Midterm exam – March 6th, 2022 (2h)

1 Short questions

These questions only require a short answer!

Q1. Be $\hat{a}_1, \hat{a}_1^{\dagger}$ and $\hat{a}_2, \hat{a}_2^{\dagger}$ the destruction and creation operators in two single-particle states 1 and 2. Is $\hat{a}_1^{\dagger}\hat{a}_2\hat{a}_2^{\dagger}\hat{a}_1$ a Hermitian operator? Rewrite it in terms of the number operators $\hat{n}_{1(2)} = \hat{a}_{1(2)}^{\dagger}\hat{a}_{1(2)}$ in the case in which $\hat{a}, \hat{a}^{\dagger}$ are bosonic operators, and in the case in which they are fermionic operators.

Solution: Yes, $\hat{a}_{1}^{\dagger}\hat{a}_{2}\hat{a}_{2}^{\dagger}\hat{a}_{1}$ is Hermitian as it is of the form $\hat{A}\hat{A}^{\dagger}$ with $\hat{A}=\hat{a}_{1}^{\dagger}\hat{a}_{2}$. Using (anti)commutation relations for bosons (fermions) one finds that $\hat{a}_{1}^{\dagger}\hat{a}_{2}\hat{a}_{2}^{\dagger}\hat{a}_{1}=\hat{n}_{1}(\pm\hat{n}_{2}+1)$ with + for bosons and - for fermions.

Q2. Consider two S = 1/2 particles in the following state (in first quantization):

$$\phi(x_1)\phi(x_2)\frac{|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle}{\sqrt{2}}$$

where $\phi(x)$ is a single-particle wavefunction. Is it a legitimate state for two identical fermions? Write the state in second quantization using the field operators $\hat{c}_{\phi,\uparrow}^{\dagger}$ and $\hat{c}_{\phi,\downarrow}^{\dagger}$ creating a fermion in the state ϕ with spin \uparrow and \downarrow respectively.

Solution:

$$|\Psi\rangle = \hat{c}_{\phi,\uparrow}^{\dagger} \hat{c}_{\phi,\downarrow}^{\dagger} |0\rangle$$

Q3. Rewrite the state above by using the field operators $\hat{\psi}_{\uparrow}^{\dagger}(x)$, $\hat{\psi}_{\downarrow}^{\dagger}(x)$ creating particles with spin \uparrow and \downarrow at position x.

Solution:

$$|\Psi\rangle = \int dx_1 dx_2 \ \phi(x_1)\phi(x_2) \ \hat{\psi}^{\dagger}_{\uparrow}(x_1)\hat{\psi}^{\dagger}_{\downarrow}(x_2) \ |0\rangle$$

Q4. What are the assumptions underlying Bogolyubov theory for the interacting Bose gas?

Solution: One must assume that the gas is nearly 100% condensed, so that the fraction of the particles outside of the condensate can be treated as a perturbation to the fraction of the condensed particles. In the treatment that we gave in the lectures we also assumed that the atoms in the condensate are described via a macroscopic wavefunction $\Psi_0(\mathbf{r})$ such that the field operator writes as $\hat{\psi}(\mathbf{r}) = \Psi_0(\mathbf{r}) + \delta \hat{\psi}(\mathbf{r})$, with $\delta \hat{\psi}$ treated as a "perturbation" with respect to $\Psi_0(\mathbf{r})$.

Q5. In a rotating Bose-Einstein condensate with total vorticity of 4, order the following states depending on their energy (neglecting vortex-vortex interactions): a) two vortices with vorticity 2 each; b) three vortices with vorticity 1, 1, and 2; c) two vortices with vorticity 3 and 1. Is there a vortex state with even lower energy?

Solution: The energy of each vortex goes as the *square* of its vorticity, so that the energies are ordered as $E_b < E_a < E_c$. A state with even lower energy has 4 vortices with vorticity 1 each.

Q6. Consider the one-body density matrix $g^{(1)}(\mathbf{r}, \mathbf{r}') = \langle \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}') \rangle$ for a system of identical bosons. What is the value of this function for $|\mathbf{r} - \mathbf{r}'| \to 0$? And what is its behavior for $|\mathbf{r} - \mathbf{r}'| \to \infty$ in the absence of Bose condensation?

