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Computing forces with quantum Monte Carlo
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We present a simple and stable quantum Monte Carlo approach for computing forces between atoms
in a molecule. In this approach we propose to use as Monte Carlo estimator of the force the standard
Hellmann—Feynman expressidncal force expressed as the derivative of the total potential energy
with respect to the internuclear coordinatdavoking a recently introduced zero-variance principle

it is shown how the infinite variance associated with the Hellmann—Feynman estimator can be made
finite by introducing some suitably renormalized expression for the force. Practical calculations for
the molecules K, Li,, LiH, and G illustrate the efficiency of the method. ®000 American
Institute of Physics.S0021-960600)31330-7

I. INTRODUCTION to be proportional tay? and Eq.(1) is nothing but an esti-
mate of the standard quantum-mechanical variational energy
Over the recent years quantum Monte Ca@MC) associated with the trial wave function. In diffusion Monte
methods have become more and more successful in COMPYy (DMC) schemes, the stochastic rules employed to gen-
ing ground-state properties of atomic and molecular systemgate configurations are essentially similar to those of VMC,
(see, e.g., Refs. 13:3However, the vast majority of applica- gy cent that a new step—a branching process—is added to
tions has been limited to the calculation of the ground—stat%ass from the VMC distribution to the so-called “mixed”
total energy. Although this is clearly a most important quan-yistripution given bydoir, Where ¢, denotes the exact
tity, other properties(dipole moments, forces, polarizabil- 4, nd_state wave function. In that case, Et.realizes an
iti_e_s, etc) are also of _primary interest._ I_n the(_)ry_, there is N0 oy ot estimate of the energy. From expressibnit is clear
difficulty for computing such quantities within @ QMC hai the statistical error on the energy is directly related to the

framework. However, in practice, the convergence of thenagnitude of the fluctuations of the local energy. In turn,

Monte Carlo calculations is much more slower and, there—such fluctuations depend on the “quality” of the trial wave

fore, much more computationally demanding than the case Qfction. The closer the trial wave function is to the exact
the energy. Thus, only a limited number of calculations ofghe “the smaller these fluctuations are. In the limit of an
properties can be found in the literature. The fundamental, »ct trial wave function the local energy becomes strictly
point allowing very efficient and accurate calculations of the o nstant and the statistical error vanishes completely. This is
energy (compared to other propertiess the existence of a he resyit which is known as the “zero-variance” property.
so-called “zero-variance” property for this special observ- |, oractice, this property is of great importance: very accu-
able. To understand this point, let us first briefly recall how 56 caiculations can be performed with a reasonable amount
the energy is com_puted with QMC. In short, th? energy 1Sy¢ computer time only if accurate enough trial wave func-
expressed as a simple average over some suitably chosgfng are at our disposal. When no particular trial wave func-
distribution tion is used ;=1 in the preceding formulal)] the local
Eo=(E.), (1) energy reduces to the total potential energy. In this case the
statistical error on the energy is very important since the bare
where the bracket§- - - ) denote the statistical average and potential fluctuates enormously. Introducing a trial wave
EL is a local function defined as function can be viewed as defining a “renormalizing proce-
EL(x)=H /s @) dure” a}pplied to the bare potential in olrder to reduce its
' fluctuations. Of course, such a process is allowed only be-
and usually referred to as the local energy. Hétajenotes  cause both the bare potentigthe total potential energyand
the Hamiltonian under consideration ami¢ a trial wave the renormalized onéhe local energyhave the same aver-
function. The distribution for the average defines the type ofige.
guantum Monte Carlo calculation performed. In variational ~ Very recently, we have generalized this zero-variance
Monte Carlo(VMC) schemes, the distribution is constructed property to any observable defined on the configuration
space’ DenotingO some rather arbitrary observable we have
3Electronic mail: assaraf@sissa.it shown that it is possible to construict a systematic wag

PElectronic mail: mc@Ict.jussieu.fr renormalized observabi® verifying:
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(B)=(0) @3) Fa()=—VV(x,9). ®)
and In these formulag) represents the set of theN3,. nuclear
. 5 coordinates o being the number of nuclgiV the total
0°(0)<0*(0) (4) potential energy operator of the problefag(qg) the total
wherea?(A) represents the variance of operafor ground-state energy for a given molecular geometry, énd
o ) the corresponding ground-state wave function.
o (A)=((A=(A))%). ) As remarked by a number of authors, one of the major

