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TD1: Coherent states, phase and number operators

1 Harmonic oscillator and coherent states

Consider a one-dimensional harmonic oscillator with Hamiltonian 7 = p2/(2m)+(1/2) mw?a2.

1.1

Introducing the dimensionless variables:

:
g

and the transformation

show the following results:

H=rhw@la+1/2) |a,all=1 [a,a]=al,af)=0 (3)
knowing that [, p] = ih.

1.2
Verify that the Hamiltonian eigenstates admit the form
(af)"
vn!

and find the corresponding eigenvalue. Show that the position-momentum uncertainty
relation for the Hamiltonian eigenstates reads:

n) =

10) (4)

(AXAP), =n+1/2 (5)

1.3

We introduce the coherent states as eigenstates of the destruction operator
ala) = ala) (6)

where « is a complex variable.

Calculate the uncertainty product (AXAP),: what can you conclude?

Represent the ”uncertainty volume” AXAP in the complex plane of the a variable. Given
the expectation values (a|X|a), (@|P|a) and the uncertainty relation, justify why these
states are called ”semi-classical”.



2 Coherent states and number statistics

2.1

We now wish to write the coherent states on the number basis |n) as |a) = > 07 cqln).
Show that the ¢, coefficients satisfy the recursion relation
o

c = —c

Starting from the ¢ coefficient, show that this relation is satisfied by

Cco . (8)

(7)

an

vl

Cn =
Show that ¢y = exp(—|a/?/2).

2.2

Show that the number distribution P, (n) = |(n|a)|? associated with a coherent state |a) is

the Poissonian distribution o

P,(n) = e~ () <7:L>'

where (7)) = |a|?. Show that variance is An? = (n).

9)

2.3
Justify that the coherent states can be written in the form
) = ¢/ ¢2jo) (10)

where the exponential of an operator is defined via the Taylor expansion

> (aah)”
=\ ( n') . (11)
n=0 ’

3 Phase operator and phase-number uncertainty

In analogy with complex numbers, we introduce the polar decomposition of the destruction
operator

i = ePpl/2 (12)
where - -
at? =3 " n'2|n)(n| = Z (n+1]| (13)
n=0 n=0
3.1
Show that (5 is not Hermitian, because € is not a unitary operator, (ei‘z’)Tei‘;’ # 1. What
would happen if the sum started from n = —oc0?
3.2
Show that

\/ﬂ Zem‘z’\n (14)

is an eigenstate of the operator ¢i® with eigenvalue ¢?. Can you draw an analogy between
the |n) and |¢) states on the one side, and momentum vs. position eigenstates on the other
side? What can you guess for the commutation relation [n, ¢] 7



3.3

Show that . .
71, €'?] = —¢i® (15)

By Taylor-expanding the exponential on both sides, show that above commutator is com-
patible with the commutation relation

[, g =i . (16)

This implies the phase-number uncertainty relation | AnA¢ 2> 1/2 |, which will be funda-

mental for this course.

4 Phase-number uncertainty for coherent states
We now consider the phase statistics associated with a coherent state.
4.1

Show that the phase distribution P, (¢) = |(¢|a)|? is given by

2

—[a? (e~a)"
e e P
P.(¢p) = 1
(6) = —5- Z NG (17)
and justify why the maximum probability is associated with ¢ = 6, where o = |a/e®.
4.2
Using the number representation of the phase operator
(nldla) = ~i—-(nla) (18)
 on
and considering |a| > 1, show that
A i
{al¢la) = 6 — 5 (log(n) — (logn)) (19)

[Use the Stirling formula n! &~ v/27n n™ e~™, and convince yourself that its use is justified by
the fact that |a| > 1]. For |a| > 1 the Poissonian distribution for the number statistics has

a vanishing relative uncertainty, namely P, (n) — 0, (). Justify in this limit that (@) ~ 6.

4.3

Using the same assumptions as before, show that

A 1
(a|¢?|a) ~ 0% + 20n) (20)

Conclude that, for a coherent state
1
AP? ~ — 21
0~ s (21)

and, therefore, A¢ An = 1/1/2. Looking at the uncertainty volume in the complex plane a,
as at Question 1.3), can one justify this result (roughly) with a simple geometrical argument
valid in the limit o] > 17



5 Phase correlations

Imagine to have a system of IV independent harmonic oscillators. We are interested in the

correlation function (aZaj> associated with the i-th and j-th harmonic oscillator.

5.1

Imagine that each harmonic oscillator is in a different coherent state |o;), ¢ = 1, ..., N, with
|ai;| = || for all 4. Consider the quantity

1
I=+ %:<a;raj> . (22)

Show that I is extensive, I = N|a|? = Ny (total average boson number), if the phases 6;
of the ;’s are all the same (phase coherence), while I is intensive, I = |a|? (average boson
number density), if the phases are completely random (phase incoherence).

5.2

Imagine now that all harmonic oscillators are in a Fock state, |n;). Calculate I and show
that it corresponds to the phase incoherent case. Can you justify this result from the
number-phase uncertainty?

6 Coherent states of fermionic pairs

Consider a fermion which can occupy two single-particle spin states, | 1) and | |), with
associated fermionic creation and destruction operators a, di (o =1,1), satisfying fermionic
anti-commutation relations {d, dl,} =000/, {00,001} = {al, &Z,} =0.

6.1

We introduce the pair operators b, = a ay, b;r7 = 64&1. Show that [by, by] = [b;f,, b;ro] =0, but
[bp, b;t] =1- &;&T - &Id 1» so that the by, b;, operators realize only partially the algebra of
bosonic operators.

6.2

Consider the coherent states of fermionic pairs, defined as
St
|a) = Ne™1%0) (23)

where A is a normalization factor to be determined. Write the state in terms of fermionic
Fock states. Show that

) = ——— (1 +a ala])0) (24)

V14 |af?
6.3

Calculate the expectation values (A4 +#,) and ((R++n,)?) and the particle-number variance.
Show that the relative uncertainty on the total particle number has the same expression as
for bosonic coherent states.



