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TD1 : Coherent states, phase and number operators

1 Harmonic oscillator and coherent states

Consider a one-dimensional harmonic oscillator with Hamiltonian Ĥ = p̂2/(2m) + (1/2) mω2x̂2.

1.1

Introducing the dimensionless variables :

X̂ =

√
mω

~
x̂ P̂ =

1√
m~ω

p̂ (1)

and the transformation

â =
1√
2

(X̂ + iP̂ ) â† =
1√
2

(X̂ − iP̂ ) (2)

show the following results :

Ĥ = ~ω(â†â+ 1/2) [â, â†] = 1 [â, â] = [â†, â†] = 0 (3)

knowing that [x̂, p̂] = i~.

1.2

Verify that the Hamiltonian eigenstates admit the form

|n〉 =
(â†)n√
n!
|0〉 (4)

and find the corresponding eigenvalue. Show that the position-momentum uncertainty relation for the Ha-
miltonian eigenstates reads :

(∆X∆P )n = n+ 1/2 (5)

1.3

We introduce the coherent states as eigenstates of the destruction operator

â|α〉 = α|α〉 (6)

where α is a complex variable.
Calculate the uncertainty product (∆X∆P )α : what can you conclude ?
Represent the ”uncertainty volume” ∆X∆P in the complex plane of the α variable. Given the expectation
values 〈α|X̂|α〉, 〈α|P̂ |α〉 and the uncertainty relation, justify why these states are called ”semi-classical”.
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2 Coherent states and number statistics

2.1

We now wish to write the coherent states on the number basis |n〉 as |α〉 =
∑∞
n=0 cn|n〉. Show that the cn

coefficients satisfy the recursion relation

cn+1 =
α√
n+ 1

cn. (7)

Starting from the c0 coefficient, show that this relation is satisfied by

cn =
αn√
n!

c0 . (8)

Show that c0 = exp(−|α|2/2).

2.2

Show that the number distribution Pα(n) = |〈n|α〉|2 associated with a coherent state |α〉 is the Poissonian
distribution

Pα(n) = e−〈n̂〉
〈n̂〉n
n!

(9)

where 〈n̂〉 = |α|2. Show that variance is ∆n2 = 〈n̂〉.

2.3

Justify that the coherent states can be written in the form

|α〉 = e−|α|
2/2 eαâ

† |0〉 (10)

where the exponential of an operator is defined via the Taylor expansion

eαâ
†

=

∞∑
n=0

(αâ†)n

n!
. (11)

3 Phase operator and phase-number uncertainty

In analogy with complex numbers, we introduce the polar decomposition of the destruction operator

â = eiφ̂n̂1/2 (12)

where

n̂1/2 =

∞∑
n=0

n1/2|n〉〈n| eiφ̂ =

∞∑
n=0

|n〉〈n+ 1| (13)

3.1

Show that φ̂ is not Hermitian, because eiφ̂ is not a unitary operator, (eiφ̂)†eiφ̂ 6= 1. What would happen if
the sum started from n = −∞ ?

3.2

Show that

|φ〉 =
1√
2π

∞∑
n=0

einφ|n〉 (14)

is an eigenstate of the operator eiφ̂ with eigenvalue eiφ. Can you draw an analogy between the |n〉 and |φ〉
states on the one side, and momentum vs. position eigenstates on the other side ? What can you guess for
the commutation relation [n̂, φ̂] ?
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3.3

Show that
[n̂, eiφ̂] = −eiφ̂ (15)

By Taylor-expanding the exponential on both sides, show that above commutator is compatible with the
commutation relation

[n̂, φ̂] = i . (16)

This implies the phase-number uncertainty relation ∆n∆φ & 1/2 , which will be fundamental for this course.

4 Phase-number uncertainty for coherent states

We now consider the phase statistics associated with a coherent state.

4.1

Show that the phase distribution Pα(φ) = |〈φ|α〉|2 is given by

Pα(φ) =
e−|α|

2

2π

∣∣∣∣∣∑
n

(e−iφα)n√
n!

∣∣∣∣∣
2

(17)

and justify why the maximum probability is associated with φ = θ, where α = |α|eiθ.

4.2

Using the number representation of the phase operator

〈n|φ̂|α〉 = −i ∂
∂n
〈n|α〉 (18)

and considering |α| � 1, show that

〈α|φ̂|α〉 = θ − i

2
(log〈n〉 − 〈log n〉) (19)

[Use the Stirling formula n! ≈
√

2πn nn e−n, and convince yourself that its use is justified by the fact
that |α| � 1]. For |α| � 1 the Poissonian distribution for the number statistics has a vanishing relative

uncertainty, namely Pα(n)→ δn,〈n〉. Justify in this limit that 〈φ̂〉 ≈ θ.

4.3

Using the same assumptions as before, show that

〈α|φ̂2|α〉 ≈ θ2 +
1

2〈n〉 (20)

Conclude that, for a coherent state

∆φ2 ≈ 1

2〈n〉 (21)

and, therefore, ∆φ ∆n ≈ 1/
√

2. Looking at the uncertainty volume in the complex plane α, as at Question
1.3), can one justify this result (roughly) with a simple geometrical argument valid in the limit |α| � 1 ?

5 Phase correlations

Imagine to have a system of N independent harmonic oscillators. We are interested in the correlation function
〈a†iaj〉 associated with the i-th and j-th harmonic oscillator.
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5.1

Imagine that each harmonic oscillator is in a different coherent state |αi〉, i = 1, ..., N , with |αi| = |α| for all
i. Consider the quantity

I =
1

N

∑
ij

〈a†iaj〉 . (22)

Show that I is extensive, I = N |α|2 = Ntot (total average boson number), if the phases θi of the αi’s are all
the same (phase coherence), while I is intensive, I = |α|2 (average boson number density), if the phases are
completely random (phase incoherence).

5.2

Imagine now that all harmonic oscillators are in a Fock state, |ni〉. Calculate I and show that it corresponds
to the phase incoherent case. Can you justify this result from the number-phase uncertainty ?

6 Coherent states of fermionic pairs

Consider a fermion which can occupy two single-particle spin states, | ↑〉 and | ↓〉, with associated fermio-
nic creation and destruction operators âσ, â†σ (σ =↑, ↓), satisfying fermionic anti-commutation relations

{âσ, â†σ′} = δσ,σ′ , {âσ, âσ′} = {â†σ, â†σ′} = 0.

6.1

We introduce the pair operators bp = â↓â↑, b†p = â†↑â
†
↓. Show that [bp, bp] = [b†p, b

†
p] = 0, but [bp, b

†
p] =

1− â†↑â↑ − â
†
↓â↓, so that the bp, b

†
p operators realize only partially the algebra of bosonic operators.

6.2

Consider the coherent states of fermionic pairs, defined as

|α〉 = N eαâ
†
↑â

†
↓ |0〉 (23)

where N is a normalization factor to be determined. Write the state in terms of fermionic Fock states. Show
that

|α〉 =
1√

1 + |α|2
(1 + α â†↑â

†
↓)|0〉 (24)

s

6.3

Calculate the expectation values 〈n̂↑ + n̂↓〉 and 〈(n̂↑ + n̂↓)2〉 and the particle-number variance. Show that
the relative uncertainty on the total particle number has the same expression as for bosonic coherent states.
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TD2 : Ferromagnetism and spin waves

7 Heisenberg Hamiltonian, spin-to-boson mapping

In many ferromagnetic compounds, the interactions among magnetic moments µi = gµBSi are described by
the Heisenberg Hamiltonian

H = −J
∑
〈ij〉

Si · Sj (25)

where J > 0 is the exchange interaction, and the sum runs over the 〈ij〉 pairs of nearest neighbor on a
hypercubic lattice in D dimensions (linear chain for D = 1, square lattice for D = 2, cubic lattice for D = 3,
etc.) with lattice spacing a. The spin operators satisfy the commutation relations

[Sαi , S
β
j ] = iδijεαβγS

γ
i |Si|2 = S(S + 1) (26)

where εαβγ is the totally anti-symmetric tensor. We recall as well the definition of the spin raising/lowering
operators

S+
i = Sxi + iSyi S−i = Sxi − iSyi (27)

and their action on an eigenstate of the Szi operator, |S,mS〉

S±i |S,mS〉 =
√
S(S + 1)−mS(mS ± 1) |S,mS ± 1〉 . (28)

7.1

Show that

Sxi S
x
j + Syi S

y
j =

1

2

(
S+
i S
−
j + S−i S

+
j

)
. (29)

On the basis of the rotation symmetry of the left-hand side, justify on physical grounds why the right-hand
side does not contain operator products of the kind S+S+ or S−S−.

7.2

Show that the state |Ψ0〉 = ⊗Ni=1|S,mS = S〉i is an eigenstate of H, with energy E0 = −NJzS2/2, where
z = 2D is the coordination number of the lattice (number of nearest neighbors).

7.3

We now want to show that |Ψ0〉 is also the ground state of H. We introduce the magnetization M =
∑
i S

z
i .

Justify that [H,M ] = 0 (you can do the explicit calculation, or use a simple symmetry argument).
Therefore the eigenstates of H are also eigenstates of M . If |Ψ0〉 is the only eigenstate of M with eigenvalue
NS, the eigenstates of M with eigenvalue NS − 1 are N -times degenerate. Indeed one can take a state such
as

|Ψ(i)
1 〉 = S−i |Ψ0〉 . (30)

Show that
H|Ψ(i)

1 〉 = (E0 + zJS)|Ψ(i)
1 〉 − JS

∑
d

|Ψ(i+d)
1 〉 (31)

where
∑
d runs over the nearest neighbors.
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7.4

Changing the basis in the subspace of states with magnetization M = NS − 1, we define the states

|Ψ(q)
1 〉 =

1√
N

∑
i

eiq·ri |Ψ(i)
1 〉 . (32)

Show that H|Ψ(q)
1 〉 = (E0 + εq)|Ψ(q)

1 〉 where

εq = JzS(1− γq) γq =
1

z

∑
d

eiq·d =
2

z

∑
i=x,y,..

cos(qia) (33)

(the d vectors connect a site to its z nearest neighbors, and
∑
i=x,y,... runs over the components of the

wavector q in D dimensions).
Conclude that |Ψ0〉 is one of the ground states of H in the magnetization sectors M = NS,NS − 1. Justify
qualitatively that the states with magnetiazation NS − 2, NS − 3, etc. have an even larger energy.

7.5

Show that in the q → 0 limit, εq ≈ JSa2q2. Therefore the dispersion relation εq strongly resembles that of
free particles.
In the following we shall make this link explicit, transforming the spin model into a model of bosonic particles.
We introduce the Holstein-Primakoff (HP) transformation from spins to bosons :

S+ = f(n)
√

2S a S− =
√

2S a† f(n) Sz = S − n (34)

where n = a†a, f(n) =
(
1− n

2S

)1/2
, and a, a† are bosonic operators, satisfying the commutation relation

[a, a†] = 1.
We would like to show that this transformation is canonical, namely that it respects the commutation rules
of spin operators. First of all, verify that, for spin operators defined as in Eq. (??),

[S+, S−] = 2Sz . (35)

To check that the HP transformation verifies this commutation relation, show that

a n = (n+ 1) a a†n = (n− 1) a† . (36)

Convince yourself that this entails

a f(n) = f(n+ 1) a a†f(n) = f(n− 1) a† (37)

and conclude that S+ et S−, defined as in Eq. (??), satisfy Eq. (??).

8 Thermodynamics of spin waves, Bloch’s T 3/2 law

8.1

If we focus on the lowest-energy eigenstates (ground state and first excited states), we have that 〈Szi 〉 =
S − 〈ni〉 ≈ S – as we have seen it in the previous section. This implies that for these states 〈ni〉 � 2S,
namely the bosons form a very diluted gas. This justifies that we linearize the HP transformation as follows

S+
i ≈

√
2Sai S−i ≈

√
2Sa†i . (38)

Neglecting terms of order n2i , rewrite the Hamiltonian in terms of bosonic operators, and show that it
describes a gas of free bosonic quasi-particles (magnons), whose dispersion relation is given by εq.
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8.2

The magnetization per spin

m =
〈M〉
N

= S − 1

N

∑
i

〈ni〉 (39)

is related to the density of magnons. Using Bose-Einstein statistics, show that for T � JzS in D dimensions,

m(T ) = S − ΩD
2(2π)D

(
kBT

JS

)D/2
Γ(D/2) gD/2(1) (40)

where

Γ(D/2) gD/2(1) =

∫ ∞
0

dx
xD/2−1

ex − 1
(41)

and ΩD is the solid angle in D dimensions. For D = 3 show that

m(T ) = m(T = 0)

[
1−

(
T

Tc

)3/2
]

(42)

where Tc is to be determined [you can use the fact that Γ(3/2) gD/2(1) = 2.612
√
π/2].