When usingO instead ofO as estimator of the observable, difficulties in computing forces by QMC via formulas)

the convergence of the calculations can be improved sinc@nd(8) is the presence of uncontrolled statistical fluctuations
the statistical error on a finite Monte Carlo sample is directly(S€€, €.9., Ref.)3Indeed, the variance of the Hellmann—
proportional to the variance of the quantity to be averaged'.:ey”ma” estimator of the force is infinite. This is a S|mplg
As we shall see later, the renormalized observable depend@nsequence of the fact that at short electron-nucleus dis-

on two auxiliary quantitiesi and% which play a role simi-  2n¢es’, the local force behaves &~ 1%, so that(F?)

lar to that played byH and#+ in the renormalized version of = Varlou_s SOIUUO”? to .th'.s p“’b'e!'” have been proposed.
the bare potential, Eq2). Some preliminary classical and A common idea consists in introducing some sort of .cutoff
guantum Monte Carlo calculations on simple systems hav}é:hen the electrpns approgch the nuélbiowev.e'r, by doing
shown that very important reduction of the computational IS a syst_emanc error 1S mtroduced._ In addition, 10 con_trol
effort can be achieved by using this general zero-varianCttehIS error 1S a very tricky prob_le_m since any extrapolation
principle? In the present paper we apply this idea to theprocedure(cutoff gomg_to _ze_rq) is ill-defined.

problem of calculating forces between atoms in molecules. To escape frqm this difficulty we propose“to replace the
The calculation of forces is known to be a very difficult task §tandard exprgssmNn of the Ioc'al foreg(x) by a “renormal-

for QMC methodsS Some calculations limited to very small 1z€d” expression,Fq(x), having the same average but
molecules (typically H, and LiH) have been reportetf smaller.fluctuatlo'ns. It §hou|d be gmphasged thgt the de-
However, their extension to bigger systems is essentially ndt"€ase in fluctuations _W|II be dramatic here since, in c_ontrast
realistic. Note that very recently Filippi and Umrigar have With the bare expression, the renormalized version will have
presented a new method for computing fort@eir method ~ NOW finite fluctuations. Let us give the explicit expressions

is based on a special transformation coordinates and a corri®" the renormalized quantities. We shall consider two dif-
lated sampling approach. Here, we follow a quite different€rent cases. The first case corresponds to variational Monte

route. It is shown that forces can be computed in a Ver)parlo (VMC) calculations. The distribution of walkers in

natural way by using the standard Hellmann—Feynihtfy ~ configuration spacez(x) is given by

theorem. More precisely, the fqrce is_computed as th(_a aver- WVMc(X)~¢$(X)- 9)

age of the local force, a quantity defined as the gradient of

the potential energy with respect to the internuclear coordiThe second case corresponds to calculations within the dif-
nates. In previous worksee, e.g., discussion in Ref.&uch  fusion Monte CarldDMC) approach. In that case the distri-

a possibility was excluded because of the uncontrolled stabution employed is the so-called mixed distribution given by
tistical fluctuations associated with the bare fofadinite _

variance. Here, it will be shown that with the help of the Tomc(X)~ #r(X) bo(X). (10
generalized zero-variance principle, the pathological part ofn the variational case and for a particular comporgmte

the force responsible for the infinite variance can be removedonsider the following renormalized expression:

exactly in a simple and general way. Once this is achieved, it

is possible to perform stable calculations of the forces by ¢ (X)=F4(x) +
using standard variational and diffusion Monte Carlo meth- q a
ods. The first applications presented here illustrate the accu- - ) . N
racy and efficiency of the method. WhereH~|s some rather arbitrary auxiliary Hermitian opera-
tor and ¢ an arbitrary auxiliary functionsupposed to be
square-integrab)e Note that the choice of the auxiliary
quantities depends on the particular compormgrnsidered.