Solution: $g^{(1)}(\boldsymbol{r},\boldsymbol{r})=n$ (average density). $g^{(1)}(\boldsymbol{r},\boldsymbol{r}')$ decays to zero when $|\boldsymbol{r}-\boldsymbol{r}'|\to\infty$ in the absence of condensation.

2 Hydrogen atom as a composite boson

Let us consider two types of fermions, electrons and protons, with associated quantum fields $\hat{\psi}_e(\mathbf{r})$, $\hat{\psi}_e^{\dagger}(\mathbf{r})$ and $\hat{\psi}_p(\mathbf{r})$, $\hat{\psi}_p^{\dagger}(\mathbf{r})$, respectively. In the following we shall neglect the fact that electrons and protons carry a spin, which is not relevant for the present discussion.

2.1

For identical fermions we have the anticommutation relations

$$\{\hat{\psi}_e(\mathbf{r}), \hat{\psi}_e^{\dagger}(\mathbf{r}')\} = \delta(\mathbf{r} - \mathbf{r}') \qquad \{\hat{\psi}_e(\mathbf{r}), \hat{\psi}_e(\mathbf{r}')\} = 0$$

and the same holds for the protons $(e \to p)$. Justify why instead we can write

$$[\hat{\psi}_e(\mathbf{r}), \hat{\psi}_p^{\dagger}(\mathbf{r}')] = [\hat{\psi}_e(\mathbf{r}), \hat{\psi}_p(\mathbf{r}')] = 0$$
.

Solution: Because electrons and protons are mutually distinguishable! I can have a proton and an electron in the same state, even though they are fermions.

2.2

Consider now the hydrogen atom, which is a bound state of a proton and an electron. Be $\phi_0(\mathbf{r})$ the ground-state wavefunction of the hydrogen atom for the relative coordinate \mathbf{r} (namely the distance between the proton and the electron). Justify why the "hydrogen operator"

$$\hat{h}_0^{\dagger}(\mathbf{R}) = \int d^3r \, \phi_0(\mathbf{r}) \, \hat{\psi}_e^{\dagger}(\mathbf{r} + \mathbf{R}) \, \hat{\psi}_p^{\dagger}(\mathbf{R})$$
(1)

creates a hydrogen atom in its electronic ground state with the nucleus at position R.

Solution: $\hat{\psi}_p^{\dagger}(\mathbf{R})$ creates the nucleus at the desired position; $\int d^3r \ \phi_0(\mathbf{r}) \ \hat{\psi}_e^{\dagger}(\mathbf{r} + \mathbf{R}) = \hat{c}_{\phi_0,\mathbf{R}}^{\dagger}$ creates an electron in the state ϕ_0 centered around \mathbf{R} .

2.3

We want to study the commutation relations of the $\hat{h}_0(\mathbf{R}), \hat{h}_0^{\dagger}(\mathbf{R})$ operators. Calculate the commutation bracket

$$[\hat{\psi}_p(\mathbf{R}) \; \hat{\psi}_e(\mathbf{R}+\mathbf{r}), \psi_e^{\dagger}(\mathbf{R}'+\mathbf{r}') \; \hat{\psi}_p^{\dagger}(\mathbf{R}')] \; . \tag{2}$$

(Suggestion: try to rewrite $\psi_e^{\dagger}(\mathbf{R}'+\mathbf{r}')$ $\hat{\psi}_p^{\dagger}(\mathbf{R}')\hat{\psi}_p(\mathbf{R})$ $\hat{\psi}_e(\mathbf{R}+\mathbf{r})$ in terms of $\hat{\psi}_p(\mathbf{R})$ $\hat{\psi}_e(\mathbf{R}+\mathbf{r})\psi_e^{\dagger}(\mathbf{R}'+\mathbf{r}')$ $\hat{\psi}_p^{\dagger}(\mathbf{R}')$ by using the known anticommutation relations of fermions).