8.3

Is there a Bose-Einstein condensate of magnons in the system ? If not, why ?
Show that the product Γ(D/2) gD/2(1) diverges for D < 3. Can we have Heisenberg ferromagnetism at finite
temperature for D = 1, 2 ? Can you link this result to the absence of condensation in an ideal Bose gas in
D = 1, 2 ?

8.4

The above behavior of the magnetization is rather different from that predicted by mean-field theory, that
we have examined (or will examine) in class. Within mean-field theory one has that m(T ) (dimensionless
magnetization) satisfies the self-consistent equation

m = S BS(βJSm) (43)

where β = 1/(kBT ) and BS(x) is the Brillouin function

BS(x) =
2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

(
1

2S
x

)
. (44)

Show that in the low-temperature limit β → ∞, m = S. Considering instead low (but finite) temperatures
βJS2 � 1, we can expand the coth(x) function as 1 + 2e−2x + .... Conclude that, within mean-field theory

m(T ) ≈ m(T = 0)− 1

2
e−βJS . (45)

8.5

Fig. ?? shows the magnetization of Nickel as a function of temperature, compared to mean-field theory and
spin-wave theory. What can you conclude ?
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Figure 5 Decrease in magnetization of nickel with trmperatnre. after Arple,  Charap. 
In the plot AM = 0 at 4.2 K .  

Saturation Magnetization at Absolute Zero 
Table 1 gives representative vali~es of the saturation magnetization M,,  the 

ferromagnetic Curie temperature, and the effective magneton number de- 
fined by M,(O) = n,Np,, where N is the number of formula units per unit 
volume. Do not confuse n, with the paramagnetic effective magneton r~urrlber 
p defined by (11.23). 

Tahle 1 Ferromagnetic cryslals 

Magnetization M,, in gauss 
Curie 

Room temperatllre, 

Fe 1707 1740 2.22 1043 
Co 1400 1446 1.72 1388 
Ni 385 510 0.606 627 
Gd - 2060 7.fi3 292 
Dy - 2920 10.2 88 
MnAs 670 870 3.4 318 
MnBi 620 680 3.52 630 
MnSh 710 - 3.5 587 
CrO, 515 - 2.03 386 
MnOFe,O, 410 - 5.0 573 
FeOFe,O,, 480 - 4.1 858 
NiOFe,O, 270 - 2.4 (858) 
CuOFc,O, 135 - 1.3 728 
MgOFr,O, 1 1 0  - 1.1 713 
EuO - 1920 6.8 69 
Y:3FesOls 130 200 5.0 560 

12 Fewornagnetism and Antiferrornagnetism 

Figure 4 Saturation magnetization of nickel a7 a function of temperature, together with the 
theoretical curvc for S = on the mean field theory Experimental values hy P. Weiss and R. Forrer. 

The curves of 1M versus T obtained in this way reproduce roughly the fea- 
tures of the experimental results, as shown in Fig. 4 for nickel. As T increases, 
the magnetization decreases smoothly to zero at T = T,.  This behavior 
classifies the usual ferromagneti~/~aramagnetic transition as a second-order 
transition. 

The mean-field theory does not give a good description of the variation of 
M at low temperatures. For T + T ,  the argument of tanh in (9) is large, and 

tanh 5 - 1 - %-g. 

To lowest order the magnetization deviation AM = M(0)  - M(T)  is 

The argument of the exponential is equal to -2TJT. For T = 0.1TC we have 
AMINp 4 x 

The experimental results show a much more rapid dependence of AM on 
temperature at low temperatures. At T = 0.1TC we have AM/A4 2 X loF3 
from the data of Fig. 5. The leading term in AM is observed from experiment 
to have the form 

where the constant A has the experimental value (7.5 t 0 .2 )  X deg3I2 for 
Ni and (3.4 ? 0 .2 )  X 10-%eg-"~ for Fe. The result ( 1 1 )  finds a natural expla- 
nation in terms of spin wave theory. 

mean-field theory fit to 

<latexit sha1_base64="heI65FDGHIBbW5EP+5kQSwttveQ=">AAAB8nicbVDPSwJBFH5rv8x+WR27DEnQSXZFtEsgdQm6GGgK6yKz46wOzs4sM7OBiH9Glw5FdO2v6dZ/06h7KO2DBx/f9x7vvS9MONPGdb+d3Mbm1vZOfrewt39weFQ8PnnUMlWEtonkUnVDrClngrYNM5x2E0VxHHLaCce3c7/zRJVmUrTMJKFBjIeCRYxgYyW/1SfoGtUqdXTfL5bcsrsAWideRkqQodkvfvUGkqQxFYZwrLXvuYkJplgZRjidFXqppgkmYzykvqUCx1QH08XJM3RhlQGKpLIlDFqovyemONZ6Eoe2M8ZmpFe9ufif56cmugqmTCSpoYIsF0UpR0ai+f9owBQlhk8swUQxeysiI6wwMTalgg3BW315nTxWyl6tXH2olho3WRx5OINzuAQP6tCAO2hCGwhIeIZXeHOM8+K8Ox/L1pyTzZzCHzifP6lpj44=</latexit>

Tc = 627KNickel:

<latexit sha1_base64="5wkGGIVtezChaOhv+FcFrdHpeng=">AAAB9HicbVBNT8JAEJ36ifiFevSykZjgBVok6pHoxSMmfCVQyXbZwobttu5uSUjD7/DiQWO8+mO8+W9coAcFXzLJy3szmZnnRZwpbdvf1tr6xubWdmYnu7u3f3CYOzpuqjCWhDZIyEPZ9rCinAna0Exz2o4kxYHHacsb3c381phKxUJR15OIugEeCOYzgrWR3EK9VO/ZF4/JZak87eXydtGeA60SJyV5SFHr5b66/ZDEARWacKxUx7Ej7SZYakY4nWa7saIRJiM8oB1DBQ6ocpP50VN0bpQ+8kNpSmg0V39PJDhQahJ4pjPAeqiWvZn4n9eJtX/jJkxEsaaCLBb5MUc6RLMEUJ9JSjSfGIKJZOZWRIZYYqJNTlkTgrP88ipplovOVbHyUMlXb9M4MnAKZ1AAB66hCvdQgwYQeIJneIU3a2y9WO/Wx6J1zUpnTuAPrM8fg1eQpg==</latexit>

(T/T0)
3/2(a) (b)

Figure 1 – Magnetization of Ni as a function of temperature : (a) experimental data compared to mean-field
theory (data from P. Weiss and R. Forrer) ; (b) experimental data at low temperature for ∆M = M(0)−M(T )
fitted to the T 3/2 law (exp. data from B. E. Argyle, S. H. Charap and E. W. Pugh, Phys. Rev. 132, 2051
(1963)).

8.6

The analogy with Bose-Einstein condensation in the example given so far is not complete – as you may
have remarked in replying to the question ??. On the other hand, another model of magnetism allows for a
closer connection with a system of bosons : the so-called XY model H = −J∑ij

(
Sxi S

x
j + Syi S

y
j

)
. To a first

approximation the ground state of this model can be viewed as a collection of spins pointing along e.g. the
x axis, 〈Sxi 〉 = S. Justify that 〈Szi 〉 = 0 so that 〈ni〉 = S, and 〈(Szi )2〉 = 〈n2i 〉 − 〈ni〉2 = S/2.
Conclude that one can take ni ≈ 〈ni〉 in the limit S � 1. Rewrite the spin operators in terms of HP bosons
(Eq. (??)) in this approximation, and establish a relationship between the Sx and Sy operators and the
phase operator φ for the bosons (as seen in the TD no. 1), defined such that a = eiφ

√
n.
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TD3 : Bosons in a double-well potential

In this TD we will investigate the physics of N identical bosons trapped in a double-well potential (bosonic
Josephson junction). In the limit of a very deep potential, we can consider only two orthonormal single-
particle states, |1〉 and |2〉, localized on the two sides of the double-well potential.
The many-body Hamiltonian on this reduced basis takes the form :

Ĥ = −t
(
â†1â2 + â†2â1

)
+
U

2
[n̂1 (n̂1 − 1) + n̂2 (n̂2 − 1)] (46)

where â1, â
†
1 and â2, â

†
2 are bosonic creation/destruction operators.

| 1 > | 2 >

t

9 Many-body states : Fock states, Schrödinger’s cat states and
BEC states.

In this section we consider trial wave-functions to describe the ground state of the model.

9.1

Consider the Fock state

|N1, N2〉 =

(
â†1

)N1

√
N1!

(
â†2

)N2

√
N2!

|0〉 (47)

Write down its one-body density matrix g
(1)
ij = 〈â†i âj〉. For what values of N1 and N2 is the system showing

condensation/fragmentation ?

9.2

Consider then the Schrödinger’s cat state

|N1, N2;N2, N1〉 =
1√
2

(|N1, N2〉+ |N2, N1〉) (48)

Calculate its one-body density matrix g
(1)
ij for |N1 −N2| > 1 ; can this state show condensation ?
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9.3

We then take the BEC state

|α, φ〉 =
1√
N !

(
â†1 + αeiφ â†2√

1 + α2

)N
|0〉 (49)

Write down its one-body density matrix g
(1)
ij . To do so, it can be useful to introduce the orthonormal states

|+〉 =
|1〉+ αeiφ |2〉√

1 + α2
|−〉 =

α|1〉 − eiφ |2〉√
1 + α2

(50)

and the associated creation/destruction operators â±, â†±. Diagonalise g
(1)
ij and show that the state corres-

ponds to a perfect condensate (as it was obvious from the first definition....).

9.4

Show that the Fock state can be obtained by Fourier transformation of the BEC state with respect to φ.
Conclude on the existence of a phase-difference/number-difference uncertainty.

10 Variational determination of the ground state

10.1

Calculate the energy expectation value for the Fock state E(N1, N2) = 〈N1, N2|Ĥ|N1, N2〉, and for the
Schödinger’s cat state. Find the combination (N1, N2) minimizing the energy in the case of repulsive (U > 0)
and attractive (U < 0) interactions. Is the Fock state with N1 6= N2 an acceptable equilibrium state of the
system ?

10.2

Calculate the energy expectation value for the BEC state E(α, φ), and show that the energy is an explicit
function of the phase φ. Assuming α = 1, minimize with respect to φ for both attractive and repulsive
interactions.

10.3

Comparing the minimum energies Emin(N1, N2) and Emin(α = 1, φ), determine the transition points between
fragmented states and condensate states upon varying the ratio U/t. Draw the corresponding phase diagram
on the U/t axis.

11 Schwinger pseudo-spin representation

11.1

Introducing the operators

Ĵx =
1

2

(
â†1â2 + â†2â1

)
Ĵy =

1

2i

(
â†1â2 − â†2â1

)
Ĵz =

1

2

(
â†1â1 − â†2â2

)
(51)

show that they satisfy the commutation relations of angular momentum, [Ĵα, Ĵβ ] = iεαβγ Ĵγ .
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11.2

Calculating J2 = |Ĵ |2, determine the effective spin length. Show that the Hamiltonian of the system in the
pseudospin variables takes the form

Ĥ = −2tĴx + U
(
Ĵ2
z + J2 −N

)
. (52)

Treating the Jα operators as classical variables, what are the values of the spin components which minimize
the energy in the opposite limits |U |/t� 1, U/t� 1 and −U/t� 1 ?

11.3

Calculate the vector 〈Ĵ〉 = (〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉) for the Fock state |N1, N2〉 and the BEC state |α, φ〉. Introducing
the angle variable θ such that

1√
1 + α2

= cos(θ/2)
α√

1 + α2
= sin(θ/2) (53)

show that the state vector 〈Ĵ〉 for the BEC state is a vector of length N with polar/azimuthal angles φ, θ.
Represent the ground state of the system in the various phases, as determined in the previous section, via
the length and orientation of the state vector.

12 Momentum distribution in the BEC state

Figure 2 – Absorption images of bosons released from a double-well trap. From M. Albiez’s PhD thesis,
University of Heidelberg (2005).

