonstrate the feasibility and the
simplicity of the approach we will consider the simplest
choice possible for the auxiliary quantities. Regarding the
auxiliary operator we will just chooseH̃5H. Regardingc̃
we choose the minimal form required to get a finite variance
of the force, namelyQ as given by~24!. Note that using such
forms for the auxiliary quantities there are no free parameters
left. Our results are presented in Table II. Before discussing
these results let us first look at the convergence of the vari-

TABLE I. Total energies in variational Monte Carlo@E0~VMC!# and diffusion Monte Carlo@E0~DMC!# with the trial wave functions employed here.
Ec

VMC(%) andEc
DMC(%) are the percentages of correlation energy recovered in VMC and DMC.s2~VMC! is the variance of the local energy in VMC. Bond

lengths are in Bohrs and energies in Hartree atomic units. Statistical uncertainties on the last digit are indicated in parentheses.

Molecule E0~HF! E0 E0~VMC! s2~VMC! Ec
VMC(%) E0~DMC! Ec

DMC(%)

H2 (R51.4) 21.133 63 21.174 475 21.172 80~7.7! 0.0050~1! 95.8~2! 21.174 45~6.7! 99.9~2!
LiH ~R53.015! 27.987 28.070 21 28.055 54~26! 0.070~2! 82.37~3! 28.067 57~70! 96.8~8!
Li2(R55.051) 214.871 52 214.9954 214.9429~46! 0.196~1.2! 57.6~4! 214.9910~3.7! 96.4~3!

C2 (R52.3481) 275.4062 275.923~5! 275.581~2.9! 1.088~6! 33.8~6! 275.854~5.2! 87~1!

aFrom experimental data analysis.
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ous estimators. Typical behaviors are shown in Figs. 1 and 2.
Calculations are VMC calculations of the force~at experi-
mental length! for the two larger molecules treated here,
namely Li2 and C2.

Both figures show the convergence of the estimators of
the bare and renormalized forces, respectively, as a function
of the simulation time~a quantity proportional to the number
of Monte Carlo steps!. In both cases the difference between
the two curves obtained is striking. In the case of the bare
force the estimator of the force converges with a lot of dif-
ficulty. The fluctuations are very large and at some places
‘‘jumps’’ in the curves are observed. These jumps corre-
spond in the simulation to some configurations where an
electron approaches a nucleus. Their location and their mag-
nitude are very dependent on the sequence of random num-
bers and initial conditions used. In fact, there is no hope to
obtain a converged value of the bare force in a finite simu-
lation time ~whatever its length be!. This behavior is of
course related to the infinite variance of the estimator. The
second curve associated with the renormalized force, Eq.
~11!, has an entirely different behavior. In sharp contrast
with the bare case the convergence is now reached very eas-
ily. At the scale of the figure the fluctuations of the curve
have almost disappeared.

Table II summarizes the various calculations we have
performed. All calculations have been done at the experi-
mental bond lengths, the expectation values of the force are
therefore expected to be very close to zero.

The bare VMC and DMC values presented are reported
as given by the output of our program. However, as just
remarked they have to be considered with a lot of caution.
Indeed, the values are not and cannot be converged due to
the infinite variance. Consequently, the values quoted just
give a very rough estimate. Their actual values depends
strongly on the initial conditions and on the series of random
numbers used. In contrast, the renormalized value are per-
fectly well-defined and the estimate of the average and of the
statistical error are converged. At the variational level the
average values of the renormalized forces are significantly
different from zero. These values depend on the choice of the
trial wave function. The mixed estimators are less dependent.
In our calculations the results display a systematic error
about 2 times smaller than the variational ones. Combining
both sets of values and using formula~28! to remove as
much as possible the dependence on the trial function we
obtain very accurate estimates of the forces~column ^F̃&).
Except for the molecule H2 for which very small statistical

