
École Normale Supérieure de Lyon Université de Lyon

Quantum Monte Carlo for

Condensed Matter and Statistical Physics (M2)

TD session 1 and 2 F. Mezzacapo, T. Roscilde

General goal and rules of the TD sessions: The TD sessions are fully
hands-on namely, in every TD session you are supposed to write and test
different parts of a Path Integral Monte Carlo computer code designed to es-
timate the physical properties of quantum systems, in some selected cases.
You can write the code alone or in a two-people team. You should choose a
programming language (C++, Fortran, etc.) and be able to plot your results
(using e.g., Gnuplot, the plotting utilities of Matlab, etc.). We assume that
you have a reasonable familiarity with at least one programming language.

Disclaimer: If you wish, you can skip the analytical exercises proposed in
Subsecs. 1.1 and 3.2, and directly use Eqs. (1), and (8). Exercises marked
with (F) are facultative.

1 The model

We will consider, as a starting point, the problem of a single quantum par-
ticle of mass m subjected to an external harmonic potential in one spatial
dimension. The Hamiltonian of the system is H = − ~2

2m
∂2

∂y2
+ 1

2
mω2y2, where

ω is the angular frequency, ~ the reduced Planck constant and y the particle
position.

By choosing E0 = ~ω and y0 =
√

~
mω

as units of energy and length, respec-

tively, one obtains the dimensionless form:

H =
1

2

∂2

∂x2
+ v(x), with v(x) =

1

2
x2. (1)

1.1

Verify Eq. (1).
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In the following we first specialize some important formulas you have already
seen during classes to our model in Eq. (1), then we will start going through
the basic steps needed to implement a Path Integral Monte Carlo (PIMC)
code. We will use our code to estimate the finite-temperature properties of
our chosen model. It is worth mentioning that the implementation discussed
here, and in the other TD sessions, can be adapted with minimal changes to
tackle a very large class of (bosonic) problems in continuous space.

2 Useful formulas

The partition function of our system of interest, at a temperature 1/β is:

Z =

∫
dx0

〈
x0|e−βH|x0

〉
. (2)

The integrand in Eq. (2) can be analytically evaluated due to the particular
Hamiltonian in Eq. (1), however, given the purpose of these TD sessions
we will use an approximation which is i) systematically improvable and ii)
applicable regardless the details of the Hamiltonian. By inserting M − 1
identities in Eq. (2) we obtain:

Z =

∫ M−1∏
k=0

dxk
〈
xk|e−τH|xk+1

〉
, (3)

where τ = β/M is the imaginary time step, M the number of slices, x =
x0, · · · , xM−1 is the path or world line and xM = x0. The kth imaginary time
propagator in Eq. (3) can be approximated as:

〈
xk|e−τH|xk+1

〉
' (2πτ)−

1
2 e−

(xk+1−xk)
2

2τ e−τv(xk). (4)

The above is known as primitive approximation: it is exact in the limit of
small τ and accurate up to order τ 2. Defining

P (x) =

∏M−1
k=0

〈
xk|e−τH|xk+1

〉
Z

'
∏M−1

k=0 (2πτ)−
1
2 e−

(xk+1−xk)
2

2τ e−τv(xk)

Z
, (5)
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the expectation value of an operator O in terms of its estimator O(x) is:

EXP [O] =

∫
D(x)P (x)O(x), where D(x) ≡ dx0dx1, · · · , dxM−1. (6)

For general models, Eq. (6) cannot be solved exactly. The PIMC method, in a
nutshell, provides an efficient way of estimating the multidimensional integral
above. Specifically, via PIMC one generates a large set of configurations
x1, · · · ,xNc sampled from P (x) and approximates Eq. (6) as:

EXP [O] ' 1

Nc

Nc∑
i=1

O(xi) = 〈O(x)〉 . (7)

You may have noticed that in this section we have used two approximations:
the primitive one for the propagators and that in Eq. (7). They are both
“under control”, becoming exact in the large M and Nc limit, respectively.

3 Setting up the code

Our PIMC code should be written in terms of a few adjustable parameters
and arrays which will be progressively defined and consistently used in the
TD sheets.