Be Φ1(x) and Φ2(x) the spatial wavefunction associated with the two states |1〉 and |2〉, with the property
Φ2(x) = Φ1(x − d) (d = separation between the two wells). The states Φ1 and Φ2 are part of a basis Φi of
orthonormal wavefunctions.

12.1

Calculate 〈ψ̂†(x)ψ̂(x′)〉 for the generic BEC state |α, φ〉.
(Suggestion : expand the field operators on the Φi basis).

11



12.2

Calculate the momentum distribution n(k) = 〈â†kâk〉, where

ak =

∫
dx

e−ikx√
V

ψ(x) . (54)

You should find an expression containing N , α, φ, k and Φ̃1(k) (Fourier transform of the Φ1 wavefunction).
In the case of Gaussian wavefunctions, Φ1(x) ∼ exp[−x2/(2σ2)], sketch the form of n(k).

12.3

Fig. 1 shows the measurement of the momentum distribution of bosons trapped in double well potential for
two different measurement shots. Can you tell the phase difference φ between the two wells in the two cases ?

12
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TD4 : Applications of the Gross-Pitaevskii equation

In this TD we will concentrate on the study of the Gross-Pitaevskii equation (GPE) for a contact potential :(
− ~2

2m
∇2 + Vext(r) + g|Ψ0(r)|2

)
Ψ0(r) = µΨ0(r) (55)

for the study of inhomogeneous condensates.

13 Derivation of the Gross-Pitaevskii equation : variational ap-
proach

13.1

We postulate that the state of the system is a perfect condensate in the single-particle wavefunction χ0(r)

|Ψ〉 =
(â+0 )N√
N !
|0〉 (56)

where

â†0 =

∫
ddr χ0(r) ψ̂†(r) . (57)

Considering that in general

ψ̂(r) =
∑
α

χα(r) âα (58)

where χα(r) are at set of orthonormal wavefunctions, containing χ0(r), show that

〈Ψ|ψ̂†(r)D(r)ψ̂(r)|Ψ〉 = N χ∗0(r)D(r)χ0(r) (59)

where D(r) is a generic differential operator dependent on the position r.
By the same token, show that

〈Ψ|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|Ψ〉 = N(N − 1) |χ0(r)|2 |χ0(r′)|2 . (60)

13.2

In which limit do the above results coincide with the Bogolyubov replacement ψ̂(r) → Ψ0(r) ? And how
are Ψ0 and χ0 related ? Comment on the necessity of considering a spontaneous breaking of particle-number
conservation (namely the fact that 〈ψ̂〉 6= 0) when dealing with condensates.

13.3

Consider the many-body grand-canonical Hamiltonian

Ĥ − µN̂ =

∫
ddr ψ̂†(r)

(
− ~2

2m
∇2 + Vext(r)− µ

)
ψ̂(r)

+
1

2

∫
ddr

∫
ddr′ V (r − r′) ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r) (61)

Calculate EGP(Ψ0,Ψ
∗
0) = 〈Ψ|Ĥ − µN̂ |Ψ〉.

The functional minimization of EGP(Ψ0,Ψ
∗
0) with respect to Ψ0 leads to the Gross-Pitaevskii equation,

Eq. (??). Specify the form of the interparticle potential, V (r − r′), implied by Eq. (??).

13



14 Thomas-Fermi approximation

14.1

Be R the characteristic length scale for the variations of the macroscopic wavefunction

R2 ∇2Ψ0

Ψ0
∼ 1 . (62)

Show that, if R � ξ (where ξ = ~/
√

2gmn is the healing length), the kinetic part of the GPE can be
neglected with respect to the non-linear term.
Conclude that, under the above assumption (the so-called Thomas-Fermi approximation), the condensate
density satisfies the simple equation

|Ψ0(r)|2 = n(r) =
µ− Vext(r)

g
(63)

14.2

Consider the case of a confining harmonic potential, Vext = (1/2)mω2r2. Draw the radial density profile
n(r), and calculate the radius of the condensate (Thomas-Fermi radius).
If N is the total number of particles, show that the related chemical potential is

µ(N) =

(
15

8

gN

π

)2/5(
mω2

2

)3/5

(64)

Calculate the compressibility, κ = ∂N/∂µ, and comment on its dependence on g.

15 Condensate at a hard-wall potential

15.1

Consider the hard-wall potential in one dimension

Vext(x) =

{
0 x ≥ 0

∞ x < 0 .
(65)

What are the boundary conditions for the GPE at x = 0 and x =∞ ?
Writing

Ψ0 =
√
n f

(
x√
2 ξ

)
(66)

where n = |Ψ0(x→∞)|2, show that the GPE takes the form

d2f(y)

dy2
= −2(f − f3) (67)

where y = x/(
√

2 ξ). Show that f(y) = tanh(y) is a solution to the above equation. Draw the full solution
to the GPE equation : do you understand why ξ is called the ”healing” length ?

16 Vortex solution

We look now for a solution to the GPE with finite vorticity, in the absence of external potentials (Vext = 0).
Taking a system with cylindrical symmetry, consider a macroscopic wavefunction of the form

Ψ0(r, φ, z) = |Ψ0(r)| eipφ p ∈ Z . (68)

14



16.1

What is the angular momentum of this wavefunction ? Calculate the related velocity field

vs(r) =
~
m
∇S(r) (69)

where S is the phase of the wavefunction.
Calculate the vorticity of the velocity field, and show that the vorticity is quantized. By using Stokes’
theorem, show that

∇× vs(r) =
h

m
p δ(2)(r) ez . (70)

16.2

Show that the GPE equation takes the form

− ~2

2m

(
d2

dr2
+

1

r

d

dr

)
|Ψ0|+

~2

2m

p2

r2
|Ψ0|+ g|Ψ0|3 − µ|Ψ0| = 0 (71)

Writing |Ψ0| =
√
nf(y) with |Ψ0(r →∞)| = √n and y = r/ξ, rewrite the GPE in the form(

d2

dy2
+

1

y

d

dy

)
f +

(
1− p2

y2

)
f − f3 = 0 (72)

16.3

For y → 0, we look for a solution in the form f ∼ yα. Show that this works if α = |p|.
In the opposite limit, y →∞, show that the GPE equation reduces to the same form as that of the hard-wall
potential.
Interpolating between the two limits, sketch the form of the radial wavefunction |Ψ0(r)|. What is the cha-
racteristic size of the vortex core ?

16.4

To conclude, we calculate the energy of the solution to the GPE containing one quantized vortex. Knowing
that the energy functional is given by

E =

∫
d3r

(
~2

2m
|∇Ψ0|2 +

g

2
|Ψ0|4

)
(73)

we consider a cylindrical sample, with radius R and height L. Show that the energy difference between
the macroscopic wavefunction containing a vortex and the uniform wavefunction (without vortices) can be
written as

Ev =
Lπ~2n
m

∫ R/ξ

0

dy y

[(
df

dy

)2

+
p2

y2
f2 +

1

2
(f4 − 1)

]
(74)

To estimate this integral, we drastically approximate f(y) with the function f(y) = y for y < 1 and f(y) = 1
for y ≥ 1. Show that this leads to the estimate

Ev ≈
Lπ~2n
m

p2 ln

(
bR

ξ

)
(75)

where b = 2.3 (The exact result gives the same form for the energy, but a different coefficient b = 1.46, so
the above estimate is not that bad after all).
Explain the fact that the energy of the vortex diverges with the system size L,R→∞, although the vortex
excitation only leads to a localized depletion in the density profile around the vortex core.

15



16.5

Imagine that the cylindrical bucket containing the condensate is put into rotation at an angular velocity Ω.
In the rotating reference frame the Hamiltonian takes the form

H = H0 − ΩLz (76)

where H0 and Lz are the Hamiltonian and the angular momentum in the laboratory frame.
Show that for Ω > Ωc (to be determined) the vortex configuration becomes stable, so that vortices start to
appear in the system.

17 Vortex-vortex interactions

Imagining to rotate the bucket even faster, we want to investigate whether the vortex we have created
acquires a higher vorticity, or whether we add instead more vortices with unit vorticity to the system. To
this end we need to calculate the interaction energy between two vortices with cores at a distance d� ξ.
In presence of two vortices the velocity field takes the form

vs =
~
m

p1
r
e
(0)
φ +

~
m

p2
r − d e

(d)
φ = v0 + vd (77)

where the e
(0)
φ and e

(d)
φ vectors are referred to cylindrical reference frames with origins at r = 0 and r = d

respectively.
Similarly to what seen at question ?? (but even more drastically) we neglect the spatial variation of the
density of the condensate, and we take

Ψ(r) ≈ √n eiS(r) (78)

where n = const., and vs = (~/m)∇S.

17.1

Starting from the energy function Eq. (??), show that the energy of two vortices contains three terms, out
of which the vortex-vortex interaction term can be written as

Eint = mn

∫
d3r v0 · vd . (79)

17.2

If r � d we have that e
(0)
φ ≈ e

(d)
φ . Considering that R � d, the points with r � d will dominate the above

integral, so that we can take this approximation all over the volume of the system. In this case, show that

Eint ≈
2L~2πn
m

p1p2 ln

(
R

d

)
. (80)

Comment on the nature of the interaction.

17.3

Now we are ready to respond to the initial question : what happens when rotating the condensate faster
and faster ? Compare the energy of a vortex with vorticity p = 2, Ev(p = 2), with the energy of two vortices
2Ev(p = 1) + Eint. Which solution is energetically favored ?
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17.4

Let us look now at the experiment, shown in Fig. ??. Can you interpret what you see in light of the previous
results ? Can you understand the structure of the vortex arrays appearing in the system ?

Mathematical appendix

Gradient in cylindrical coordinates

∇ = er
∂

∂r
+ eφ

1

r

∂

∂φ
+ ez

∂

∂z
(81)

Laplacian in cylindrical coordinates

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2
(82)

Figure 3 – Vortex arrays appearing in a condensate under rotation at increasing angular velocity. From F.
Chevy’s PhD thesis, ENS-Paris (2001).
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TD5 : Josephson effects
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Vext(r)

In this exercise we will consider again the bosonic double well, this time with an energy offset between the
two wells ; and we will obtain two fundamental equations for the evolution of the phase and number difference
between the two wells – the so-called Josephson relations.
The general many-body Hamiltonian describing the system is

Ĥ =

∫
d3r ψ̂†(r)

[
−~2∇2

2m
+ Vext(r)

]
ψ̂(r) +

g

2

∫
d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (83)

where we have assumed a contact interaction V (r − r′) = gδ(r − r′) between the particles.

18 Equation of motion : Gross-Pitaevskii picture

In principle the field operator ψ̂(r) can be decomposed on the single-particle orthonormal states wα(r) =
〈r|α〉 :

ψ̂(r) = w1(r)â1 + w1′(r)â1′ + ...+ w2(r)â2 + w2′(r)â2′ + ... (84)

We assume that the states wα(r) are localized on either side of the well. In general these states are not

eigenstates of the one-body Hamiltonian H(1) = −~2∇2

2m + Vext(r) ; we can define nonetheless their average

energies Eα = 〈α|H(1)|α〉.
In the following we shall assume that the system is in a condensate state, which has support only on the two
lowest modes w1(r) and w2(r), well localized on each side of the double well. As a consequence we can take

ψ̂(r) ≈ w1(r)â1 + w2(r)â2 . (85)

18.1

Inject the above truncated expression for the field operator into the many-body Hamiltonian, and show that
it can be recast in the following form :

Ĥ = −J(â†1â2 + â†2â1) +
U

2

(
â†1â
†
1â1â1 + â†2â

†
2â2â2

)
+ V â†1â1 + ... (86)

where J is the tunneling energy for going from one well to the next (so-called Josephson energy), U is the
interaction energy among particles in the same well (the so-called charging energy) and V is a potential
offset between the two wells.
Find the microscopic expression of the parameters J , V and U in terms of the functions w1(2)(r), and discuss
which terms of the many-body Hamiltonian have been neglected.
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18.2

Write the Heisenberg equations for the destruction operators

i~
dâ1
dt

= [â1, Ĥ] i~
dâ2
dt

= [â2,H] . (87)

Show that the replacement â1(2) → Ψ1(2) ∈ C gives rise to the (two-mode) Gross-Pitaevskii equation for this
problem

i~
dΨ1

dt
= −JΨ2 + U |Ψ1|2Ψ1 + VΨ1

i~
dΨ2

dt
= −JΨ1 + U |Ψ2|2Ψ2 (88)

Note : Here Ψ1 and Ψ2 are not to be interpreted as two different macroscopic wavefunctions, but as the
amplitudes of the same macroscopic wavefunction on the two modes 1 and 2 on both sides of the double
well, namely Ψ0(r) = Ψ1w1(r) + Ψ2w2(r).
As usual there exists a completely equivalent formulation in variational terms, which does not require to
assume that the field operator takes a finite average value.

