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TD6: Interacting Bose fluids

1 Bogolyubov theory for the soft-disk gas

In this exercise we shall generalize Bogolyubov theory seen in the lectures to the case of
a generic pair potential Vint(r − r′). We shall introduce the following definitions for the
potential and its Fourier transform Ṽint(q):

Ṽint(q) =

∫
d3r e−iq·r Vint(r) Vint(r) =

1

V
∑
q

eiq·r Ṽint(q) (1)

where V is the volume of the system.

1.1

Write Gross-Pitaevskii equation for the condensate wavefunction Ψ0(r) in the presence of
the interaction potential Vint(r − r′); show that the uniform condensate wavefunction

Ψ0(r) =
√
n0 =

√
N0/V (2)

containing N0 particles is a solution of the equation, with chemical potential

µ = n0Ṽint(q = 0) . (3)

1.2

We shall now build Bogolyubov theory starting from this condensate wavefunction. We
recall the Bogolyubov quadratic Hamiltonian

Ĥ2 =
∑
q 6=0

(εq − µ) â†qâq

+
n0
2

∫
d3r

∫
d3r′Vint(r − r′)

(
δψ̂(r)δψ̂(r′) + h.c.+ 2δψ̂†(r)δψ̂(r′) + 2δψ̂†(r)δψ̂(r)

)
(4)

where

δψ̂(r) =
1√
V

∑
q 6=0

eiq·r âq âq =
1√
V

∫
d3r e−iq·r δψ̂(r) (5)

and εq = ~2q2/(2m).
Put the Hamiltonian in the form

Ĥ2 =
1

2

∑
q 6=0

(
â†q
â−q

)(
Aq Bq

Bq Aq

)(
âq
â†−q

)
(6)

and determine the Aq, Bq coefficients.
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1.3

The Bogolyubov quasi-particle spectrum is given by Eq =
√
A2

q −B2
q. Show that

Eq =

√
εq

(
εq + 2n0Ṽint(q)

)
. (7)

What happens in the case of a contact potential Vint(r − r′) = g δ(r − r′) ?

1.4

We shall now consider the soft-disk potential

Vint(r − r′) =

{
V0 |r − r′| < R

0 otherwise .
(8)

We start by calculating its Fourier transform. Using polar coordinates, show that

Ṽint(q) = 4πV0

∫ R

0
dr r2

sin(qr)

qr
(9)

and conclude that

Ṽint(q) =
4πV0R

3

(qR)3
[sin(qR)− qR cos(qR)] . (10)

1.5

The dispersion relation can be written in the dimensionless form

ex =
2mR2

~2
Eq = x

√
x2 +

D

x3
(sinx− x cosx) . (11)

What is x? Motivate why the parameter D can be interpreted as the ratio between the
potential energy change when modifying the condensate wavefunction on the length scale
of R, and the kinetic energy cost of introducing an inhomogeneity on the same length scale.

1.6

Plot the dispersion relation ex for various values of D, and estimate numerically (i.e. ap-
proximately) the critical value Dc1 at which a so-called roton minumum appears in the
dispersion relation; for which value of x = xrot does that occur?

1.7

Increasing the value of D even further, estimate approximately the value Dc2 at which the
dispersion relation becomes gapless at the roton wavevector. What happens for D > Dc2?
Is the uniform condensate wavefunction stable to small perturbations? What would be in
your opinion a stable solution?

2 Condensate fraction for a hard-disk wavefunction

Following Penrose and Onsager (1956) we calculate the condensate fraction associated with
a model wavefuction for 4He (proposed originally by R. P. Feynman). Such wavefunction is
the same as the “Boltzmann weight” for a system of hard spheres of diameter a and centers
in the positions r1, r2, ..., rN :
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Ψ0(r1, r2, ..., rN ) =
1√
Z

(c)
N

FN (r1, r2, ..., rN ) (12)

where

FN (r1, r2, ..., rN ) =

{
1 |ri − rj | > a, ∀i 6= j

0 otherwise
(13)

2.1

Show that Z
(c)
N is the configurational partition function (namely the partition function for

the position space only) of the hard sphere gas in the distinguishable-particle case (or

N ! Z
(c)
N for the indistinguishable-particle case).

2.2

Justify that, for |r − r′| > a:

FN (r, r2, ..., rN ) FN (r′, r2, ..., rN ) = FN+1(r, r
′, r2, ..., rN ) (14)

2.3

The one-body density matrix at T = 0 takes the form

g(1)(r, r′) = N

∫
d3r2...d

3rNΨ0(r, r2, ..., rN )Ψ0(r
′, r2, ..., rN ). (15)

Justify that, for |r − r′| > a

g(1)(r, r′) =
Z

(c)
N+1

Z
(c)
N

1

N + 1
ρ2(r, r

′) (16)

where ρ2(r, r
′) is the so-called pair correlation function, namely ρ2(r, r

′) d3r d3r′ gives
the probability of finding any two spheres (out of N + 1) with centers in the infinitesimal
volumes d3r and d3r′ centered around r and r′ respectively.

2.4

Justify that, in the limit |r − r′| → ∞, ρ2(r, r
′) → (N/V )2 (where N � 1). Reminding

yourself of the relationship between the condensate density n0 and the one-body density
matrix, show that

n0 = z

(
N

V

)2

(17)

where z = (Z
(c)
N+1/Z

(c)
N ) N !/(N + 1)! .

2.5

We introduce the function

f(vN ) =
1

N
log

Z
(c)
N

N ! vN0
(N →∞) (18)

where vN = V/N and v0 is a reference volume. What is its physical meaning? Show that

1

N + 1
log

Z
(c)
N+1

(N + 1)! vN+1
0

≈ f(vN )− vN
N

∂f

∂v
(vN ) (19)
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and consequently in the thermodynamic limit (vN → v independent of N)

log(z/v0) ≈ f(v)− v∂f
∂v

(v) . (20)

2.6

We now consider the hard-sphere gas with both kinetic and configurational terms of the
partition function. The equation of state of a classical interacting gas is given by

P = kBT

(
N

V
+

∂

∂V
log

Z
(c)
N

V N

)
(21)

How do we obtain the ideal gas limit?
The second term on the right-hand side, stemming from interactions, can be calculated via
the so-called virial expansion when the range of the interaction potential is small compared
to the interparticle distance (in our case na3 � 1, where n = N/V )

P = kBT

[
N

V
+B2

(
N

V

)2

+B3

(
N

V

)3

+ ...

]
(22)

For the hard-sphere gas, this expansion gives

B2 =
2π

3
a3 (23)

From Eqs. (21) and (22) find a differential equation for Z
(c)
N and hence for f(v). Show that

it is solved by

f(v) = log v − 2π

3

a3

v
+ 1 (24)

2.7

Calculate z as a function of v and a. Using the data for 4He, a = 2.56 Å and v = 46.2 Å3,
calculate the condensate fraction N0/N = n0V/N . How does it compare with the value
measured in 4He by neutron scattering (N0/N = 6− 8 %) ?
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