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TD9: Superconductors in a magnetic field

Useful formulae

• Gradient in cylindrical coordinates (on the cylinder surface):

∇ =
1

R

∂

∂θ
êθ +

∂

∂z
êz. (1)

• Closest integer n to a real number a

n = int(a+ sign(a) 1/2). (2)

• For a closed path γ encircling the surface Sγ∮
γ
A · dl =

∫
Sγ

B · n̂ dSγ = Φγ(B) = flux of B through Sγ (3)

1 Flux quantization in a superconducting cylinder

In this exercise we wish to describe the fundamental phenomenon of quantization of the magnetic flux which
threads a superconducting cylinder. For this purpose, we will start with a description of the problem of
a single electron confined in a cylinder of radius R, height L, immersed in a uniform magnetic field
B = (0, 0, B) parallel to the axis of the cylinder (see Fig. 1). We will assume periodic boundary conditions
along the z axis. The cross section of the cylinder forms a ring, whose thickness will be neglected for the
moment.

Figure 1:

The Hamiltonian of an electron in a magnetic field reads

H =
(−i~∇ + eA)2

2m
(4)

We take for the vector potential the symmetric gauge A = B
2 (−y, x, 0). Passing to cylindrical coordinates

(r, θ, z), the vector potential on the cylindrical surface reads A = (BR/2)êθ.
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1.1

Justify that the eigenvectors of the Hamiltonian have the form

ψn,kz(θ, z) = N exp(inθ) exp(ikzz) (5)

where N is a normalization constant to be determined, and n is an integer.
Show that the eigenvalues of the Hamiltonian take the form

En,kz =
~2

2mR2

(
n+

Φ

Φ̃0

)2

+
~2k2z
2m

(6)

where Φ is the flux of the magnetic field through the cylinder, and Φ̃0 = h/e is the so-called (normal) flux
quantum.

1.2

Find the ground state quantum numbers n0 and kz,0. Show that the ground-state energy is a periodic
function of Φ, with period Φ̃0. (Suggestion: look at the mathematical appendix!).

1.3

The current density associated with a wavefunction ψ reads

j = − ~e
2mi

(ψ∗∇ψ − ψ∇ψ∗)− e2

m
|ψ|2A . (7)

Calculate the current density associated with the ground state ψ0.
Show that the ground state carries a persistent electrical current, and that this current is a periodic function
of the applied flux Φ with period Φ̃0. Considering that the cylinder is equivalent to a solenoid, for which
values of Φ/Φ̃0 is the magnetic field generated by the solenoid parallel/antiparallel to the applied field B?

1.4

Persistent currents in normal metals can only be observed in very special conditions. Cite at least two
reasons for the decay of such currents in a normal metal. If l is the mean free path of an electron in a
metal, how large does l need to be for the persistent current to be observable?

On the other hand, as you know, persistent currents are quite stable in superconductors. In the following
we will assume that the Cooper pairs appearing in a superconductor can be described by a macroscopic
wavefunction Ψ(r) (analogous to that of condensed bosons) which gives the amplitude of finding the whole
condensate of Cooper pairs at point r.
Moreover we will now consider a finite thickness for the cylinder, and we will assume that the supercon-
ductor develops persistent currents on the inner and outer surface of the cylinder, which screen completely
the magnetic field in the bulk of the cylinder (Meissner effect). Hence the bulk of the cylinder has no
magnetic field (and, consequently, zero current) – see Fig. 2.

1.5

We will assume that the macroscopic wavefunction satisfies a similar equation to Schrödinger’s equation
for single particles in a magnetic field (the so-called Ginzburg-Landau equation), but this time the particle
charge is 2e (because we have Cooper pairs). In the boundary regions, in which the magnetic field penetrates
into the superconductor, we will use the results we found for the ground state of a single electron confined
to a cylinder and immersed in a magnetic field. There the macroscopic wavefunction will take the form

Ψ(r, z, θ) = Ψr(r) Ψz(z)
1√
2π

exp(inθ) (8)
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Figure 2: Cross section of the superconducting cylinder.

Justify that, in the ground state

n = n0(Φ) = −int

(
Φ

Φ0
+ sign(Φ)

1

2

)
(9)

where Φ0 = h/(2e) is the so-called superconducting flux quantum.