19 First Josephson relation

Write Ψ1 = A1e
iφ1 and Ψ2 = A2e

iφ2 , with A1(2) =
√
N1(2) the amplitude of the macroscopic wavefunction

on each side of the well, and N1(2) the corresponding particle number.

19.1

Show that
dN1

dt
=
d|Ψ1|2
dt

=
2JA1A2

~
sin ∆φ = −dN2

dt
(89)

where ∆φ = φ1 − φ2.
Therefore

d(∆N)

dt
=

4JA1A2

~
sin ∆φ (90)

where ∆N = N1 −N2.

19.2

Conclude that (first Josephson relation)
I2→1 = Ic sin ∆φ (91)

where I2→1 is the current of atoms going from well 2 to well 1 ; find an expression for the “critical current”
Ic.

19.3

Show that at all times we can write

N1(t) = N̄ +
∆N(t)

2
N2(t) = N̄ − ∆N(t)

2
(92)

where N̄ = N/2.
In the following we shall assume that ∆N � N , namely the particle difference between the two wells is
negligible compared to the total number of particles. This assumption can be justified in different ways :
either there is a large offset V between the two wells preventing a large particle transfer from one well to the
next ; or the charging energy U is significant, preventing too many particles to accumulate on one side only.
Under this assumption, show that Ic is a constant up to O(∆N/N)2 corrections.
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20 Second Josephson relation

20.1

Write the derivatives d
dtA1e

iφ1 , d
dtA2e

iφ2 using the Gross-Pitaevskii equations. Show that the two equations
lead to the form

d(∆φ)

dt
= −V

~
− ∆N

N1

dφ2
dt
− U

~
N

N1
∆N (93)

20.2

If the two modes w1(r) and w2(r) are extended (that is, their size grows with the particle number N), we
have that U ∼ N−1 (see derivation of the microscopic parameters at the question ??). Justify therefore that
we end up with the (second Josephson) equation

d(∆φ)

dt
≈ −V

~
(94)

up to terms of order O(∆N/N).

20.3

Combining the two Josephson relations Eq. (??) and Eq. (??) show that a DC potential difference V leads
to an AC current across the double well at frequency V/~.

reaches the top position and continues to rotate with a
nonvanishing angular momentum.

In order to fully characterize the evolution of the system
we measure not only the population imbalance but also the
relative phase of the macroscopic wave functions. This is
achieved by releasing the Bose-Einstein condensates from
the double-well potential after different evolution times.
After a time of flight of 5 ms in the Josephson and 8 ms in
the self-trapping regime the wave packets interfere, unveil-
ing the relative phase in a direct way since the resulting
atomic fringes are similar to a double slit diffraction
pattern.

In Fig. 2 we present the quantitative analysis of our
experimental results. The measured fractional population
imbalance and the relative phase in the regime of
Josephson oscillations !z"0# $ 0:28"6#< zC% are shown
in Fig. 2(a). As expected for a symmetric double-well
potential the relative population oscillates around its
mean value hzi $ 0. The relative phase of the two Bose-
Einstein condensates oscillates with a finite amplitude of
! $ 0:5"2#" around h!i $ 0. The self-trapping regime
can be reached by simply increasing the initial asymmetry
of the double-well potential as indicated in the schematic
diagram in Fig. 2(b) realizing z"0# $ 0:62"6#> zC. In this
case theory predicts that z exhibits only small amplitude

oscillations which never cross z $ 0, i.e., hzi ! 0.
Additionally, the relative phase ! is unbound and is sup-
posed to wind up in time. In Fig. 2(b) these characteristics
of macroscopic quantum self-trapping are evident. The
population difference does not change over time within
the experimental errors and the phase increases monotoni-
cally. The initial deviation from the linear time dependence
of the phase is due to the finite response time of the piezo
actuated mirror.

The experimentally obtained results can be understood
quantitatively by going beyond the two mode model which
assumes stationary wave functions in the individual wells
which is only justified for Nl & Nr ' 1000 atoms [8].
Therefore, we numerically integrate the nonpolynomial
Schrödinger equation [19] using the independently mea-
sured trap parameters and atom numbers. The calculations
also include the fact that the piezo actuated mirror initiat-
ing the Josephson dynamics reaches its final position only
after 7 ms. It is remarkable that all experimental findings
are in excellent quantitative agreement with our numerical
simulation without free parameters.

The distinction between the two dynamical regimes—
Josephson tunneling and macroscopic self-trapping—be-
comes very apparent in the phase-plane portrait of the
dynamical variables z and !. For our experimental situ-
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FIG. 2 (color online). Detailed analysis of the time dependence of the two dynamical variables z and ! describing the system. The
top graphs depict the experimental preparation scheme implemented to realize different initial atomic distributions. The dynamics is
initiated at t $ 0 by switching nonadiabatically to the symmetric double-well potential. Graph (a) shows the familiar oscillating
behavior of both the population imbalance and the relative phase in the Josephson regime. The solid lines represent the results obtained
by numerically integrating the nonpolynomial Schrödinger equation, and are in excellent agreement with our experimental findings.
The shaded region shows the theoretically expected scattering of the data due to the uncertainties of the initial parameters and broadens
for large evolution times due to different oscillation frequencies for different initial population imbalances. The insets depict
representative atomic interference patterns obtained by integrating the absorption images along the y and z direction after the indicated
evolution times. In graph (b) the totally different dynamics in the regime of macroscopic quantum self-trapping becomes obvious. The
population imbalance exhibits no dynamics within the experimental errors and reveals the expected nonzero average hzi ! 0. Clearly
the phase is unbound and winds up over time. The error bars in the phase measurements denote statistical errors arising from the
uncertainty of the initial population imbalance.

PRL 95, 010402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JULY 2005

010402-3

Figure 4 – Dynamics of a bosonic double well : here ∆N/N → z and (−∆φ) → φ. The density profiles in
the middle panels are the interference patterns of the atoms after expansion. Figure taken from M. Albiez
et al. Phys. Rev. Lett. 95, 010402 (2005).

20.4

Fig. ?? shows the experimental results (using ultracold Rb atoms in an optical potential) for the dynamics
of the population and phase differences ∆N and ∆φ for a bosonic Josephson junction initialized with a
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small particle imbalance (first column) and with a large particle imbalance (second column), induced by a
potential offset between the two wells, but then released during the evolution. Can you interpret the results
you see using the Josephson relations (and also using some of the results you have obtained in TD 3) ? And
is the experiment always conducted in the regime to which the above equations apply ?

The effects we have seen in this TD apply to all physical systems exhibiting condensation, namely developing
a macroscopic wavefunction. These include not only ultracold atoms, but also superfluid 4He, as well as
superconducting systems. The Josephson effects appear whenever two condensates are put into contact via
a so-called “weak link” or Josephson junction (namely a mechanism that lets particle tunnel from one
condensate to the other, perturbing weakly each condensate). Josephson junctions are at the core of many
devices based on superconducting circuits, such as some of the most sensitive magnetic field sensors.

21



M1 SdM, ENS Lyon – UCBL Année universitaire 2024/2025
Superconductivity, Superfluidity and Magnetism Antonin Roge, Fabio Mezzacapo, Tommaso Roscilde

TD6 : Interacting Bose fluids

21 Bogolyubov theory for the soft-disk gas

In this exercise we shall generalize Bogolyubov theory seen in the lectures to the case of a generic pair
potential Vint(r−r′). We shall introduce the following definitions for the potential and its Fourier transform
Ṽint(q) :

Ṽint(q) =

∫
d3r e−iq·r Vint(r) Vint(r) =

1

V
∑
q

eiq·r Ṽint(q) (95)

where V is the volume of the system.

21.1

Write Gross-Pitaevskii equation for the condensate wavefunction Ψ0(r) in the presence of the interaction
potential Vint(r − r′) ; show that the uniform condensate wavefunction

Ψ0(r) =
√
n0 =

√
N0/V (96)

containing N0 particles is a solution of the equation, with chemical potential

µ = n0Ṽint(q = 0) . (97)

21.2

We shall now build Bogolyubov theory starting from this condensate wavefunction. We recall the Bogolyubov
quadratic Hamiltonian

Ĥ2 =
∑
q 6=0

(εq − µ) â†qâq

+
n0
2

∫
d3r

∫
d3r′Vint(r − r′)

(
δψ̂(r)δψ̂(r′) + h.c.+ 2δψ̂†(r)δψ̂(r′) + 2δψ̂†(r)δψ̂(r)

)
(98)

where

δψ̂(r) =
1√
V
∑
q 6=0

eiq·r âq âq =
1√
V

∫
d3r e−iq·r δψ̂(r) (99)

and εq = ~2q2/(2m).
Put the Hamiltonian in the form

Ĥ2 =
1

2

∑
q 6=0

(
â†q
â−q

)(
Aq Bq

Bq Aq

)(
âq
â†−q

)
(100)

and determine the Aq, Bq coefficients.

21.3

The Bogolyubov quasi-particle spectrum is given by Eq =
√
A2

q −B2
q. Show that

Eq =

√
εq

(
εq + 2n0Ṽint(q)

)
. (101)

What happens in the case of a contact potential Vint(r − r′) = g δ(r − r′) ?
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21.4

We shall now consider the soft-disk potential

Vint(r − r′) =

{
V0 |r − r′| < R

0 otherwise .
(102)

We start by calculating its Fourier transform. Using polar coordinates, show that

Ṽint(q) = 4πV0

∫ R

0

dr r2
sin(qr)

qr
(103)

and conclude that

Ṽint(q) =
4πV0R

3

(qR)3
[sin(qR)− qR cos(qR)] . (104)

21.5

The dispersion relation can be written in the dimensionless form

ex =
2mR2

~2
Eq = x

√
x2 +

D

x3
(sinx− x cosx) . (105)

What is x ? Motivate why the parameter D can be interpreted as the ratio between the potential energy
change when modifying the condensate wavefunction on the length scale of R, and the kinetic energy cost
of introducing an inhomogeneity on the same length scale.

21.6

Plot the dispersion relation ex for various values of D, and estimate numerically (i.e. approximately) the
critical value Dc1 at which a so-called roton minumum appears in the dispersion relation ; for which value
of x = xrot does that occur ?

21.7

Increasing the value of D even further, estimate approximately the value Dc2 at which the dispersion re-
lation becomes gapless at the roton wavevector. What happens for D > Dc2 ? Is the uniform condensate
wavefunction stable to small perturbations ? What would be in your opinion a stable solution ?

22 Condensate fraction for a hard-disk wavefunction

Following Penrose and Onsager (1956) we calculate the condensate fraction associated with a model wave-
fuction for 4He (proposed originally by R. P. Feynman). Such wavefunction is the same as the “Boltzmann
weight” for a system of hard spheres of diameter a and centers in the positions r1, r2, ..., rN :

Ψ0(r1, r2, ..., rN ) =
1√
Z

(c)
N

FN (r1, r2, ..., rN ) (106)

where

FN (r1, r2, ..., rN ) =

{
1 |ri − rj | > a, ∀i 6= j

0 otherwise
(107)

22.1

Show that Z
(c)
N is the configurational partition function (namely the partition function for the position space

only) of the hard sphere gas in the distinguishable-particle case (or N ! Z
(c)
N for the indistinguishable-particle

case).
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22.2

Justify that, for |r − r′| > a :

FN (r, r2, ..., rN ) FN (r′, r2, ..., rN ) = FN+1(r, r′, r2, ..., rN ) (108)

22.3

The one-body density matrix at T = 0 takes the form

g(1)(r, r′) = N

∫
d3r2...d

3rNΨ0(r, r2, ..., rN )Ψ0(r′, r2, ..., rN ). (109)

Justify that, for |r − r′| > a

g(1)(r, r′) =
Z

(c)
N+1

Z
(c)
N

1

N + 1
ρ2(r, r′) (110)

where ρ2(r, r′) is the so-called pair correlation function, namely ρ2(r, r′) d3r d3r′ gives the probability of
finding any two spheres (out of N+1) with centers in the infinitesimal volumes d3r and d3r′ centered around
r and r′ respectively.