For example, you may start using:

β: dimensionless inverse temperature.

M : number of imaginary time slices, or beads.

x: array of size M with the particle position at each slice (i.e., the world line).

Nc: number of configurations generated by our PIMC algorithm. A new
configuration is generated starting from the current one, proposing a certain
number of single-bead displacements (see below).

Also, you will need to use standard functions included in essentially all
programming languages to extract uniformly or normally distributed random
numbers.
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3.1 Sampling the configuration space

The sampling strategy is one of the fundamental point of a PIMC code. As
a first step you should assign the system initial configuration e.g., by uni-
formly extracting the position of our single particle for each bead in a certain
range [−XMAX,XMAX]. Then you can modify the initial configuration
by proposing M sequential single-bead updates as follows:

for(k = 0; k < M ; k + +)
{

Randomly select a bead j;
Propose a new position for the selected bead:

xnewj =
xj+1+xj−1

2
+ g(

√
τ/2);

Perform Metropolis acceptance/rejection test;
}
new configuration obtained;

The above pseudo-code where g(
√
τ/2) is a random number distributed ac-

cording to a gaussian with zero mean and standard deviation equal to
√
τ/2

provides a simple “recipe” to generate a new global configuration by means
of M sequential local updates. In the following, the procedure of attempting
M sequential single-bead updates will be referred to as the proposition of a
global update.

Within the scheme discussed above the displacement of a single bead j is
accepted, for our model in Eq. (1), with probability

A(xj → xnewj ) = min
(

1, e−
τ
2
[(xnewj )2−(xj)2]

)
. (8)

3.2

Verify Eq. (8).

3.3

After having implemented the sampling strategy introduced in this section
you can do a first numerical exercise:
Initialize the system setting e.g., xi = 0 ∀ i = 0, · · · ,M − 1. Propose several
global updates (e.g., 5×105) and plot the final configuration for β = 1.0 and
β = 10−2, as well as the initial one (use M = 10). What do you observe?
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[You may need to rigidly shift one of the two world lines to visualize both in
the same spatial range].

4 Estimating observables I: Energy

We can now evaluate physical observables as averages over the sampled con-
figurations of the corresponding estimators. For the total energy E of our
particle the estimator reads:

E(x) =
1

M

M∑
j=1

[
1

2τ
− 1

2

(
xj+1 − xj

τ

)2

+ v(xj)

]
. (9)

Hence,
E ' 〈E(x)〉 (10)

Assuming to have generated a large number N I
c of independent configurations

and computed the corresponding large sample of uncorrelated E(x) values,
the uncertainty on E can be estimated as:

σE '

(
〈E(x)2〉 − 〈E(x)〉2

N I
c − 1

)1/2

. (11)

The update strategy implemented in our code, however, relates configura-
tions visited sequentially. As a result, the above formula used for the Nc

configurations generated by our algorithm will generally underestimate σE.
In order to overcome this problem one can divide the total number of sam-
pled configurations in NB blocks (with NB >> 1) and compute the partial
average Ei

B for each block (i.e., ∀ i = 1, · · · , NB ). If the block size (i.e. the
number of configurations in each block) is large enough the EB’s are inde-
pendent. Hence, they lead, used in the framework of Eq. (11), to the correct
estimate of σE.

4.1 (F)

Set β = 0.5 and M = 10. Propose a large number NTHERM of global
updates to thermalize the system. Then, generate via global updates Nc

configurations, compute E(x) for each configuration and write the E(x)’s on
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a file. Reblock your energy estimates defining nB = Nc/MB partial averages
and estimate

σE(MB) =

(
〈(Ei

B)2〉 − 〈Ei
B〉

2

Nc/MB − 1

)1/2

(12)

where 〈· · · 〉 here indicates average of the Nc/MB partial averages. Plot
σE(MB) as a function of MB. You should see that this quantity first in-
creases with increasing MB and then flattens. You can take the plateau
value as the uncertainty on E. In this exercise typical values you may use
are NTHERM = 105, Nc = 218 and MB = 2n with n = 0, · · · , 13. What is
your estimated energy? Is it compatible, tacking into account the errorbar,
with the exact result? [eex(β = 0.5) = 2.04149]. How can you improve your
estimate? [Note that in this exercise you need to run a single simulation and
manipulate the output file to obtain σE(MB) for various choices of MB].