1.6

Going to the bulk region with zero magnetic field and current, by continuity with the boundary region we
have to assume that the macroscopic wavefunction reads:

Ψ(r, z, θ) = A 1√
2π

exp(inθ) (10)

where A is a constant. The current carried by the macroscopic wavefunction reads

j = −~(2e)

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)− (2e)2

m
|Ψ|2A . (11)

Imposing that j = 0 all along a loop γ entirely contained in the bulk region (see Fig. 3), demonstrate that
the magnetic flux threading the loop obeys the quantization condition:

Φγ = −n0(Φ)Φ0 . (12)

1.7

Plot the magnetic flux Φγ as a function of Φ/Φ0, and compare it with the experimental results (first obtained
by Deaver/Fairbank and Doll/Näbauer in 1961) for the flux trapped in the hollow of a superconducting
cylinder – Fig. 3. What is the analogous phenomenon occurring in He4? Which aspect do the two systems
share, which is responsible for both phenomena?

2 Superconducting quantum interference device (SQUID)

We are used by now to the idea that the Cooper pairs in a superconductor can be described via a macro-
scopic wavefunction, Ψ(r), such that the (super-)current flowing in a superconductor can be obtained from
it as in Eq. (11).
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Figure 3: Flux quantization experiment (from W. L. Goodman et al., Phys. Rev. B 4, 1530 (1971)).
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Figure 4: A superconducting Josephson junction.

2.1

Using the amplitude/phase decomposition, Ψ(r) = |Ψ(r)|eiφ(r), express j as a function of φ(r). Show that
if we introduce the so-called gauge-invariant phase

θ(r) = φ(r) +
2e

~

∫ r

r0

A · dl (13)

then, assuming Ψ(r) = |Ψ(r)|eiθ(r), we obtain the same current if we eliminate the term proportional to
A in Eq. (11). The line integral of the vector potential is calculated along an arbitrary line starting from
the (arbitrary) point r0 – do not worry, it will become better defined later!

2.2

Let us consider now a superconducting Josephson junction (Fig. 4), formed by two superconducting leads
separated by a thin barrier (typically a layer of insulator). It is the exact superconducting analog of
the Josephson junction we explored in the case of bosons in TD no. 5. There we saw that a tunneling
current I = Ic sin ∆φ – going, say, from left (L) to right (R) – crosses the junction when a phase difference
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∆φ = φR−φL is present between the two macroscopic wavefunctions ΨL(R) = |ΨL(R)|eiφL(R) describing the
superconductors on both sides of the junction.
When a vector potential A is present in the system, give the expression of the gauge-invariant phase
difference θB − θA between two points A and B on opposite sides of the junction.
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Figure 5: (a) Circuit scheme of a SQUID (all the circuit elements are superconducting); (b) an actual SQUID (the
Josephson junctions are defined by the two discontinuities in the square loop).

2.3

We now consider the circuit geometry in Fig. 5(a), defining a so-called superconducting quantum interfer-
ence device (SQUID): two Josephson junctions are present in a superconducting loop, which is threaded
with a magnetic-field flux Φ.
Using the result of the previous question for the expression of θB − θA – this time calculated for the two
points indicated in Fig. 5(a)) – establish the relationship between the two phase differences ∆φ and ∆φ′

across the two junctions.
Note: the line integral defining the gauge-invariant phase difference has to be taken along a circuit which
runs inside the superconductor.

U/U0¼ 1/2) approaches zero reconfirms the uniformity of
the two junctions in each SQUID and suggests negligible
loop inductance.22 It is reported23 that symmetry in the junc-
tion parameters would reduce the influence of flux noise on
relaxation time T1. Interestingly, we note that the amplitude
of IC modulation decreases with increasing field. This can be
explained by taking into account the effect of field-induced
surface current.12,13 The surface current produces an effec-
tive magnetic field perpendicular to the tunneling current
and hence suppresses critical current. For a single overlap-
type Josephson junction under an external magnetic field
perpendicular to the electrode plane, the critical current as
a function of the magnetic field is calculated to be13

IC;sjðBÞ¼I0
C;sg

!!Ð 1
0 dx
Ð 1

0 dycos½aBsinycoshðLx=WÞ=sinhðL=WÞ%
!!,

where B is magnetic field strength, I0
C;sj is the zero-field junc-

tion critical current, a is a proportionality constant, L is the
length of overlap of the two electrodes, and W is the width of
the junction. The integration part describes the effect of the

induced surface current. For a SQUID, I0
C;sj is multiplied by a

cosine field dependent term, and the field dependence of the
critical current becomes