22.4

Justify that, in the limit |r − r′| → ∞, ρ2(r, r′) → (N/V )2 (where N � 1). Reminding yourself of the
relationship between the condensate density n0 and the one-body density matrix, show that

n0 = z

(
N

V

)2

(111)

where z = (Z
(c)
N+1/Z

(c)
N ) N !/(N + 1)! .

22.5

We introduce the function

f(vN ) =
1

N
log

Z
(c)
N

N ! vN0
(N →∞) (112)

where vN = V/N and v0 is a reference volume. What is its physical meaning ? Show that

1

N + 1
log

Z
(c)
N+1

(N + 1)! vN+1
0

≈ f(vN )− vN
N

∂f

∂v
(vN ) (113)

and consequently in the thermodynamic limit (vN → v independent of N)

log(z/v0) ≈ f(v)− v ∂f
∂v

(v) . (114)

22.6

We now consider the hard-sphere gas with both kinetic and configurational terms of the partition function.
The equation of state of a classical interacting gas is given by

P = kBT

(
N

V
+

∂

∂V
log

Z
(c)
N

V N

)
(115)

How do we obtain the ideal gas limit ?

24



The second term on the right-hand side, stemming from interactions, can be calculated via the so-called
virial expansion when the range of the interaction potential is small compared to the interparticle distance
(in our case na3 � 1, where n = N/V )

P = kBT

[
N

V
+B2

(
N

V

)2

+B3

(
N

V

)3

+ ...

]
(116)

For the hard-sphere gas, this expansion gives

B2 =
2π

3
a3 (117)

From Eqs. (??) and (??) find a differential equation for Z
(c)
N and hence for f(v). Show that it is solved by

f(v) = log v − 2π

3

a3

v
+ 1 (118)

22.7

Calculate z as a function of v and a. Using the data for 4He, a = 2.56 Å and v = 46.2 Å3, calculate the
condensate fraction N0/N = n0V/N . How does it compare with the value measured in 4He by neutron
scattering (N0/N = 6− 8 %) ?
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TD7 : Condensate in a rotating annulus

In this exercise we shall explore the properties of a condensate put under rotation in a non-simply connected
geometry (namely in a container with a hole). The simplest example is a so-called annulus, namely a circular
container with very small thickness compared to its radius, as shown in Fig. ??(a). The annulus is set into
rotation at angular velocity Ω perpendicular to the plane.

of dissipation or the creation of excitations. At V+
c , the hysteretic

systemmay create excitations or experience dissipation, but both cease
after the transition is made. Measurement of a hysteresis loop, in addi-
tion to measuring V+

c , shows an important feature of the underlying
energy landscape: the system has at least two stable states. Bi-stability
of a moving BEC has been demonstrated independently of quantized
states or critical velocities25,26. Finally, unlike that for ferromagnetism,
this energy structure is periodic inV, with periodV0 (Fig. 1c). Similar
periodic swallowtail energy structures are predicted for superfluids
trapped in a lattice19.
Our superfluid system is a BEC of 23Na atoms in a ring-shaped

optical dipole trap (Fig. 2a). To induce flow, we use a blue-detuned
laser to create a rotating repulsive potential, depleting the density in
a small portion of the ring and thereby creating a weak link27. The
intensity of the laser sets the height of this potential, U. Without this
weak link, superfluid flow in the ring should be quite stable24, with
Vz

c ?V0. Changing U will change the critical angular velocities,V+
c ,

and the size of the hysteresis loop. Rotating the weak link in the
azimuthal direction at angular frequency V can drive transitions, or
phase slips, between the quantized circulation states8 (Fig. 2b).
To observe hysteresis in these phase slips, we use a two-step experi-

mental sequence (Fig. 2c). After condensing the atoms into the ring
trap, the BEC is prepared in either the n5 0 or the n5 1 circulation
state by either not rotating theweak link or by rotating it atV15 1.1Hz.
The fidelity with which this procedure generates the expected initial
state is*>97%.We then rotate theweak linkat various angular velocities,
V2, in the range 20.3 to 1.2Hz, for an additional 2 s. In step 1, U is
ramped to U1< 1.1m0, where m0 is the global chemical potential. In
step 2, U is ramped to a chosen U2. The transitions n5 0R 1 and
n5 1R 0 occur at different values of V2 and form hysteresis loops
(Fig. 3a–f). Each plot shows the measured hysteresis loop for a specific
U2 value. As U2 is increased, both Vz

c and V{
c approach V0/2; that is,

the hysteresis loop becomes smaller. The observed transitions are not
sharp, unlike those in Fig. 1b. The dominant broadening mechanism is
probably shot-to-shot atomnumber fluctuations, but the non-zero tem-
perature (,100nK)may also contribute (Supplementary Information).

Figure3gshowsthemeasuredsizeofthehysteresis loop, Vz
c {V{

c

! "#
V0,

as a function of the strength of theweak link; the size of the loopmono-
tonically decreases with increasing U2/m0 until it reaches a value con-
sistentwith zero nearU2/m0< 0.75. To predict the size of the hysteresis
loop, we used two models. First we used an effective one-dimensional
model that computes the fluid velocity in the rotating frame as a func-
tion of V2. We assume that V+

c will occur when this velocity reaches
the local speed of sound28.We also simulatedour systemwith the three-
dimensional, time-dependent Gross–Pitaevskii equation (GPE). These
two approaches predict hysteresis and are consistent, suggesting that
both theoriespredict thatV+

c is determinedby the soundspeed.Despite
occurring at the sound speed, the observed excitations in theGPE simu-
lationarevortex–antivortexpairs. Perhapsmost strikingly, there is a large
discrepancy between our models and experiment (Fig. 3g).
One property of the system that our models fail to include is dis-

sipation. As another approach, we added dissipation to the GPE phe-
nomenologically29, by modifying it as follows:

iB Ly
Lt

~ 1{iLð Þ {
B2

2m
+2zV x,y,z,tð ÞzgN yj j2{m

$ %
y

Here y is the BEC wavefunction, g is the interaction strength, V is the
externally applied potential (trap and weak link), N is the atom num-
ber,m is the chemical potential of the initial stationary state andL is the
dissipation parameter. With L5 0.01, a reasonable value for our ex-
periment, the hysteresis loop size decreases as shown in Fig. 3g but not
significantly by comparison with the discrepancy with experiment. In-
creasing the dissipation parameter does not improve the agreement
(Supplementary Information). However, it is clear that dissipation is
important. In fact, dissipation is essential and implicitly assumed in the
energy landscape picture described in Fig. 1: dissipation allows the
system to relax to the minima of the landscape; without dissipation,
the system cannot change its energy.
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Figure 2 | Experimental set-up and procedure. a, Schematic and in situ
images of our trap, which is formed by crossing a ring-shaped dipole trap
for radial confinement and a sheet trap for vertical confinement. b, Schematic
and in situ images of a ring rotated by a repulsive weak link. c, Two-step
experimental sequence: the height,U, of the repulsive potential and the angular
rotation rate, V, as a function of time. Step 1 sets the initial winding number
usingV1 (either 0 or 1.1Hz) andU1 (,1.1m0); step 2 probes the hysteresis with
V2 and U2 (see text).
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Figure 3 | Hysteresis data. a–f, Hysteresis loops with sigmoid fits. The red up-
triangles and blue down-triangles show the winding number n averaged over
,20 shotswhen startingwithn5 0 and, respectively,n5 1.All error bars show
the 68% confidence interval. The fits determine V+

c and V0/2 (vertical grey
lines; Methods) and their uncertainties. g, Hysteresis loop size versus U2. The
green circles show the experimental data. The magenta line and band are
respectively the prediction and uncertainty of an effective one-dimensional
hydrodynamic model28. The open and filled cyan diamonds and their
uncertainties are the results of our GPE simulation with L5 0 and,
respectively, L5 0.01.
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of dissipation or the creation of excitations. At V+
c , the hysteretic

systemmay create excitations or experience dissipation, but both cease
after the transition is made. Measurement of a hysteresis loop, in addi-
tion to measuring V+

c , shows an important feature of the underlying
energy landscape: the system has at least two stable states. Bi-stability
of a moving BEC has been demonstrated independently of quantized
states or critical velocities25,26. Finally, unlike that for ferromagnetism,
this energy structure is periodic inV, with periodV0 (Fig. 1c). Similar
periodic swallowtail energy structures are predicted for superfluids
trapped in a lattice19.
Our superfluid system is a BEC of 23Na atoms in a ring-shaped

optical dipole trap (Fig. 2a). To induce flow, we use a blue-detuned
laser to create a rotating repulsive potential, depleting the density in
a small portion of the ring and thereby creating a weak link27. The
intensity of the laser sets the height of this potential, U. Without this
weak link, superfluid flow in the ring should be quite stable24, with
Vz

c ?V0. Changing U will change the critical angular velocities,V+
c ,

and the size of the hysteresis loop. Rotating the weak link in the
azimuthal direction at angular frequency V can drive transitions, or
phase slips, between the quantized circulation states8 (Fig. 2b).
To observe hysteresis in these phase slips, we use a two-step experi-

mental sequence (Fig. 2c). After condensing the atoms into the ring
trap, the BEC is prepared in either the n5 0 or the n5 1 circulation
state by either not rotating theweak link or by rotating it atV15 1.1Hz.
The fidelity with which this procedure generates the expected initial
state is*>97%.We then rotate theweak linkat various angular velocities,
V2, in the range 20.3 to 1.2Hz, for an additional 2 s. In step 1, U is
ramped to U1< 1.1m0, where m0 is the global chemical potential. In
step 2, U is ramped to a chosen U2. The transitions n5 0R 1 and
n5 1R 0 occur at different values of V2 and form hysteresis loops
(Fig. 3a–f). Each plot shows the measured hysteresis loop for a specific
U2 value. As U2 is increased, both Vz

c and V{
c approach V0/2; that is,

the hysteresis loop becomes smaller. The observed transitions are not
sharp, unlike those in Fig. 1b. The dominant broadening mechanism is
probably shot-to-shot atomnumber fluctuations, but the non-zero tem-
perature (,100nK)may also contribute (Supplementary Information).

Figure3gshowsthemeasuredsizeofthehysteresis loop, Vz
c {V{
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V0,

as a function of the strength of theweak link; the size of the loopmono-
tonically decreases with increasing U2/m0 until it reaches a value con-
sistentwith zero nearU2/m0< 0.75. To predict the size of the hysteresis
loop, we used two models. First we used an effective one-dimensional
model that computes the fluid velocity in the rotating frame as a func-
tion of V2. We assume that V+

c will occur when this velocity reaches
the local speed of sound28.We also simulatedour systemwith the three-
dimensional, time-dependent Gross–Pitaevskii equation (GPE). These
two approaches predict hysteresis and are consistent, suggesting that
both theoriespredict thatV+

c is determinedby the soundspeed.Despite
occurring at the sound speed, the observed excitations in theGPE simu-
lationarevortex–antivortexpairs. Perhapsmost strikingly, there is a large
discrepancy between our models and experiment (Fig. 3g).
One property of the system that our models fail to include is dis-

sipation. As another approach, we added dissipation to the GPE phe-
nomenologically29, by modifying it as follows:

iB Ly
Lt

~ 1{iLð Þ {
B2

2m
+2zV x,y,z,tð ÞzgN yj j2{m
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Here y is the BEC wavefunction, g is the interaction strength, V is the
externally applied potential (trap and weak link), N is the atom num-
ber,m is the chemical potential of the initial stationary state andL is the
dissipation parameter. With L5 0.01, a reasonable value for our ex-
periment, the hysteresis loop size decreases as shown in Fig. 3g but not
significantly by comparison with the discrepancy with experiment. In-
creasing the dissipation parameter does not improve the agreement
(Supplementary Information). However, it is clear that dissipation is
important. In fact, dissipation is essential and implicitly assumed in the
energy landscape picture described in Fig. 1: dissipation allows the
system to relax to the minima of the landscape; without dissipation,
the system cannot change its energy.
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Figure 2 | Experimental set-up and procedure. a, Schematic and in situ
images of our trap, which is formed by crossing a ring-shaped dipole trap
for radial confinement and a sheet trap for vertical confinement. b, Schematic
and in situ images of a ring rotated by a repulsive weak link. c, Two-step
experimental sequence: the height,U, of the repulsive potential and the angular
rotation rate, V, as a function of time. Step 1 sets the initial winding number
usingV1 (either 0 or 1.1Hz) andU1 (,1.1m0); step 2 probes the hysteresis with
V2 and U2 (see text).
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c and V0/2 (vertical grey
lines; Methods) and their uncertainties. g, Hysteresis loop size versus U2. The
green circles show the experimental data. The magenta line and band are
respectively the prediction and uncertainty of an effective one-dimensional
hydrodynamic model28. The open and filled cyan diamonds and their
uncertainties are the results of our GPE simulation with L5 0 and,
respectively, L5 0.01.
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Figure 5 – (a) Rotating annulus ; (b) Experimental data of the fraction of atoms N1/N with angular
momentum m = 1 (from S. Eckel et al., Nature 506, 200 (2014)). Red (upward) triangles correspond to
the recorded fraction when increasing the rotation frequency Ω from negative to positive ; blue (downward)
triangles correspond to the fraction recorded when decreasing the frequency back to negative.