4.2

In this numerical exercise we will explore the dependence of E on M . Set,
for example, β = 5.0 and estimate the energy for a few M values. For each
M you should run a separate simulation. To speed up the code avoiding to
write very long files, you can build block averages “on the fly” by setting
an a-priori value of MB. During the simulation you can append on a file
your block-averaged values of the energy. You can then estimate E (and σE)
post-processing such a file. Note that, in this way, if needed, estimates can be
further reblocked without rerunning the simulation. A typical value of MB

you can use as a starting point here is 2500. You can use a few values of M
in the interval [1, 50]. What do you expect to obtain for M = 1? Plot E(M)
and compare your estimates with the exact result Eex(β = 5.0) = 0.50678.

4.3

Estimate E(β) for a few values of β, for example, in the interval [0.5, 10].
Plot E(β) and compare it with the exact result:

Eex(β) =
1

2 tanh(β/2)
. (13)

In this exercise you can use τ = β/M = 0.1.
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5 Estimating observables II: Probability distributions

The probability distribution function P (x) can be defined as:

P (x) = N
M∑
j=1

δ(xj − x) (14)

Operatively, you have to define a simulation box, i.e., a region of space large
enough to contain the position of each bead during the simulation. Given
our simulation box: [−XMAX, XMAX] (where the value of XMAX may
depend on the simulation parameters), P (x) is accumulated as an histogram
as follows:

set the number of bins NBIN
dx = 2XMAX/NBIN ;
for(int k = 0; k < M ; k + +)
{
auxbin = bin containing xk;
P [auxbin]+ = 1;
}
determine N via normalization (i.e., imposing

∑
ibin P [ibin]dx = 1)

Similarly, you can evaluate the probability distribution functions:

P ′(x) = N ′
M∑
j=1

δ((xj − xc)− x) with xc =
1

M

M∑
j=1

xj, (15)

and
P ′′(x) = N ′′δ(xc − x) (16)

which provide information about quantum and thermal fluctuations, respec-
tively.

5.1 (F)

Evaluate P (x), P ′(x) and P ′′(x) for β = 0.5 and β = 10 [use τ = 0.1]. What
differences do you expect? Plot your results and compare your estimated
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P (x) with the exact expression:

P ex(x, β) =
2 sinh(β/2)√

2π sinh(β)
e−

cosh(β)−1
sinh(β)

x2 (17)

6 Generalizing the code

At this point you should have a working code for the case of a single particle.
Such a code can be easily extended to the case of 2 and more distinguishable
particles. To this goal you should:
1) Add an index to your configuration array x: xj → xi,j where i, and j are
the particle and slice index, respectively.
2) Use the straightforward generalization of the propagator in Eq. (4):

〈
xk|e−τHN |xk+1

〉
' (2πτ)−

N
2 e

∑N
i=1

−(xi,k+1−xi,k)
2

2τ
−τv(xi,k)


(18)

where xk ≡ {x1,k, · · · , xN,k} and HN =
∑N

i=1

(
1
2
∂2

∂x2i
+ v(xi)

)
.

3)Define a global update as the propsition of N × M single-bead updates
where the particle and the bead to update are both randomly chosen each
time.
4) Use the generalized forms of Eqs. (9), (14-16) obtainable by simply taking
an extra summation over the number of particles. The energy estimator will
then read:

E(x) =
N∑
i=1

1

M

M∑
j=1

[
1

2τ
− 1

2

(
xi,j+1 − xi,j

τ

)2

+ v(xi,j)

]
(19)

while, for example, the probability distribution in Eq. (15)

P ′(x) = N ′
N∑
i=1

M∑
j=1

δ((xi,j − xi,c)− x). (20)

6.1

Compute E and P (x) for β = 0.5 and τ = 0.1. Compare the cases N = 1
and N = 2. What do you expect?

Next...
Identical bosons.
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