errors have been obtained, our estimates of the force are
essentially exact (.0) within error bars. Note that in the
three cases where a fixed-node error on the result is expected
~LiH, Li 2 , and C2) no significant bias on the results is ob-
served. As already remarked in the introduction there are
very few results to compare with in the literature. Regarding
H2 we can cite the work by Reynoldset al.5 At the equilib-
rium distance, they obtained for the force a value of
0.0009(24). Note that within statistical errors our~slightly
biased! result is compatible with this value. However, our
statistical error is about 5 times smaller. In the case of LiH
we get a much more accurate value than the one given by
Vrbik and Rothstein,6 namely F50.12(16). Quite remark-
ably, our statistical error is about two orders of magnitude
smaller. Comparisons with the very recent results obtained
by Filippi and Umrigar7 are not easy because the quantities
calculated are different. In their work the authors present the
error in the bond lengths obtained in their correlated DMC
calculations and not the force like in the present work. In
order to make some quantitative comparisons it is necessary
to compute the dependence of our results on the distance and

FIG. 1. Convergence of̂F&VMC and^F̃&VMC as a function of the simulation
time ~proportional to the number of Monte Carlo steps! for the Li2 molecule
at the equilibrium geometry,R53.015.

TABLE II. Forces at the experimental bond lengths~atomic units! for the four diatomic molecules considered.

^F&VMC and^F&mixed are the standard forces obtained with VMC and DMC.^F̃&VMC,mixed are the same quantities

obtained with the ‘‘renormalized’’ expression of the force, Eq.~18!. ^F̃& is the ‘‘hybrid’’ estimator combining
the VMC and DMC results, Eq.~28!. Statistical uncertainties on the last digit are indicated in parentheses.

Molecule ^F&VMC ^F̃&VMC ^F&mixed ^F̃&mixed ^F̃&

H2 (R51.4) 0.06~7! 20.0047~1.5! 20.0034~10! 20.0041~3.6! 20.0035~5!
LiH ( R53.015) 20.037~12! 20.0263~2! 20.03~2! 20.0125~9! 20.0013~11!
Li2 (R55.051) 20.8~4! 20.196~1.8! 20.2~2! 20.096~2.5! 20.004~4!

C2 (R52.3481) 2~3! 20.101~22! 1.~4! 20.05~2! 20.00~4!
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define some estimate of the equilibrium distance. Such a
study is out of purpose here and is let for future investiga-
tion. Finally, let us emphasize that the auxiliary function
used here is the simplest form allowing the reduction of the
variance of the local force to a finite value. Clearly, more
general and sophisticated forms for the auxiliary function
can be introduced and optimized. There is no doubt that sig-
nificantly smaller errors on the computed forces can be
achieved.

In summary, we have presented a simple and stable ap-
proach for computing forces within a QMC scheme. To do
that, we propose to use the Hellmann–Feynman theorem to
re-express the force as a standard local average of the gradi-
ent of the potential. The force is computed approximately
using standard variational Monte Carlo and fixed-node diffu-
sion Monte Carlo approaches. To remove as much as pos-
sible the dependence of the results on the trial wave func-
tions we resort to the commonly used ‘‘hybrid’’ estimator
combining both VMC and DMC results. In order to suppress
the unbounded statistical fluctuations associated with the lo-

cal force we apply to this observable a generalized zero-
variance property. In practice, this idea is implemented by
replacing the bare local force by some renormalized expres-
sion depending on some auxiliary quantities. A simple pro-
cedure to construct the renormalized force~choice of auxil-
iary quantities! is presented. As emphasized, it is a general
procedure: It can be performed without practical difficulty
for an arbitrary molecular system. Introducing the simplest
form possible for the renormalized force~minimal form, no
free parameters! and using standard forms for the trial func-
tions we get very satisfactory results for some simple di-
atomic molecules. Applications to bigger systems and calcu-
lations away from the equilibrium geometry are now under
investigation.
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