23 Single particle in a rotating annulus

The Hamiltonian of a single quantum particle in a rotating annulus in the laboratory frame has the form

Hlab =
p2

2M
+W (r, t) (119)

where W is the (time-dependent) confining potential of the annulus. Its time dependence comes from the
fact that the container is not perfectly cylindrically symmetric. Yet, in order to investigate the equilibrium
physics of this problem, we have to move to the rotating frame, co-rotating with the annulus, in which the
potential becomes time independent, U(r) – and we shall neglect its imperfect cylindrical symmetry in the
following. The full Hamiltonian in the rotating frame reads

H =
p2

2M
+ U(r)− ΩLz (120)

where Lz = xpy − ypx is the angular momentum along the axis of rotation.

23.1

Show that the Hamiltonian in the rotating frame can be cast in the form

H =
(p+ qA)2

2M
+ U(r) + Ucentr(r) (121)

where q is a fictitious charge (which can be set to 1), A is a fictitious vector potential (associated with the
Coriolis force), and Ucentr is the centrifugal potential (to be specified).
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23.2

Show that the fictitious magnetic field associated with A reads B = (2MΩ/q)ez.

23.3

We recall the expression of the angular momentum, of the gradient and of the Laplacian in cylindrical
coordinates

Lz = −i~ ∂

∂φ
∇ =

∂

∂r
er +

1

r

∂

∂φ
eφ +

∂

∂z
ez ∇2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2
. (122)

Show that the Hamiltonian can be written as H = Hr,z +Hr,φ, where

Hr,z = − ~2

2M

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
+ U(r, z) + Ucentr(r)

Hr,φ =
~2

2Mr2

(
−i ∂
∂φ
− ΩMr2

~

)2

. (123)

23.4

We will solve the Schrödinger’s equation by separation of variables, namely in the form ψ(r, z, φ) ≈ χ(r, z)Φ(φ).
We ask that Hr,z χ = E⊥ χ. The “annulus condition” amounts to the fact that, in spite of the centrifugal

potential, U(r, z) confines a particle so tightly that χ(r, z) ∼
√
δ(r −R) in the ground state of motion along

r and z.
Conclude that Φ satisfies the equation

~2

2MR2

(
−i ∂
∂φ
− Ω

ωc

)2

Φ(φ) = (E − E⊥) Φ(φ) (124)

where ωc = ~/(MR2).

23.5

The solution for the above Schrödinger’s equation has the form Φ(φ) = eimφ/
√

2π with m ∈ Z. Calculate
the corresponding eigenvalue E||(m; Ω) = E −E⊥. Plot the eigenvalues as a function of Ω for various values
of m, and establish the m value which corresponds to the ground state.

23.6

The tangential velocity associated with the Φ(φ) = |Φ|eiϕ(φ) wavefunction is vs = ~
M∇ϕ. Show that the

circulation κ of the velocity along the annulus is quantized in units of h/M . Plot the ground-state tangential
velocity and the corresponding angular velocity as a function of Ω. Does it ever happen that the particle
rotates faster than the ring ?

24 Many-body problem : metastable superflow

We now move to the many-body problem for a system of N identical bosons interacting with a contact
repulsive potential (g > 0), with Hamiltonian

Ĥ =

∫
d3r ψ̂†(r) [Hrz +Hrφ] ψ̂(r) +

g

2

∫
d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) . (125)

We suppose that the particles are all in the ground state corresponding to the motion along r and z, so that

ψ̂(r) ≈ χ(r, z)
∑
m

eimφ√
2π

âm . (126)
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24.1

Show that the Hamiltonian written in terms of the âm, â
†
m operators takes the form

Ĥ = E⊥N +
∑
m

~ωc
2

(m− Ω/ωc)
2â†mâm +

U

2

∑
m,m′,p

a†m+pa
†
m′−pâm′ âm (127)

where U is a coefficient to be determined.

24.2

Assuming that U � ~ωc, we consider that the interaction can only connect two angular momentum states
m,m + 1 which are brought into degeneracy by tuning Ω. Without loss of generality we choose m = 0, 1.
By restricting all sums over m to these two values, show that the Hamiltonian reduces to a function of the
occupation numbers n̂0 = â†0â0 and n̂1 = â†1â1.

24.3

The Hamiltonian eigenstates are therefore Fock states of the kind |N0, N1〉 (where all other m states are
empty). In the following we set E⊥ = 0. Show that the corresponding eigenvalue takes the form E =
Ekin + Epot with

Ekin = N
~ωc
2

(
1− 2Ω

ωc

)
f1 + C Epot = UN2(1− f1)f1 + C ′ (128)

where f1 = N1/N is the fraction of particles in the m = 1 state, and C and C ′ are two constants to be
determined.

24.4

Plot E = E(f1; Ω) as a function of f1 for Ω < ωc/2, Ω = ωc/2 and Ω > ωc/2. What happens to the
equilibrium value of f1 upon crossing the ωc/2 angular velocity ?

24.5

Imagine now an experiment in which the gas is first prepared in a perfect condensate with m = 0 and Ω = 0,
and then the annulus is set gradually into rotation. What happens to f1 if Ω is not varied infinitely slowly ?
Similarly you can imagine to prepare the gas in the ground state at Ω = ωc, and then slow down gradually
the rotation. The results of such an experiment (done on ultracold Rb atoms in an optical ring potential)
are shown in Fig. ??(b). Deduce that the motion of the gas can exhibit an effective decoupling with respect
to the walls of its container, in the form of a persistent state of rest, or of a persistent superflow.
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TD7bis : Fermions – coherence properties and pairing

25 Quantum coherence in a fermion gas

We here consider the correlation function of first and second order in a fermion gas.

25.1

Considering an ideal spinless Fermi gas in d = 3, we want to calculate the one-body density matrix (or
first-order correlation function)

g(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 . (129)

Using the momentum representation of the field operators

ψ̂(r) =
1√
V

∑
k

eik·r ĉk (130)

and considering that, at T = 0, the Fermi gas occupies a Fermi sphere of radius kF in momentum space,
show that g(1)(r, r′) reads

g(1)(r, r′) =
1

2π2R2

[
sin(kFR)

R
− kF cos(kFR)

]
(131)

where R = |r − r′|. Sketch the behavior of g(1) for R → ∞ and comment on the physical meaning of this
limit. Taking the opposite limit g(1)(R→ 0) show that kF = (6π2n)1/3 where n = N/V is the density of the
spinless Fermi gas.

25.2

We consider a generic S = 1/2 Fermi gas, and we introduce the pair correlation function

g(2)(r, r′) = V 〈ψ̂†↓(r)ψ̂†↑(r)ψ̂↑(r
′)ψ̂↓(r

′)〉 . (132)

Using the momentum representation of the field operators, and considering a system in which the momentum
is conserved, show that, for |r − r′| → ∞

g(2)(r, r′) ≈ 1

V

∑
k

〈Ŝ†kŜk〉 + (rapidly oscillating terms) (133)

where we have introduced the operator

Ŝ†k =
1√
2

(
ĉ†k↑ĉ

†
−k↓ − ĉ

†
k↓ĉ
†
−k↑

)
. (134)

25.3

Consider the two-particle wavefunction |ψ〉 = Ŝ†k|0〉. Remembering that, for fermions

ψ(r, σ; r′, σ) =
1√
2

(〈r, σ; r′, σ′| − 〈r′, σ′; r, σ|) |ψ〉 (135)

show that ψ(r, σ; r′, σ) describes two particles with opposite momenta and with spins forming a singlet state
(| ↑↓〉− | ↓↑〉)/

√
2 (Cooper pair). Conclude on the relationship between the pair correlation function and the

density of Cooper pairs.
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Figure 6 – Emission (left) and absorption (right) of a phonon by an electron interacting with the ion lattice.

25.4

We return to the ideal Fermi gas, this time with spin. Show that, for this system

g(2)(r, r′) = V g
(1)
↑ (r, r′)g(1)↓ (r, r′) . (136)

How does this function decay for |r − r′| → ∞ ? Conclude on the density of pairs in the ideal Fermi gas.

26 Quantum-mechanical description of electron-electron interac-
tions mediated by phonons

Consider the electron gas in a metal. A minimal model describing both the (non-interacting) electrons, the
phonons of the ion lattice, and their interaction, is the following Hamiltonian

Ĥ = Ĥph + Ĥel + Ĥel−ph (137)

where

Ĥph =
∑
q

~ωq b̂
†
q b̂q

Ĥel =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ

Ĥel−ph = γ
∑
k,q,σ

(
b̂†q ĉ

†
k−q,σ ĉk,σ + h.c.

)
(138)

The last term describes the elementary quantum mechanical processes of interaction between an electron and
the ion lattice : an electron emits or aborbs a phonon from the lattice, thereby losing/gaining a momentum
~q. A pictorial way to represent this process is the one shown in Fig. ??.
We imagine that the initial configuration of the system consists of two electrons in the anti-symmetrized state
|ψ(0)〉 = |k, σ;k′, σ′〉 = ĉ†k,σ ĉ

†
k′,σ′ |0〉, moving in the vacuum of phonons. This state is clearly an eigenstate of

Ĥph + Ĥel. Treating Ĥel−ph as a perturbation, it introduces a finite matrix element between the initial state
and a state |ψ(q)〉 = |k − q, σ;k′ + q, σ′〉. Within second-order perturbation theory, this matrix element
reads

〈ψ(q)|Ĥ|ψ(0)〉 ≈ 1

2

∑
n

(
1

E0 − En
+

1

Eq − En

)
〈ψ(q)|Ĥel−ph|ψn〉〈ψn|Ĥel−ph|ψ(0)〉 (139)

where |ψn〉 are intermediate eigenstates of Ĥph + Ĥel different from (and non-degenerate with) |ψ(q)〉 and
|ψ(0)〉. Moreover E0 = εk + εk′ and Eq = εk−q + εk′+q.
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26.1

Identify the intermediate states |ψn〉 leading to non vanishing contributions in the sum of Eq. (??) , and
calculate them. Show that

〈ψ(q)|Ĥel−ph|ψ(0)〉 = −γ2
[

~ωq

(~ωq)2 − (εk−q − εk)2
+

~ωq

(~ωq)2 − (εk′+q − εk′)2

]
(140)

Can you relate this matrix element to the process of exchange of (virtual) phonons between the electrons ?
Why are these phonons virtual and not real ?

26.2

Write the reduced 2× 2 Hamiltonian on the Hilbert space spanned by |ψ(q)〉 and |ψ(0)〉 (namely the matrix
〈ψ|H|ψ′〉 where |ψ〉, |ψ′〉 = |ψ(q)〉, |ψ(0)〉). Discuss why the maximum “mixing” between these two states is
achieved when q = 2k and k′ = −k. Show that in this case the matrix element, Eq. (??), takes a negative
value −Γ, with Γ > 0 to be determined.

26.3

Diagonalising the reduced Hamiltonian described above, show that the minimum energy state in this subspace
is

|ψ0〉 =
1√
2

(
ĉ†k,σ ĉ

†
−k,σ′ − ĉ†k,σ′ ĉ

†
−k,σ

)
|0〉 (141)

having energy 2εk − Γ. For what values of σ and σ′ is this state non-zero ? Comparing with the result of
Exercise 1.3, what can you conclude on the nature of the |ψ0〉 state ? In conclusion, what is the effect of the
exchange of phonons between two electrons ? Based on the results of Exercise 1.2, how do you expect it to
affect the long-distance behavior of the pair correlation function g(2) ?
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TD8 : Anderson’s pseudo-spin model
and BCS variational wavefunction

In this TD we will explore a very insightful approach to the BCS Hamiltonian provided by P. W. Anderson
(1958). Recasting the BCS Hamiltonian in terms of pseudo-spin variables, we will be able to write down the
ground state of BCS theory in a very transparent and suggestive way.
NOTE : the angle ϑk that appears in the following is not the same as the angle θk discussed in the lectures
on BCS theory. We shall establish the relationship between the two later.