To compute forces between atoms in a molecule we tak@ecauseH is Hermitian we have | H| %)= (4|H| 1) and
advantage of the Hellmann—Feynman theorem. According t¢ js an elementary exercise to check that the average value of

Hy Hyq

o U

4

%, (11

Il. METHOD

this theorem the average force defined as the bare and renormalized expressions over the VMC distri-
(Fg)=—"V4Eo(q) (6)  bution (9) are identical
is given by the expectation value of the gradient of the po- (|~=q)=(Fq). (12

tential (local forc . . . .
( 9 Note that this result requires that both the trial function and

fdx ¢§(x,q)Fq(x,q) its first derivatives are continuous over the whole configura-
= [dx 42(x.q) (7 tion space. The_se conditions are fulfilled by th_e trial wave
o functions used in VMC schemes. Now, regarding the vari-

with ances we have the following expression:

(Fo)
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o(E )E((TZ _<|~: 1)2) To make the connection with the variational case, re-
d @ mark that the latter expression can be rewritten as
=0?(Fg)+2(Fqg AH w)+(AHZw?), (13 ~ 5
- . FqO0=Fg"“(x)+[EL—Eqlw, (20)
where, for the sake of simplicity, we have used the following

notations: where E; represents the local energy function associated
i with the trial wave functionyr, Eq.(2), andFy"°(x) is the
[

1
<
—

(14) variational Monte Carlo expression of the renormalized
force, Eqg.(11). Note that the correction between the VMC
and DMC estimators in formulé20) consists of a product of
two quantities, nameljfg, —E, and w. The quantityE,
—Eg has a vanishing average and its statistical fluctuations

(15) are in general much smaller than thosenofAccordingly, it
is quite efficient to introduce a centered version of the vari-

Now, let us show that, from an arbitrary auxiliary function @blew. Indeed, it can be easily shown that the fluctuations of

T,//, we can always construct a renormalized expression ha\}he product are in this way greatly reduced. Our final version

ing a smaller variance. For that we consider the muItipIica-Of the DMC force used in our calculations is therefore

AH=

<
i

and

W=

sl

tive constant ofyy, denoted hergx, as a variational param- l~:q(x)="lng°(x)+[E,_—(E|_)][W—(W>]. (22)
eter. Minimizing the variance?(F,a) with respect tax we , , .
get the following optimal value: Finally, it shOL_JId be noted that the force ca_lculated accordlng
to the preceding formulas are not exact since the DMC dis-
aop= —(Fq AH W)/{AH?W?) (16) tribution is the mixed distribution instead of the exact one.

This point is discussed later.
Now, in order to illustrate the method we consider the
oA(F, aop) = 04(F) —(F AH W)/(AH2 W?), (17)  case of a diatomic molecul&B consisting of an atonA
(nucleus chargeZ,) located at R,0,0) and an atonmB
In general, the quantityF AH w) will not be equal to zero.  (nucleus charg&g) located at the origin. Note that the gen-
As a consequence, equati¢h7) shows that, whatever the eral case corresponding to an arbitrary number of nuclei does
quality of the auxiliary functiony chosen, the use of the not involve particular difficulties. It can be obtained by
optimized prefactoi(16) always leads to a decrease of the straightforward generalization of what is presented below.
statistical fluctuations. Clearly, this gain in variance can beFor a diatomic molecule we have the following expression of
small but let us emphasize that it is a systematic gain. Ofhe force:F=(F,0,0), with
course, this is only by choosing appropriate auxiliary func- N
tions that large gains can be expected. _ZaZs _ IU(X—R)
e F(x)= Za R (22
In the case of a diffusion Monte Carlo scheme the sta- R? =1 |r—R|®
tionary distribution, Eq(10), is no longer known analytically
since it involves the unknown exact wave function which isWNereNeiectis the total number of electrons angrepresents
stochastically sampled, and our general procedure whicH'€ Position of electron The second term on the right-hand
supposes the knowledge of the distribution cannot be readil§ide of Eq.(22) is responsible for the infinite variance con-
applied to. However, in the particular case of the mixed dis{ribution. Let us now show that this contnbl_mon can bg_ ex-
tribution, a renormalized expression can still be defihéd. actly removed. In what follows we shall write the auxiliary