IC;SQðBÞ ¼ I0
C;SQ

!!!!cos
pU
U0

# $ð1

0

dx

ð1

0

dy

&cos½aBsin y cos hðLx=WÞ=sin hðL=WÞ%
!!!!; (3)

where I0
C;SQ is the zero-field critical current of the SQUID. In

our device, L' 0.5 lm2, W' 6 lm2, and the only unknown
parameter, a, is left as a fitting parameter. The result, as

shown in Fig. 2, suggests that suppressed amplitude at high
fields is indeed due to field induced surface current. Further,

experimental zero field I0
C;SQ' 45 nA is small compared to

the Ambegaokar-Baratoff value24 of IAB
C;SQ¼ 161 nA, with the

ratio between them (c¼ I0
C;SQ/IAB

C;SQ) being 0.28. The fact that

I0
C;SQ < IAB

C;SQ is attributed to fluctuations in phase difference

/ across the junction. The fluctuations are caused by charge-
phase duality and non-negligible charging energy.25–27

To demonstrate magnetic field tuning at the lowest two
levels h!01, Fig. 3 shows how !01 match well the scaled
IC(U/U0) curve shown in Fig. 2. In Fig. 3, critical current is

scaled as gðICÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!h
ce ECIC

q
( EC

' (
=h in accordance with

Eq. (1). In this scaling, a numeric factor c¼ 0.28 is added to
account for IC being equal to cIAB (see above). It is worth
noting that the close match shown in Fig. 3 suggests that
level spacing is affected by induced surface current through
the modulation of IC. This has never previously been
reported. It also allows us better tuning of energy-level states
by manipulation in a larger magnetic flux region.

In conclusion, this study demonstrates a simple
approach for accurate determination of quantum states and
the capacitance of SQUIDs with EJ>EC. It is determined
that the specific capacitance value of junctions with Al2O3

tunnel barrier is 35 fF/lm2, and the error should be within
69%. The transition between the lowest two levels manifests
itself in a current peak on top of the Cooper pair current of
the probe Josephson junction, as explained by the P(E)
theory. The peak position corresponds well with the mag-
netic field dependence of SQUID critical current. The effect
of magnetic field induced surface current on the critical
current of SQUIDs is examined, and this effect is found to

TABLE I. The parameters used in I-V calculation.

U =U0 EJ/h (SQUID) EC/h (SQUID) RJ (SQUID) EJ,p/h (Probe) EC,p/h (Probe) RL T

(0.041 86.9 GHz 0.162 GHz 40 kX 3.05 GHz 3.4 GHz 0.5 kX 0.7 K

(0.197 71.4 GHz 0.162 GHz 40 kX 3.05 GHz 3.4 GHz 0.5 kX 0.7 K

FIG. 2. Measured critical current IC of a SQUID as a function of U/U0.
Open circles are the measured data and solid curve is a best fit using Eq. (3)
with a' 385 T(1. From the fitting, magnetic field modulation periodicity is
determined to be 3.3 Gs.

FIG. 3. Close matching of level spacing !01 and scaled critical current g(IC).
Solid squares are measured !01, and open circles are scaled critical current
data. The red solid curve is a visual guide.

232602-3 Yeh et al. Appl. Phys. Lett. 101, 232602 (2012)

Figure 1 shows I-V curves measured in several magnetic
fields. We notice that each curve has two peaks. When the
magnetic field is increased, the position V1 of the first peak
(i.e., the peak close to V¼ 0) does not change while the sec-
ond peak position, V2, oscillates periodically. The appear-
ance of the second peak is explained in the context of the
theory by Ingold and Nazarov15 for tunneling of charges in a
small Josephson junction in an electromagnetic environment.
Based on that theory, the tunneling current for a small probe
Josephson junction (EC,p" EJ,p) is15

IðVÞ ¼ peEJ;p
2

!h
½Pð2eVÞ & Pð&2eVÞ'; (2)

where P(E) is the probability for a tunneling Cooper pair to
exchange energy E with the environment. For E> 0, the pho-
ton emitted by relaxation of the Cooper pair after tunneling
is absorbed by the environment. Conversely, for E< 0 a pho-
ton from the environment is absorbed by the Cooper pair,
similar to photon-assisted tunneling. At low temperatures,
the environment is in its ground state (P(&2 eV)( 0 for
V> 0), meaning the I-V characteristic of Eq. (2) directly
reveals the property of P(2 eV). In an environment com-
prised of SQUIDs, P(E) has peaks at E¼ h!0n, where h!0n is
the transition energy between the nth and 0th (ground) state
of SQUIDs (see derivations in Ref. 15). Hence, from the I-V
curves of the probe Josephson junction, the energy level
spacing in the SQUIDs can be evaluated.16 The second peak
position V2 should relate to !01 as 2 eV2¼ h!01. At zero
field, V2 is 22.1 lV, corresponding to !01¼ 10.7 GHz.
According to Eq. (1), h!01 ) E1 & E0 (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC
p