Solution: The result is

$$-\delta(\boldsymbol{R}-\boldsymbol{R}')~\hat{\psi}_e^{\dagger}(\boldsymbol{r}'+\boldsymbol{R}')~\hat{\psi}_e(\boldsymbol{r}+\boldsymbol{R}) + \delta(\boldsymbol{r}'+\boldsymbol{R}'-\boldsymbol{r}-\boldsymbol{R})~\hat{\psi}_p(\boldsymbol{R})~\hat{\psi}_p^{\dagger}(\boldsymbol{R}')$$

2.4

Conclude that

$$[\hat{h}_0(\boldsymbol{R}), \hat{h}_0^{\dagger}(\boldsymbol{R}')] = -\hat{c}_{\phi_0,\boldsymbol{R}}^{\dagger} \hat{c}_{\phi_0,\boldsymbol{R}} \, \delta(\boldsymbol{R} - \boldsymbol{R}') + \int d^3r \, \phi_0(\boldsymbol{r}) \phi_0(\boldsymbol{r} + \boldsymbol{R} - \boldsymbol{R}') \, \hat{\psi}_p(\boldsymbol{R}) \hat{\psi}_p^{\dagger}(\boldsymbol{R}')$$

where we have introduced the operator

$$\hat{c}_{\phi_0,\mathbf{R}}^{\dagger} = \int d^3r \; \phi_0(\mathbf{r}) \; \hat{\psi}_e^{\dagger}(\mathbf{r} + \mathbf{R})$$

and we have assumed that $\phi_0 \in \mathbb{R}$ (as it is the case).

Solution: It just follows by integrating the result of the previous section over r and r'.

2.5

The ground-state hydrogen wavefunction has a linear spatial extent of about a Bohr radius, $a_0 \approx 0.5 \times 10^{-10}$ m. Under which physical conditions can one have that $[\hat{h}_0(\mathbf{R}), \hat{h}_0^{\dagger}(\mathbf{R}')] \approx 0$? What can you conclude about the possibility of treating hydrogen atoms as bosons?

Solution: The commutation relation vanishes when $\mathbf{R} \neq \mathbf{R}'$ (for the first term) and when $|\mathbf{R} - \mathbf{R}'| \gg a_0$ (to let the second term vanish), which also implies the vanishing of the first term *a fortiori*. Hence two hydrogen atoms behave as composite bosons (namely, their operators commute) when they stay at a distance much bigger than their spatial extent.

3 Bosonic bunching and the effect of interactions on a BEC

In this section we would like to evaluate the effect of interactions on a Bose gas in the case in which it is condensed or not.

To do so, we shall evaluate the so called $g^{(2)}(0)$ function, which reads

$$g^{(2)}(0) = \frac{\langle \hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}(\mathbf{r})\rangle}{\langle \hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}(\mathbf{r})\rangle^{2}}$$
(3)

where $\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}(\mathbf{r})$ are bosonic field operators.

3.1

Introducing the destruction operator in momentum space

$$\hat{\psi}(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \ \hat{a}_{\mathbf{k}}$$

write $\langle \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \rangle$ in terms of the 4-momentum expectation value $\langle \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}^{\dagger}_{\boldsymbol{q}} \hat{a}_{\boldsymbol{k}'} \hat{a}_{\boldsymbol{q}'} \rangle$. Conclude that, if the system is translationally invariant (namely momentum must be conserved), then $\langle \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \rangle$ is independent of \boldsymbol{r} .

Solution:

$$\langle \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \hat{\psi}(\boldsymbol{r}) \rangle = \frac{1}{V^2} \sum_{\boldsymbol{k}\boldsymbol{q}} \sum_{\boldsymbol{k'}\boldsymbol{q'}} e^{-i(\boldsymbol{k}+\boldsymbol{q}-\boldsymbol{k'}-\boldsymbol{q'})\cdot\boldsymbol{r}} \langle \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}^{\dagger}_{\boldsymbol{q}} \hat{a}_{\boldsymbol{k'}} \hat{a}_{\boldsymbol{q'}} \rangle \ .$$

With momentum conservation, one must have $\mathbf{k} + \mathbf{q} = \mathbf{k}' + \mathbf{q}'$, so that the spatial dependence drops out.

3.2

In the case of an ideal Bose gas, we have that all states which enter in the averages $\langle ... \rangle$ have a well-defined number of particles $\{n_{\bf p}\}$ in each single-particle state with wave-vector ${\bf p}$. This means that one should consider only quartets of wavevectors ${\bf k},{\bf q},{\bf k}',{\bf q}'$ such that $\hat{a}_{\bf k}^{\dagger}\hat{a}_{\bf q}^{\dagger}\hat{a}_{\bf k'}\hat{a}_{\bf q'}|\{n_{\bf p}\}\rangle=c|\{n_{\bf p}\}\rangle$, where c is a proportionality constant.