and, therefore,

natural choice is function as
- HY 7 () =Qyr, (23)
Fa()=Fq(x)H| —=~Ey _T (18) whereQ is some arbitrary function. Using this form it can be

verified that the simplest form f&@ canceling the pathologi-
whereE, is some unbiased estimator of the exact ground<al part of the bare force is the following:

state energy. In this case also, it is quite easy to verify that Nejoct

the averages of the bare and renormalized estimators over the Q=2,> (xi—R)

mixed distribution(10) are equal = In—R|C 249
<|~:q>:<|:q>. (19 Finally, we get for the renormalized force in the variational
case[Eq (11)]:
It should be emphasized that this result is valid only if the
wave functiongq and its first derivatives are continuous ev- ~ ZpZg
erywhere. This is true for the exact solution of the problem. ~ F(X)=—;==VQ-Vir/ir, (25)

. o ; R
However, in general it will not be the case for the approxi-

mate solution obtained with a fixed-node diffusion Montewith a similar expression in the DMC cakgee Eqs(18) and
Carlo calculation. We shall return to this important point in (20)]. It can be checked that this latter expression has now a
the next section. finite variance.
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As already mentioned the QMC calculations presentederent and the FN solution corresponds to the eigensolution
here are done at two different levels of approximation. Firstdefined in the domain corresponding to the lowest energy.
we present variational Monte Carlo calculations of the force Without entering more into the details of the fixed-node ap-

The average of the force is then obtained as proach(for that, see, e.g., Refs. 12 angv@e just remark that
dx 2 a most important point with FN calculations is that the
<f>vmc=—f leT(X)]:(X), (26 sampled fixed-node solution displays in general some dis-
[dx ¢$(x) continuous derivatives at the nod@eroes ofi;). Because

h i the trial functi e s h of that, some mathematical care is necessary when integrat-
W’the ret'f]T It? ef rla;pvxall:veEum;mn, t?\n repres?n Sd ere ing quantitiegenergy, derivatives of the energy, ¢tihat are
either the bare forcel-=F, Eq.(7), or the renormalized one, defined over the entire configuration space; in other words,

F=F, Eq.(11). We also consider averages over the mixedine various nodal domains must be properly connected. A
distribution as obtained in a diffusion Monte Carlo scheme:firsi example illustrating this remark is the problem of the

JdX do(X) h7(X) F(X) validity of the HeIImann—FeynmaﬂﬂF) theorem in fixed _
(F ) mixed™ , (27)  node QMC calculations, a point which has raised some dis-
de ¢0(X) wT(X) . —15 .
cussion very recentl{?~*°Due to the presence of the discon-
where ¢, is the exact wave function. Herg; is given either tinuity at nodes the HF theorem is not true in general in that
by Eq. (7) or by Eq.(18). In order to get a more accurate case. It can be shown that the theorem is valid only when the
approximation of the unbiased exact force, corresponding t@erivative of the total fixed-node energy with respect to the
the density3, we shall also have recourse to the following coordinateq is done without changing the nodes of the trial
“hybrid” formula: wave function when varying).* However, since in the
(Fy=2(Fmixec—{(Fumc - (28) present work no finite diffgrenc_e e.xpressions for the fixgd—
node energy are used, this point is in fact of no practical
This formula is constructed so that the first-order Contribu-importance_ Let us just mention that the average force ob-
tions in the differencedo(x)—¢(x) for the quantities tained in our fixed-node DMC calculations corresponds to
(F )mixed @NA{F )ymc COMpensate exactlgee, e.g., Ref.)3  the Hellmann—Feymnan force we would obtain by perform-
From a practical point of view, expressid@8) is particu-  ing such finite differences fixed-node calculations with the
larly interesting. Both quantities involved can be straightfor-nodes kept fixed.
wardly computed in routine DMC and VMC calculations. A second example of difficulties, which is here of fun-
Note that in principle it is also possible to get an exact estigamental importance, concerns the validity of the equality
mate of (F) but it requires some more elaborate schemeyetween the bare and renormalized expressions(1By. To
involving some kind of forward-walking® We shall not clarify this point let us have a closer look at the condition we
consider here such calculations, but let them for future pubgould like to fulfill. Using expressioli18) the condition can

lication. be written as

FN\ 7
IIl. A FEW REMARKS REGARDING THE PRACTICAL ~ o oeH-EDy
IMPLEMENTATION (F)—(F)=(¢q |—¢T lpr)=0, (29)

