TD3: Bosons in a double-well potential

In this TD we will investigate the physics of N identical bosons trapped in a double-well potential (bosonic Josephson junction). In the limit of a very deep potential, we can consider only two orthonormal single-particle states, $|1\rangle$ and $|2\rangle$, localized on the two sides of the double-well potential.

The many-body Hamiltonian on this reduced basis takes the form:

$$\hat{\mathcal{H}} = -t \left(\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1 \right) + \frac{U}{2} \left[\hat{n}_1 \left(\hat{n}_1 - 1 \right) + \hat{n}_2 \left(\hat{n}_2 - 1 \right) \right] \tag{1}$$

where $\hat{a}_1, \hat{a}_1^{\dagger}$ and $\hat{a}_2, \hat{a}_2^{\dagger}$ are bosonic creation/destruction operators.

1 Many-body states: Fock states, Schrödinger's cat states and BEC states.

In this section we consider trial wave-functions to describe the ground state of the model.

1.1

Consider the Fock state

$$|N_1, N_2\rangle = \frac{\left(\hat{a}_1^{\dagger}\right)^{N_1}}{\sqrt{N_1!}} \frac{\left(\hat{a}_2^{\dagger}\right)^{N_2}}{\sqrt{N_2!}} |0\rangle \tag{2}$$

Write down its one-body density matrix $g_{ij}^{(1)} = \langle \hat{a}_i^{\dagger} \hat{a}_j \rangle$. For what values of N_1 and N_2 is the system showing condensation/fragmentation?

1.2

Consider then the Schrödinger's cat state

$$|N_1, N_2; N_2, N_1\rangle = \frac{1}{\sqrt{2}} (|N_1, N_2\rangle + |N_2, N_1\rangle)$$
 (3)

Calculate its one-body density matrix $g_{ij}^{(1)}$ for $|N_1 - N_2| > 1$; can this state show condensation?

1.3

We then take the BEC state

$$|\alpha,\phi\rangle = \frac{1}{\sqrt{N!}} \left(\frac{\hat{a}_1^{\dagger} + \alpha e^{i\phi} \ \hat{a}_2^{\dagger}}{\sqrt{1 + \alpha^2}} \right)^N |0\rangle \tag{4}$$

Write down its one-body density matrix $g_{ij}^{(1)}$. To do so, it can be useful to introduce the orthonormal states

$$|+\rangle = \frac{|1\rangle + \alpha e^{i\phi} |2\rangle}{\sqrt{1 + \alpha^2}} \qquad |-\rangle = \frac{\alpha |1\rangle - e^{i\phi} |2\rangle}{\sqrt{1 + \alpha^2}}$$
 (5)

and the associated creation/destruction operators \hat{a}_{\pm} , \hat{a}_{\pm}^{\dagger} . Diagonalise $g_{ij}^{(1)}$ and show that the state corresponds to a perfect condensate (as it was obvious from the first definition...).

1.4

Show that the Fock state can be obtained by Fourier transformation of the BEC state with respect to ϕ . Conclude on the existence of a phase-difference/number-difference uncertainty.

2 Variational determination of the ground state

2.1

Calculate the energy expectation value for the Fock state $E(N_1, N_2) = \langle N_1, N_2 | \hat{\mathcal{H}} | N_1, N_2 \rangle$, and for the Schödinger's cat state. Find the combination (N_1, N_2) minimizing the energy in the case of repulsive (U > 0) and attractive (U < 0) interactions. Is the Fock state with $N_1 \neq N_2$ an acceptable equilibrium state of the system?

2.2

Calculate the energy expectation value for the BEC state $E(\alpha, \phi)$, and show that the energy is an explicit function of the phase ϕ . Assuming $\alpha = 1$, minimize with respect to ϕ for both attractive and repulsive interactions.

2.3

Comparing the minimum energies $E_{\min}(N_1, N_2)$ and $E_{\min}(\alpha = 1, \phi)$, determine the transition points between fragmented states and condensate states upon varying the ratio U/t. Draw the corresponding phase diagram on the U/t axis.

3 Schwinger pseudo-spin representation

3.1

Introducing the operators

$$\hat{J}_x = \frac{1}{2} \left(\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1 \right) \qquad \hat{J}_y = \frac{1}{2i} \left(\hat{a}_1^{\dagger} \hat{a}_2 - \hat{a}_2^{\dagger} \hat{a}_1 \right) \qquad \hat{J}_z = \frac{1}{2} \left(\hat{a}_1^{\dagger} \hat{a}_1 - \hat{a}_2^{\dagger} \hat{a}_2 \right) \tag{6}$$

show that they satisfy the commutation relations of angular momentum, $[\hat{J}_{\alpha}, \hat{J}_{\beta}] = i\varepsilon^{\alpha\beta\gamma}\hat{J}_{\gamma}$.

Calculating $J^2 = |\hat{J}|^2$, determine the effective spin length. Show that the Hamiltonian of the system in the pseudospin variables takes the form

$$\hat{\mathcal{H}} = -2t\hat{J}_x + U\left(\hat{J}_z^2 + J^2 - N\right) \quad . \tag{7}$$

Treating the J_{α} operators as classical variables, what are the values of the spin components which minimize the energy in the opposite limits $|U|/t \ll 1$, $U/t \gg 1$ and $-U/t \gg 1$?

3.3

Calculate the vector $\langle \hat{\mathbf{J}} \rangle = (\langle \hat{J}_x \rangle, \langle \hat{J}_y \rangle, \langle \hat{J}_z \rangle)$ for the Fock state $|N_1, N_2\rangle$ and the BEC state $|\alpha, \phi\rangle$. Introducing the angle variable θ such that

$$\frac{1}{\sqrt{1+\alpha^2}} = \cos(\theta/2) \qquad \frac{\alpha}{\sqrt{1+\alpha^2}} = \sin(\theta/2) \tag{8}$$

show that the state vector $\langle \hat{J} \rangle$ for the BEC state is a vector of length N with polar/azimuthal angles ϕ , θ . Represent the ground state of the system in the various phases, as determined in the previous section, via the length and orientation of the state vector.

4 Momentum distribution in the BEC state

Figure 1: Absorption images of bosons released from a double-well trap. From M. Albiez's PhD thesis, University of Heidelberg (2005).

Be $\Phi_1(x)$ and $\Phi_2(x)$ the spatial wavefunction associated with the two states $|1\rangle$ and $|2\rangle$, with the property $\Phi_2(x) = \Phi_1(x-d)$ (d = separation between the two wells). The states Φ_1 and Φ_2 are part of a basis Φ_i of orthonormal wavefunctions.

4.1

Calculate $\langle \hat{\psi}^{\dagger}(x)\hat{\psi}(x')\rangle$ for the generic BEC state $|\alpha,\phi\rangle$. (Suggestion: expand the field operators on the Φ_i basis).

4.2

Calculate the momentum distribution $n(k) = \langle \hat{a}_k^{\dagger} \hat{a}_k \rangle$, where

$$a_k = \int dx \, \frac{e^{-ikx}}{\sqrt{V}} \, \psi(x) \, . \tag{9}$$

You should find an expression containing N, α , ϕ , k and $\tilde{\Phi}_1(k)$ (Fourier transform of the Φ_1 wavefunction). In the case of Gaussian wavefunctions, $\Phi_1(x) \sim \exp[-x^2/(2\sigma^2)]$, sketch the form of n(k).

4.3

Fig. 1 shows the measurement of the momentum distribution of bosons trapped in double well potential for two different measurement shots. Can you tell the phase difference ϕ between the two wells in the two cases?