
M1- Sciences de la Matière, A. A. 2022-2023
Superconductivity, superfluidity and magnetism
Tommaso Roscilde, Youssef Trifa, Fabio Mezzacapo

TD1: Coherent states, phase and number operators

1 Harmonic oscillator and coherent states

Consider a one-dimensional harmonic oscillator with Hamiltonian Ĥ = p̂2/(2m)+(1/2)mω2x̂2.

1.1

Introducing the dimensionless variables:

X̂ =

√
mω

~
x̂ P̂ =

1√
m~ω

p̂ (1)

and the transformation

â =
1√
2

(X̂ + iP̂ ) â† =
1√
2

(X̂ − iP̂ ) (2)

show the following results:

Ĥ = ~ω(â†â+ 1/2) [â, â†] = 1 [â, â] = [â†, â†] = 0 (3)

knowing that [x̂, p̂] = i~.

1.2

Verify that the Hamiltonian eigenstates admit the form

|n〉 =
(â†)n√
n!
|0〉 (4)

and find the corresponding eigenvalue. Show that the position-momentum uncertainty
relation for the Hamiltonian eigenstates reads:

(∆X∆P )n = n+ 1/2 (5)

1.3

We introduce the coherent states as eigenstates of the destruction operator

â|α〉 = α|α〉 (6)

where α is a complex variable.
Calculate the uncertainty product (∆X∆P )α: what can you conclude?
Represent the ”uncertainty volume” ∆X∆P in the complex plane of the α variable. Given
the expectation values 〈α|X̂|α〉, 〈α|P̂ |α〉 and the uncertainty relation, justify why these
states are called ”semi-classical”.
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2 Coherent states and number statistics

2.1

We now wish to write the coherent states on the number basis |n〉 as |α〉 =
∑∞

n=0 cn|n〉.
Show that the cn coefficients satisfy the recursion relation

cn+1 =
α√
n+ 1

cn. (7)

Starting from the c0 coefficient, show that this relation is satisfied by

cn =
αn√
n!

c0 . (8)

Show that c0 = exp(−|α|2/2).

2.2

Show that the number distribution Pα(n) = |〈n|α〉|2 associated with a coherent state |α〉 is
the Poissonian distribution

Pα(n) = e−〈n̂〉
〈n̂〉n

n!
(9)

where 〈n̂〉 = |α|2. Show that variance is ∆n2 = 〈n̂〉.

2.3

Justify that the coherent states can be written in the form

|α〉 = e−|α|
2/2 eαâ

† |0〉 (10)

where the exponential of an operator is defined via the Taylor expansion

eαâ
†

=

∞∑
n=0

(αâ†)n

n!
. (11)

3 Phase operator and phase-number uncertainty

In analogy with complex numbers, we introduce the polar decomposition of the destruction
operator

â = eiφ̂n̂1/2 (12)

where

n̂1/2 =
∞∑
n=0

n1/2|n〉〈n| eiφ̂ =
∞∑
n=0

|n〉〈n+ 1| (13)

3.1

Show that φ̂ is not Hermitian, because eiφ̂ is not a unitary operator, (eiφ̂)†eiφ̂ 6= 1. What
would happen if the sum started from n = −∞?

3.2

Show that

|φ〉 =
1√
2π

∞∑
n=0

einφ|n〉 (14)

is an eigenstate of the operator eiφ̂ with eigenvalue eiφ. Can you draw an analogy between
the |n〉 and |φ〉 states on the one side, and momentum vs. position eigenstates on the other
side? What can you guess for the commutation relation [n̂, φ̂] ?
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3.3

Show that
[n̂, eiφ̂] = −eiφ̂ (15)

By Taylor-expanding the exponential on both sides, show that above commutator is com-
patible with the commutation relation

[n̂, φ̂] = i . (16)

This implies the phase-number uncertainty relation ∆n∆φ & 1/2 , which will be funda-

mental for this course.

4 Phase-number uncertainty for coherent states

We now consider the phase statistics associated with a coherent state.

4.1

Show that the phase distribution Pα(φ) = |〈φ|α〉|2 is given by

Pα(φ) =
e−|α|

2

2π

∣∣∣∣∣∑
n

(e−iφα)n√
n!

∣∣∣∣∣
2

(17)

and justify why the maximum probability is associated with φ = θ, where α = |α|eiθ.

4.2

Using the number representation of the phase operator

〈n|φ̂|α〉 = −i ∂
∂n
〈n|α〉 (18)

and considering |α| � 1, show that

〈α|φ̂|α〉 = θ − i

2
(log〈n〉 − 〈log n〉) (19)

[Use the Stirling formula n! ≈
√

2πn nn e−n, and convince yourself that its use is justified by
the fact that |α| � 1]. For |α| � 1 the Poissonian distribution for the number statistics has
a vanishing relative uncertainty, namely Pα(n)→ δn,〈n〉. Justify in this limit that 〈φ̂〉 ≈ θ.

4.3

Using the same assumptions as before, show that

〈α|φ̂2|α〉 ≈ θ2 +
1

2〈n〉
(20)

Conclude that, for a coherent state

∆φ2 ≈ 1

2〈n〉
(21)

and, therefore, ∆φ ∆n ≈ 1/
√

2. Looking at the uncertainty volume in the complex plane α,
as at Question 1.3), can one justify this result (roughly) with a simple geometrical argument
valid in the limit |α| � 1 ?
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5 Phase correlations

Imagine to have a system of N independent harmonic oscillators. We are interested in the
correlation function 〈a†iaj〉 associated with the i-th and j-th harmonic oscillator.

5.1

Imagine that each harmonic oscillator is in a different coherent state |αi〉, i = 1, ..., N , with
|αi| = |α| for all i. Consider the quantity

I =
1

N

∑
ij

〈a†iaj〉 . (22)

Show that I is extensive, I = N |α|2 = Ntot (total average boson number), if the phases θi
of the αi’s are all the same (phase coherence), while I is intensive, I = |α|2 (average boson
number density), if the phases are completely random (phase incoherence).

5.2

Imagine now that all harmonic oscillators are in a Fock state, |ni〉. Calculate I and show
that it corresponds to the phase incoherent case. Can you justify this result from the
number-phase uncertainty?

6 Coherent states of fermionic pairs

Consider a fermion which can occupy two single-particle spin states, | ↑〉 and | ↓〉, with

associated fermionic creation and destruction operators âσ, â†σ (σ =↑, ↓), satisfying fermionic

anti-commutation relations {âσ, â†σ′} = δσ,σ′ , {âσ, âσ′} = {â†σ, â†σ′} = 0.

6.1

We introduce the pair operators bp = â↓â↑, b
†
p = â†↑â

†
↓. Show that [bp, bp] = [b†p, b

†
p] = 0, but

[bp, b
†
p] = 1 − â†↑â↑ − â

†
↓â↓, so that the bp, b

†
p operators realize only partially the algebra of

bosonic operators.

6.2

Consider the coherent states of fermionic pairs, defined as

|α〉 = N eαâ
†
↑â

†
↓ |0〉 (23)

where N is a normalization factor to be determined. Write the state in terms of fermionic
Fock states. Show that

|α〉 =
1√

1 + |α|2
(1 + α â†↑â

†
↓)|0〉 (24)

6.3

Calculate the expectation values 〈n̂↑+n̂↓〉 and 〈(n̂↑+n̂↓)2〉 and the particle-number variance.
Show that the relative uncertainty on the total particle number has the same expression as
for bosonic coherent states.
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