As seen in the preceding section we use both VMC anq/vhere E
DMC approaches in our actual computations. Regardingjomain
variational Monte Carlo no particular difficulties arise. In
practice, the main weakness of the VMC approach lies inthe  ~ N ENe~
fact that the average force obtained according to(E6). is (F)—(F)= JQdX ¢o (H=Eg))¢. (30)
quite dependent on the trial wave function used. This is par-
ticularly true sincey is optimized in order to improve the Now, decomposingd under its kinetic and potential parts
total electronic energy but not its derivatives with respect toand invoking Green’s formula this quantity can be rewritten
the internuclear coordinates. However, as illustrated by thes an integral over the nodal hypersurface
practical calculations presented belgsee Table I, com-
bining DMC and VMC calculations of the force according to
the hybrid formula, Eq(28), seems to represent a simple but
accurate solution to this problem.

Let us now consider the specific difficulties associated=rom this expression it is seen that a nonzero bias may in-
with DMC calculations. In order to avoid the famous “sign deed appear in a fixed-node calculation of the renormalized
problem” for fermion$ all calculations presented here are force. Clearly, a simple way of removing this bias is to use
done using the stable but approximate fixed-nd&®\) auxiliary functionsy having the same nodes as and,
method. In this approach the ScHioger equation is solved therefore, the same nodes ¢§N. The actual simulations
separatelyin each nodal domairfor “pocket”) where it presented below fulfill this condition.
has a definite sign. When the trial wave function satisfies the Finally, let us end this section with some words about
tiling property'®!! all nodal domains are equivalent and re- the nature of the errors introduced. Since the exact nodes are
lated by the permutational symmetry. When this is not thenot known there is some difference between the exact and
case, energies associated with each nodal domain can be diixed-node functions

tNis the fixed-node energy. Denotin@ a nodal
of the fixed-node solution we can write

~ 1 e e N
B-Fr=-5] GETI-Trehds @
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TABLE I. Total energies in variational Monte Car[d,(VMC)] and diffusion Monte Carld Eq(DMC)] with the trial wave functions employed here.
E‘C’MC(%) andECDMC(%) are the percentages of correlation energy recovered in VMC and RI@MC) is the variance of the local energy in VMC. Bond
lengths are in Bohrs and energies in Hartree atomic units. Statistical uncertainties on the last digit are indicated in parentheses.

Molecule Eo(HF) Eo Eo(VMC) a3(VMC) E.MC(%) Eo(DMC) EMC(%)
H, (R=1.4) —1.13363 —1.174 475 —-1.1728Q7.7) 0.005Q1) 95.92) —1.174 4%6.7) 99.92)
LiH (R=3.019 —7.987 -8.070 21 —8.055 5426) 0.0702) 82.313) —8.067 5770) 96.98)
Li,(R=5.051) —-14.87152  —14.9954 —14.942946) 0.1961.2 57.64) —14.991@3.7) 96.43)
C, (R=2.3481) —75.4062 —75.9235) —75.5812.9 1.0886) 33.96) —75.8545.2) 87(1)

#From experimental data analysis.

Sb= SN~ ¢y, (32 S(X) =S1X+ S+ Sgx3+ 5,4,

where ¢ and ¢5N are the normalized exact and fixed-node P (x) = p{¥x+ psIxZ+ p{x3+ piIx?.

solutions. The fixed-node bias can be evaluated as ] ) )
b, can take two different values depending on the spin of the

(61 160" — (ol Fl o) = 2( 5| Fl po) + O(5p?). pairs of electrons considered. The different parameters of the
trial wave function have been optimized using the correlated
In other words, the fixed-node bias fétis of order 1 ind¢ sampling method of Umrigaet all’ The total energies ob-
in contrast with the FN bias on the energy which is of ordertained at the variational and DMC levels are presented in
2 in the same quantity. Finally, it is easy to see that the biagable I.