27 Pair operators and spin operators

Consider the pair operators

b̂k = ĉ−k↓ĉk↑ b̂†k = ĉ†k↑ĉ
†
−k↓ (142)

27.1

Show that [
b̂k, b̂q

]
=
[
b̂†k, b̂

†
q

]
= 0 (143)[

b̂k, b̂
†
q

]
= (1− nk,↑ − n−k,↓) δq,k (144)

Moreover, justify that (b†k)2 = (bk)2 = 0.

27.2

Introducing the operators (Anderson’s pseudospins)

Ŝzk =
1

2
(n̂k,↑ + n̂−k,↓ − 1)

Ŝ+
k = b̂†k
Ŝ−k = b̂k (145)

show that they satisfy the commutation relations of angular momentum[
Ŝ+
k , Ŝ

−
k

]
= 2Ŝzk

[
Ŝ+
k , Ŝ

z
k

]
= −Ŝ+

k (146)

Given that (Ŝ+
k )2 = (Ŝ−k )2 = 0, what is the spin length S ?

28 BCS Hamiltonian as a spin Hamiltonian

The BCS Hamiltonian for (quasi-)electrons interacting via an effective phonon-mediated interaction reads

Ĥ − µN̂ =
∑
k

(εk − µ) (n̂k,↑ + n̂k,↓)−
V0
V
∑
k,q

′
b̂†kb̂q . (147)

Here V is the volume, V0 is the strength of the interaction, and the sum
∑

k,q
′

runs over momenta k and q
such that |εk(q) − µ| ≤ εc, where εc ≈ ~ωD is the characteristic energy cutoff of the interaction.
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28.1

Rewrite the above Hamiltonian in terms of the pseudo-spin operators. You should find

Ĥ − µN̂ =
∑
k

[
2 (εk − µ)− V0

V ϑ (εc − |εk − µ|)
]
Ŝzk −

V0
V
∑
k 6=q

′ (
ŜxkŜ

x
q + ŜykŜ

y
q

)
+ const. (148)

It might be useful to remember the following relationships

Ŝ+
k Ŝ
−
k =

1

2
+ Ŝzk

1

2

(
Ŝ+
k Ŝ
−
q + Ŝ+

q Ŝ
−
k

)
= ŜxkŜ

x
q + ŜykŜ

y
q . (149)

Now, think of k-space as a lattice (it is discretized after all, due to the boundary conditions), and put a
S = 1/2 (pseudo-)spin on each lattice site. The above Hamiltonian effectively describes a system of interacting
spins on a lattice. Taking the spin at lattice site k, which are the sites that this spin is interacting with ?
And what is the value of the local magnetic field ?

28.2

We take for the moment V0 = 0. Write down the ground state for each pseudo-spin Ŝk. If you report the
k points on the energy axis εk (a simply sketch is sufficient) together with the associated pseudo-spin, can
you find a “domain wall” at a given energy in the spin configuration ? And can you anticipate qualitatively
what happens when the interaction is turned on ?

29 BCS variational wavefunction

We now look for the ground state of the interacting system (V0 6= 0) in a factorized form, namely in the
form

|Ψ0〉 =
∏
k

|ϑk, φk〉 (150)

where
|ϑ, φ〉 = cos(ϑ/2) | ↑ 〉+ sin(ϑ/2) eiφ | ↓ 〉 (151)

29.1

Show that the above wavefunction is equivalent to the so-called BCS wavefunction

|Ψ0〉 =
∏
k

(
uk + vk b̂

†
k

)
|0〉 (152)

where the coefficients uk and vk are to be identified. (Suggestion : write the vacuum |0〉 in terms of the
pseudo-spin states).

29.2

Show that the expectation value of the spin operator Ŝ on the |ϑ, φ〉 state behaves like a classical spin of
length S = 1/2 :

〈ϑ, φ|Ŝ|ϑ, φ〉 =
1

2
(cosφ sinϑ, sinφ sinϑ, cosϑ) (153)

and, moreover

〈ϑk, φk|〈ϑq, φq|
(
ŜxkŜ

x
q + ŜykŜ

y
q

)
|ϑk, φk〉|ϑq, φq〉 =

1

4
cos (φk − φq) sinϑk sinϑq (154)

Show that the variational energy takes the form

〈Ψ0|Ĥ − µN̂ |Ψ0〉 =
∑
k

[
εk − µ−

V0
2V ϑ (εc − |εk − µ|)

]
cosϑk −

V0
4V

∑
k 6=q

′
cos (φk − φq) sinϑk sinϑq (155)

Given that V0 > 0 and ϑk ∈ [0, π], what value of the φk angles minimizes the energy ?
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29.3

Minimize the variational energy with respect to ϑk for |εk − µ| < εc, to find the condition(
εk − µ−

V0
2V

)
sinϑk = − V0

2V
∑
q 6=k

′
sinϑq cosϑk (156)

This condition defines a set of coupled equations.
Making an error of order O(1/V), we can neglect the term V0/(2V) on the left-hand side and the add the
term with q = k in the sum on the right-hand side.
Introducing then the symbol

∆ =
V0
2V

∑
q

′
sinϑq (157)

rewrite Eq. (??) in terms of ∆, εk, µ and ϑk.

29.4

Solve for ϑk, to find

sinϑk =
∆

Ek
cosϑk =

µ− εk
Ek

Ek =
√

∆2 + (εk − µ)2 (158)

What is the pseudo-spin orientation at the Fermi energy εF = µ ? Draw schematically how the pseudo-spin
orientation evolve when the energy goes from µ− εc to µ+ εc.

29.5

From Eq. (??) recover the (implicit) gap equation for |∆| as seen in the lecture.

30 Average particle number

The BCS wavefunction, Eq. (??), does not contain a well defined particle number. In particular, |Ψ0〉 contains
all possible even particle numbers from 0 to∞. But let us have a look at how well defined the average particle
number is

30.1

Express the average particle number

〈N̂〉 =
∑
k

〈n̂k,↑ + n̂k,↓〉 (159)

and the average square number

〈N̂2〉 =
∑
k,q

〈(n̂k,↑ + n̂k,↓) (n̂q,↑ + n̂q,↓)〉 (160)

in terms of the ϑk angles.

30.2

Show that

〈δ2N̂〉 =
∑
k

(
1− 〈cosϑk〉2

)
∼ O(N) (161)

How can one conclude that the sum is O(N) ? Which k states are contributing to it ?
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30.3

Conclude on the importance of the relative particle-number fluctuations.

31 Angle ϑk vs. angle θk

Consider the angle θk given in the lectures on BCS theory (such that uk = cos(θk/2), vk = sin(θk/2)) : what
is the relationship with the angle ϑk introduced in this exercise ?
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TD9 : Superconductors in a magnetic field

Useful formulae
— Gradient in cylindrical coordinates (on the cylinder surface) :

∇ =
1

R

∂

∂θ
êθ +

∂

∂z
êz. (162)

— Closest integer n to a real number a

n = int(a+ sign(a) 1/2). (163)

— For a closed path γ encircling the surface Sγ∮
γ

A · dl =

∫
Sγ

B · n̂ dSγ = Φγ(B) = flux of B through Sγ (164)

32 Flux quantization in a superconducting cylinder

In this exercise we wish to describe the fundamental phenomenon of quantization of the magnetic flux which
threads a superconducting cylinder. For this purpose, we will start with a description of the problem of a
single electron confined in a cylinder of radius R, height L, immersed in a uniform magnetic fieldB = (0, 0, B)
parallel to the axis of the cylinder (see Fig. ??). We will assume periodic boundary conditions along the z
axis. The cross section of the cylinder forms a ring, whose thickness will be neglected for the moment.

Figure 7 –

The Hamiltonian of an electron in a magnetic field reads

H =
(−i~∇ + eA)2

2m
(165)

We take for the vector potential the symmetric gauge A = B
2 (−y, x, 0). Passing to cylindrical coordinates

(r, θ, z), the vector potential on the cylindrical surface reads A = (BR/2)êθ.
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32.1

Justify that the eigenvectors of the Hamiltonian have the form

ψn,kz (θ, z) = N exp(inθ) exp(ikzz) (166)

where N is a normalization constant to be determined, and n is an integer.
Show that the eigenvalues of the Hamiltonian take the form

En,kz =
~2

2mR2

(
n+

Φ

Φ̃0

)2

+
~2k2z
2m

(167)

where Φ is the flux of the magnetic field through the cylinder, and Φ̃0 = h/e is the so-called (normal) flux
quantum.

32.2

Find the ground state quantum numbers n0 and kz,0. Show that the ground-state energy is a periodic

function of Φ, with period Φ̃0. (Suggestion : look at the mathematical appendix !).

32.3

The current density associated with a wavefunction ψ reads

j = − ~e
2mi

(ψ∗∇ψ − ψ∇ψ∗)− e2

m
|ψ|2A . (168)

Calculate the current density associated with the ground state ψ0.
Show that the ground state carries a persistent electrical current, and that this current is a periodic function
of the applied flux Φ with period Φ̃0. Considering that the cylinder is equivalent to a solenoid, for which
values of Φ/Φ̃0 is the magnetic field generated by the solenoid parallel/antiparallel to the applied field B ?

32.4

Persistent currents in normal metals can only be observed in very special conditions. Cite at least two reasons
for the decay of such currents in a normal metal. If l is the mean free path of an electron in a metal, how
large does l need to be for the persistent current to be observable ?

On the other hand, as you know, persistent currents are quite stable in superconductors. In the following
we will assume that the Cooper pairs appearing in a superconductor can be described by a macroscopic
wavefunction Ψ(r) (analogous to that of condensed bosons) which gives the amplitude of finding the whole
condensate of Cooper pairs at point r.
Moreover we will now consider a finite thickness for the cylinder, and we will assume that the superconductor
develops persistent currents on the inner and outer surface of the cylinder, which screen completely the
magnetic field in the bulk of the cylinder (Meissner effect). Hence the bulk of the cylinder has no magnetic
field (and, consequently, zero current) – see Fig. ??.

32.5

We will assume that the macroscopic wavefunction satisfies a similar equation to Schrödinger’s equation
for single particles in a magnetic field (the so-called Ginzburg-Landau equation), but this time the particle
charge is 2e (because we have Cooper pairs). In the boundary regions, in which the magnetic field penetrates
into the superconductor, we will use the results we found for the ground state of a single electron confined
to a cylinder and immersed in a magnetic field. There the macroscopic wavefunction will take the form

Ψ(r, z, θ) = Ψr(r) Ψz(z)
1√
2π

exp(inθ) (169)
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Figure 8 – Cross section of the superconducting cylinder.

Justify that, in the ground state

n = n0(Φ) = −int

(
Φ

Φ0
+ sign(Φ)

1

2

)
(170)

where Φ0 = h/(2e) is the so-called superconducting flux quantum.

32.6

Going to the bulk region with zero magnetic field and current, by continuity with the boundary region we
have to assume that the macroscopic wavefunction reads :

Ψ(r, z, θ) = A 1√
2π

exp(inθ) (171)

where A is a constant. The current carried by the macroscopic wavefunction reads

j = −~(2e)

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)− (2e)2

m
|Ψ|2A . (172)

Imposing that j = 0 all along a loop γ entirely contained in the bulk region (see Fig. 3), demonstrate that
the magnetic flux threading the loop obeys the quantization condition :

Φγ = −n0(Φ)Φ0 . (173)

32.7

Plot the magnetic flux Φγ as a function of Φ/Φ0, and compare it with the experimental results (first obtained
by Deaver/Fairbank and Doll/Näbauer in 1961) for the flux trapped in the hollow of a superconducting
cylinder – Fig. ??. What is the analogous phenomenon occurring in He4 ? Which aspect do the two systems
share, which is responsible for both phenomena ?