Conclude that

$$\langle \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}'} \hat{a}_{\mathbf{q}'} \rangle = n_{\mathbf{k}} (n_{\mathbf{q}} - \delta_{\mathbf{k}, \mathbf{q}}) \left[\delta_{\mathbf{k}, \mathbf{k}'} \delta_{\mathbf{q}, \mathbf{q}'} + \delta_{\mathbf{k}, \mathbf{q}'} \delta_{\mathbf{k}', \mathbf{q}} (1 - \delta_{\mathbf{k}, \mathbf{q}}) \right]$$

where $n_{\mathbf{k}} = \langle \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} \rangle$.

Solution: Only the combinations $\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{q}}^{\dagger}\hat{a}_{\mathbf{q}}\hat{a}_{\mathbf{k}}$ and $\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{q}}^{\dagger}\hat{a}_{\mathbf{k}}\hat{a}_{\mathbf{q}}$ count; but one has to avoid counting twice the case with all equal wavevectors, which appears in principle in both cases (hence the factor $(1 - \delta_{\mathbf{k},\mathbf{q}})$).

3.3

In the case of a perfect BEC, $n_{\mathbf{k}} = N\delta_{\mathbf{k},0}$, show that

$$g^{(2)}(0) = 1 + \mathcal{O}\left(\frac{1}{V}\right) .$$

Solution: One has that for the ideal Bose gas

$$\langle \hat{\psi}^{\dagger}(\boldsymbol{r})\hat{\psi}^{\dagger}(\boldsymbol{r})\hat{\psi}(\boldsymbol{r})\hat{\psi}(\boldsymbol{r})\rangle = \frac{1}{V^2} \sum_{\boldsymbol{k}\boldsymbol{q}} (n_{\boldsymbol{k}}n_{\boldsymbol{q}} - n_{\boldsymbol{k}}\delta_{\boldsymbol{k},\boldsymbol{q}}) (2 - \delta_{\boldsymbol{k},\boldsymbol{q}}) = 2n^2 - \frac{1}{V^2} \sum_{\boldsymbol{k}} n_{\boldsymbol{k}}^2 - \frac{n}{V} .$$

In the case of a condensate $\frac{1}{V^2}\sum_{\pmb{k}}n_{\pmb{k}}^2=n^2$, so that $\langle \hat{\psi}^\dagger(\pmb{r})\hat{\psi}^\dagger(\pmb{r})\hat{\psi}(\pmb{r})\hat{\psi}(\pmb{r})\rangle=n^2+O(1/V)$.

3.4

We consider then the opposite limit of a gas with a rather flat momentum distribution (non-condensed gas), namely $n_k \sim O(1)$ for N wavevectors. Show then that

$$g^{(2)}(0) = 2 + \mathcal{O}\left(\frac{1}{V}\right) .$$

This effect for the non-condensed Bose gas is called *bosonic bunching* – and it expresses the fact that if one finds a boson in a given position in space it is twice more likely to find a second one than in a system of spatially uncorrelated particles.

Solution: In this case $\frac{1}{V^2} \sum_{k} n_k^2 \approx n/V$, and the result follows.

3.5

The above result has strong consequences in terms of the stability of a condensate to interactions. Considering the potential energy due to a contact potential

$$\hat{\mathcal{H}}_{\mathrm{int}} = rac{g}{2} \int d^3 r \; \hat{\psi}^{\dagger}(m{r}) \hat{\psi}^{\dagger}(m{r}) \hat{\psi}(m{r}) \hat{\psi}(m{r})$$

calculate the expectation value of this energy on the perfect BEC and for the non-condensed gas. Which state has the lowest potential energy?

Solution:

$$\langle \hat{\mathcal{H}}_{\rm int} \rangle = \begin{cases} \frac{gn}{2}N + O(1/V) & \text{BEC} \\ gnN + O(1/V) & \text{non - BEC} \end{cases}.$$

Clearly the BEC case has the lowest potential energy.