on the mixed average, Eq27), is of order O(yr— 5N The calculations have been done at the experimental
+ O(8¢) while the bias on the “hybrid” estimator, E¢28), bond lengths. The quality of our trial wave functions is good
is of orderO[ (r— ¢g) 2]+ O(5). since a non-negligible part of the correlation energy is recov-

ered at the variational level. Note that more sophisticated
IV. RESULTS AND DISCUSSION trial wave functions could be usddee, e.g., Ref. 18

o At the heart of the zero-variance principle employed

We present a number of variational Monte CANMC)  here s the choice of the auxiliary quantitiBsand . Ex-
and diffusion Monte CarldDMC) calculations for the di-  actly in the same way as for the total energy we need to
atomic molecules b LiH, Li,, and G. Standard imple-  construct some optimal choice guided by a zero-variance

mentations of the VMC and DMC methods have been usedquation. In the case of the energy the zero-variance equation
and will not be detailed here. For some general presentatiog nothing but the usual Schdimger equation

of these approaches the interested reader is referred for ex-

ample to Refs. 1, 3, and 16. As already indicated in the EL(X)=Hu/¢r=(E.), (36)
preceding section all DMC calculations have been don%nd the optimal choicézero-varianckefor ¢ is = do.
within the fixed-node approach. Numerical experience Showﬁere, the ideal zero-variance condition is written as
that the fixed-node error on the energy resulting from the

approximate location of the trial nodes is rather small when |~:q(X)=<Fq>- (37)
good enough trial wave functions are used. As we shall see . . ) . )
later, this will also turn out to be true when calculating " the variational case, using expressidri) this equation

forces. In order to remove the short-time error all DMC cal-€&n be written as

culations have been systematically performed with different Ay N
time-steps and extrapolated to zero time-step. Regarding the |H— —— b= —[ﬁq(x)—<Fq)]wT. (38
trial wave function we have chosen a standard form consist- T

ing of a determinant of single-particle orbitals multiplied by |n the DMC case, we have

a Jastrow factor _ _ -
[H—Eol¢=—[Fq(x)—(Fg)lir. (39)

yr=D'D! exp% 02» Uria Tjasfij), (34 In this latter case we just need to construct an “accurate”
! _ solution of this equation. In the variational case we have
where the sum ovew denotes a sum over the nuclei and 56 freedom since the auxiliary operafdris also to be
2 j) @ sum over the pair of electrons. Here, the functibis ., ,sen Here, in order to demonstrate the feasibility and the
chosen to be simplicity of the approach we will consider the simplest
U(fia,fja,fij)=S(Xij)+D(“)(Xia)JrClXiZanza choice possible for the auxiliary quimtities. Regardin~g the
5 2. o 5 auxiliary operator we will just choosel =H. Regardingys
+Ca(Xio T X]o)Xjj + CaXij (39 we choose the minimal form required to get a finite variance
with of the force, namely as given by(24). Note that using such
forms for the auxiliary quantities there are no free parameters
i X;., Mia left. Our results are presented in Table Il. Before discussing

XA. :—’ :—’ . H
1+ bori 14+Db,ri, these results let us first look at the convergence of the vari-
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TABLE Il. Forces at the experimental bond lengtlhasomic unitg for the four diatomic molecules considered.
(F)ymc and(F)myeqare the standard forces obtained with VMC and DNE}yyc mixes € the same quantities

obtained with the “renormalized” expression of the force, Et). (F) is the “hybrid” estimator combining
the VMC and DMC results, Eq28). Statistical uncertainties on the last digit are indicated in parentheses.