33 Superconducting quantum interference device (SQUID)

We are used by now to the idea that the Cooper pairs in a superconductor can be described via a macroscopic
wavefunction, Ψ(r), such that the (super-)current flowing in a superconductor can be obtained from it as in
Eq. (??).
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Figure 9 – Flux quantization experiment (from W. L. Goodman et al., Phys. Rev. B 4, 1530 (1971)).
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Figure 10 – A superconducting Josephson junction.

33.1

Using the amplitude/phase decomposition, Ψ(r) = |Ψ(r)|eiφ(r), express j as a function of φ(r). Show that
if we introduce the so-called gauge-invariant phase

θ(r) = φ(r) +
2e

~

∫ r

r0

A · dl (174)

then, assuming Ψ(r) = |Ψ(r)|eiθ(r), we obtain the same current if we eliminate the term proportional to A
in Eq. (??). The line integral of the vector potential is calculated along an arbitrary line starting from the
(arbitrary) point r0 – do not worry, it will become better defined later !

33.2

Let us consider now a superconducting Josephson junction (Fig. ??), formed by two superconducting leads
separated by a thin barrier (typically a layer of insulator). It is the exact superconducting analog of the
Josephson junction we explored in the case of bosons in TD no. 5. There we saw that a tunneling current I =
Ic sin ∆φ – going, say, from left (L) to right (R) – crosses the junction when a phase difference ∆φ = φR−φL
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is present between the two macroscopic wavefunctions ΨL(R) = |ΨL(R)|eiφL(R) describing the superconductors
on both sides of the junction.
When a vector potentialA is present in the system, give the expression of the gauge-invariant phase difference
θB − θA between two points A and B on opposite sides of the junction.
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(a) (b)

Figure 11 – (a) Circuit scheme of a SQUID (all the circuit elements are superconducting) ; (b) an actual SQUID
(the Josephson junctions are defined by the two discontinuities in the square loop).

33.3

We now consider the circuit geometry in Fig. ??(a), defining a so-called superconducting quantum interfe-
rence device (SQUID) : two Josephson junctions are present in a superconducting loop, which is threaded
with a magnetic-field flux Φ.
Using the result of the previous question for the expression of θB − θA – this time calculated for the two
points indicated in Fig. ??(a)) – establish the relationship between the two phase differences ∆φ and ∆φ′

across the two junctions.
Note : the line integral defining the gauge-invariant phase difference has to be taken along a circuit which
runs inside the superconductor.

U/U0¼ 1/2) approaches zero reconfirms the uniformity of
the two junctions in each SQUID and suggests negligible
loop inductance.22 It is reported23 that symmetry in the junc-
tion parameters would reduce the influence of flux noise on
relaxation time T1. Interestingly, we note that the amplitude
of IC modulation decreases with increasing field. This can be
explained by taking into account the effect of field-induced
surface current.12,13 The surface current produces an effec-
tive magnetic field perpendicular to the tunneling current
and hence suppresses critical current. For a single overlap-
type Josephson junction under an external magnetic field
perpendicular to the electrode plane, the critical current as
a function of the magnetic field is calculated to be13

IC;sjðBÞ¼I0
C;sg

!!Ð 1
0 dx
Ð 1

0 dycos½aBsinycoshðLx=WÞ=sinhðL=WÞ%
!!,

where B is magnetic field strength, I0
C;sj is the zero-field junc-

tion critical current, a is a proportionality constant, L is the
length of overlap of the two electrodes, and W is the width of
the junction. The integration part describes the effect of the

induced surface current. For a SQUID, I0
C;sj is multiplied by a

cosine field dependent term, and the field dependence of the
critical current becomes

IC;SQðBÞ ¼ I0
C;SQ

!!!!cos
pU
U0

# $ð1

0

dx

ð1

0

dy

&cos½aBsin y cos hðLx=WÞ=sin hðL=WÞ%
!!!!; (3)

where I0
C;SQ is the zero-field critical current of the SQUID. In

our device, L' 0.5 lm2, W' 6 lm2, and the only unknown
parameter, a, is left as a fitting parameter. The result, as

shown in Fig. 2, suggests that suppressed amplitude at high
fields is indeed due to field induced surface current. Further,

experimental zero field I0
C;SQ' 45 nA is small compared to

the Ambegaokar-Baratoff value24 of IAB
C;SQ¼ 161 nA, with the

ratio between them (c¼ I0
C;SQ/IAB

C;SQ) being 0.28. The fact that

I0
C;SQ < IAB

C;SQ is attributed to fluctuations in phase difference

/ across the junction. The fluctuations are caused by charge-
phase duality and non-negligible charging energy.25–27

To demonstrate magnetic field tuning at the lowest two
levels h!01, Fig. 3 shows how !01 match well the scaled
IC(U/U0) curve shown in Fig. 2. In Fig. 3, critical current is

scaled as gðICÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!h
ce ECIC

q
( EC

' (
=h in accordance with

Eq. (1). In this scaling, a numeric factor c¼ 0.28 is added to
account for IC being equal to cIAB (see above). It is worth
noting that the close match shown in Fig. 3 suggests that
level spacing is affected by induced surface current through
the modulation of IC. This has never previously been
reported. It also allows us better tuning of energy-level states
by manipulation in a larger magnetic flux region.

In conclusion, this study demonstrates a simple
approach for accurate determination of quantum states and
the capacitance of SQUIDs with EJ>EC. It is determined
that the specific capacitance value of junctions with Al2O3

tunnel barrier is 35 fF/lm2, and the error should be within
69%. The transition between the lowest two levels manifests
itself in a current peak on top of the Cooper pair current of
the probe Josephson junction, as explained by the P(E)
theory. The peak position corresponds well with the mag-
netic field dependence of SQUID critical current. The effect
of magnetic field induced surface current on the critical
current of SQUIDs is examined, and this effect is found to

TABLE I. The parameters used in I-V calculation.

U =U0 EJ/h (SQUID) EC/h (SQUID) RJ (SQUID) EJ,p/h (Probe) EC,p/h (Probe) RL T

(0.041 86.9 GHz 0.162 GHz 40 kX 3.05 GHz 3.4 GHz 0.5 kX 0.7 K

(0.197 71.4 GHz 0.162 GHz 40 kX 3.05 GHz 3.4 GHz 0.5 kX 0.7 K

FIG. 2. Measured critical current IC of a SQUID as a function of U/U0.
Open circles are the measured data and solid curve is a best fit using Eq. (3)
with a' 385 T(1. From the fitting, magnetic field modulation periodicity is
determined to be 3.3 Gs.

FIG. 3. Close matching of level spacing !01 and scaled critical current g(IC).
Solid squares are measured !01, and open circles are scaled critical current
data. The red solid curve is a visual guide.

232602-3 Yeh et al. Appl. Phys. Lett. 101, 232602 (2012)

Figure 1 shows I-V curves measured in several magnetic
fields. We notice that each curve has two peaks. When the
magnetic field is increased, the position V1 of the first peak
(i.e., the peak close to V¼ 0) does not change while the sec-
ond peak position, V2, oscillates periodically. The appear-
ance of the second peak is explained in the context of the
theory by Ingold and Nazarov15 for tunneling of charges in a
small Josephson junction in an electromagnetic environment.
Based on that theory, the tunneling current for a small probe
Josephson junction (EC,p" EJ,p) is15

IðVÞ ¼ peEJ;p
2

!h
½Pð2eVÞ & Pð&2eVÞ'; (2)

where P(E) is the probability for a tunneling Cooper pair to
exchange energy E with the environment. For E> 0, the pho-
ton emitted by relaxation of the Cooper pair after tunneling
is absorbed by the environment. Conversely, for E< 0 a pho-
ton from the environment is absorbed by the Cooper pair,
similar to photon-assisted tunneling. At low temperatures,
the environment is in its ground state (P(&2 eV)( 0 for
V> 0), meaning the I-V characteristic of Eq. (2) directly
reveals the property of P(2 eV). In an environment com-
prised of SQUIDs, P(E) has peaks at E¼ h!0n, where h!0n is
the transition energy between the nth and 0th (ground) state
of SQUIDs (see derivations in Ref. 15). Hence, from the I-V
curves of the probe Josephson junction, the energy level
spacing in the SQUIDs can be evaluated.16 The second peak
position V2 should relate to !01 as 2 eV2¼ h!01. At zero
field, V2 is 22.1 lV, corresponding to !01¼ 10.7 GHz.
According to Eq. (1), h!01 ) E1 & E0 (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC
p

& EC. If
we use EJ/h¼ 80 GHz (as per the Ambegaokar-Baratoff rela-
tion), we obtain EC/h¼ 0.185 GHz for the SQUID. From the
obtained C and the junction area observed from SEM
images, the specific capacitance CS (i.e., the capacitance per
unit area) for Al2O3 is 35 fF/lm2.17,18 The ratio EJ/EC¼ 433
" 1 fulfills the criterion for the Hamiltonian, confirming the
validity of Eq. (1). The error bar in the V2 peak position is

estimated to be 63.8%, and the error bar in EJ to be less
than 61%. Taking into account all these factors, the error in
the measurement of specific capacitance should be less than
69%.

This means the approach allows for quite accurate deter-
mination of junction capacitance. Using CS¼ 35 fF/lm2, the
charging energy of the probe junction is determined to be
EC,p/h¼ 3.0 GHz. The coupling energy is EJ,p/h¼ 3.8 GHz,
as determined from junction resistance.

Absence of current peaks for transitions between high n
levels is attributed to a diminishingly small pre-factor. For a
single mode environment with infinite quality factor, the
pre-factor is qn exp(&q)/n!, where q¼ (e2/2Ccircuit)/h!01
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and Ccircuit is the sum capacitance of the probe junction in
parallel with environment capacitance. For devices with
small q values, the current peak decreases fast with increas-
ing n. In our case q¼ 1.7* 10&2 and the ratio between the
amplitude of the 3rd peak and that of the 2nd peak is
8.6* 10&3. Due to the large Ccircuit value, the 3rd and high-
order peaks are hidden by the tail of the Cooper current
peak. To understand the Cooper current peak, the P(E)
theory is applied to calculate I-V characteristics using the
equivalent circuit17 (Fig. 1(b)). With the parameters listed in
Table I, one can obtain good fits (Fig. 1(c)), and the parame-
ters are in reasonable agreement (within +610%) with the
device parameters reported above. However, we found that
a temperature value higher than the measured bath tempera-
ture is needed. This is probably due to unwanted external
excitations in the measurement system and/or a higher
actual electron temperature.19,20

The IC of one SQUID as a function of magnetic flux is
shown in Fig. 2. Quantitatively, the junction asymmetry is
jIC1 & IC2j=ðIC1 þ IC2Þ ¼ ICðU=U0 ¼ 1=2Þ=ICðU=U0 ¼ 0Þ,21

where IC1 and IC2 are the critical currents of the two constitu-
ent junctions, and U0 and U are the flux quantum and the
flux threading the SQUID loop, respectively. From the
measured data, the junction asymmetry is determined to be
about 0.5%. Further, the fact that minimum IC (appear at

FIG. 1. (a) Measured I-V curves of the probe
Josephson junction in several U/U0. Inset: SEM
image of the device. The scale bar is 5 lm. (b) The
circuit used for I-V calculation. (c) I-V data for U/
U0¼&0.041 (red solid squares and red curve) and
&0.197 (black open circles and black curve). The
scattered symbols indicate the experimental data,
and the curves are fittings calculated using Eq. (2).
The red I-V curves are shifted by 0.1 nA for clarity.

232602-2 Yeh et al. Appl. Phys. Lett. 101, 232602 (2012)

Figure 12 – Critical current of a micro-SQUID (from S.-S. Yeh et al., Appl. Phys. Lett. 101, 232602 (2012)).
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33.4

By using Kirchhoff’s law for the current, conclude that the outgoing (super-)current in the circuit takes the
form

Iout(Φ) = 2Ic cos

(
πΦ

Φ0

)
sin(θB − θA) . (175)

33.5

Fig. ?? shows the measured critical current through a SQUID : can you understand this result (at least
partially) from the previous formula ?
This result shows that a SQUID is sensitive to magnetic fluxes of the order of Φ0. If you have a macroscopic
superconducting loop of 1mm2, what sensitivity can you achieve on the measurement of a magnetic field ?

Note : in fact, SQUIDs can achieve a sensitivity of 1fT (10−15 T), which is the order of magnitude of the
magnetic fields associated e.g. with the activity of the human brain. SQUID magnetometers are among the
most sensitive ones, used broadly in many fields of research – among them, the study of brain activity.
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