& EC. If
we use EJ/h¼ 80 GHz (as per the Ambegaokar-Baratoff rela-
tion), we obtain EC/h¼ 0.185 GHz for the SQUID. From the
obtained C and the junction area observed from SEM
images, the specific capacitance CS (i.e., the capacitance per
unit area) for Al2O3 is 35 fF/lm2.17,18 The ratio EJ/EC¼ 433
" 1 fulfills the criterion for the Hamiltonian, confirming the
validity of Eq. (1). The error bar in the V2 peak position is

estimated to be 63.8%, and the error bar in EJ to be less
than 61%. Taking into account all these factors, the error in
the measurement of specific capacitance should be less than
69%.

This means the approach allows for quite accurate deter-
mination of junction capacitance. Using CS¼ 35 fF/lm2, the
charging energy of the probe junction is determined to be
EC,p/h¼ 3.0 GHz. The coupling energy is EJ,p/h¼ 3.8 GHz,
as determined from junction resistance.

Absence of current peaks for transitions between high n
levels is attributed to a diminishingly small pre-factor. For a
single mode environment with infinite quality factor, the
pre-factor is qn exp(&q)/n!, where q¼ (e2/2Ccircuit)/h!01

15

and Ccircuit is the sum capacitance of the probe junction in
parallel with environment capacitance. For devices with
small q values, the current peak decreases fast with increas-
ing n. In our case q¼ 1.7* 10&2 and the ratio between the
amplitude of the 3rd peak and that of the 2nd peak is
8.6* 10&3. Due to the large Ccircuit value, the 3rd and high-
order peaks are hidden by the tail of the Cooper current
peak. To understand the Cooper current peak, the P(E)
theory is applied to calculate I-V characteristics using the
equivalent circuit17 (Fig. 1(b)). With the parameters listed in
Table I, one can obtain good fits (Fig. 1(c)), and the parame-
ters are in reasonable agreement (within +610%) with the
device parameters reported above. However, we found that
a temperature value higher than the measured bath tempera-
ture is needed. This is probably due to unwanted external
excitations in the measurement system and/or a higher
actual electron temperature.19,20

The IC of one SQUID as a function of magnetic flux is
shown in Fig. 2. Quantitatively, the junction asymmetry is
jIC1 & IC2j=ðIC1 þ IC2Þ ¼ ICðU=U0 ¼ 1=2Þ=ICðU=U0 ¼ 0Þ,21

where IC1 and IC2 are the critical currents of the two constitu-
ent junctions, and U0 and U are the flux quantum and the
flux threading the SQUID loop, respectively. From the
measured data, the junction asymmetry is determined to be
about 0.5%. Further, the fact that minimum IC (appear at

FIG. 1. (a) Measured I-V curves of the probe
Josephson junction in several U/U0. Inset: SEM
image of the device. The scale bar is 5 lm. (b) The
circuit used for I-V calculation. (c) I-V data for U/
U0¼&0.041 (red solid squares and red curve) and
&0.197 (black open circles and black curve). The
scattered symbols indicate the experimental data,
and the curves are fittings calculated using Eq. (2).
The red I-V curves are shifted by 0.1 nA for clarity.

232602-2 Yeh et al. Appl. Phys. Lett. 101, 232602 (2012)

Figure 6: Critical current of a micro-SQUID (from S.-S. Yeh et al., Appl. Phys. Lett. 101, 232602 (2012)).
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2.4

By using Kirchhoff’s law for the current, conclude that the outgoing (super-)current in the circuit takes
the form

Iout(Φ) = 2Ic cos

(
πΦ

Φ0

)
sin(θB − θA) . (14)

2.5

Fig. 6 shows the measured critical current through a SQUID: can you understand this result (at least
partially) from the previous formula?
This result shows that a SQUID is sensitive to magnetic fluxes of the order of Φ0. If you have a macroscopic
superconducting loop of 1mm2, what sensitivity can you achieve on the measurement of a magnetic field?

Note: in fact, SQUIDs can achieve a sensitivity of 1fT (10−15 T), which is the order of magnitude of the
magnetic fields associated e.g. with the activity of the human brain. SQUID magnetometers are among
the most sensitive ones, used broadly in many fields of research – among them, the study of brain activity.
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