Molecule (F)ume (Fome (F) mixed (F)mixed (F)
H, (R=1.4) 0.067) —0.00471.5 —0.003410) —0.00413.6) —0.00355)
LiH (R=3.015) —0.037112 —0.02632) -0.032) —0.01259) —-0.001311)
Li, (R=5.051)  —0.8(4) ~0.1961.9  —0.22) ~0.0962.5  —0.0044)
C, (R=2.3481) 23) ~0.10122) 1.(4) ~0.052) ~0.004)

ous estimators. Typical behaviors are shown in Figs. 1 and 2rrors have been obtained, our estimates of the force are
Calculations are VMC calculations of the for¢at experi- essentially exact=€0) within error bars. Note that in the
mental length for the two larger molecules treated here, three cases where a fixed-node error on the result is expected
namely Lp and G. (LiH, Li,, and G) no significant bias on the results is ob-

Both figures show the convergence of the estimators oferved. As already remarked in the introduction there are
the bare and renormalized forces, respectively, as a functiovery few results to compare with in the literature. Regarding
of the simulation timea quantity proportional to the number H, we can cite the work by Reynoldz al® At the equilib-
of Monte Carlo steps In both cases the difference betweenrium distance, they obtained for the force a value of
the two curves obtained is striking. In the case of the bar®.0009(24). Note that within statistical errors dstightly
force the estimator of the force converges with a lot of dif-biased result is compatible with this value. However, our
ficulty. The fluctuations are very large and at some placestatistical error is about 5 times smaller. In the case of LiH
“jumps” in the curves are observed. These jumps corre-we get a much more accurate value than the one given by
spond in the simulation to some configurations where an/rbik and Rothsteirf, namely F=0.12(16). Quite remark-
electron approaches a nucleus. Their location and their magdbly, our statistical error is about two orders of magnitude
nitude are very dependent on the sequence of random nursmaller. Comparisons with the very recent results obtained
bers and initial conditions used. In fact, there is no hope tdy Filippi and Umrigaf are not easy because the quantities
obtain a converged value of the bare force in a finite simu<alculated are different. In their work the authors present the
lation time (whatever its length Be This behavior is of error in the bond lengths obtained in their correlated DMC
course related to the infinite variance of the estimator. Thealculations and not the force like in the present work. In
second curve associated with the renormalized force, Edprder to make some quantitative comparisons it is necessary
(11), has an entirely different behavior. In sharp contrastto compute the dependence of our results on the distance and
with the bare case the convergence is now reached very eas-
ily. At the scale of the figure the fluctuations of the curve
have almost disappeared.

Table Il summarizes the various calculations we have
performed. All calculations have been done at the experi- ,
mental bond lengths, the expectation values of the force are 2 ML b, Molecule 7
therefore expected to be very close to zero. ~

The bare VMC and DMC values presented are reported
as given by the output of our program. However, as just
remarked they have to be considered with a lot of caution.
Indeed, the values are not and cannot be converged due to
the infinite variance. Consequently, the values quoted just
give a very rough estimate. Their actual values depends
strongly on the initial conditions and on the series of random
numbers used. In contrast, the renormalized value are per- LN
fectly well-defined and the estimate of the average and of the L
statistical error are converged. At the variational level the il
average values of the renormalized forces are significantly 5
different from zero. These values depend on the choice of the
trial wave function. The mixed estimators are less dependent. B
In our calculations the results display a systematic error [

<F>VMC
()
[

P T T I S S R Y N S RO N I |
about 2 times smaller than the variational ones. Combining 0 200 400 600 800 1000
both sets of values and using formul28) to remove as Simulation time

much as possible the dependence on the trial function we ~ _ _ _
FIG. 1. Convergence dfF )yuc and(F)yyc as a function of the simulation

obtain very accurate estimates O_f the for¢eslumn <F>) time (proportional to the number of Monte Carlo stefer the Li, molecule
Except for the molecule Hfor which very small statistical at the equilibrium geometrnR=3.015.
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cal force we apply to this observable a generalized zero-
variance property. In practice, this idea is implemented by
I ] replacing the bare local force by some renormalized expres-
sion depending on some auxiliary quantities. A simple pro-
cedure to construct the renormalized fofchoice of auxil-
iary quantitie$ is presented. As emphasized, it is a general
procedure: It can be performed without practical difficulty
for an arbitrary molecular system. Introducing the simplest
form possible for the renormalized foréminimal form, no
free parametejsand using standard forms for the trial func-
tions we get very satisfactory results for some simple di-
atomic molecules. Applications to bigger systems and calcu-
lations away from the equilibrium geometry are now under
_op C, Molecule - investigation.

20 ;

<F>VMC
=
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