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1 Short questions

These questions only require a short answer!

Q1. Be â1, â
†
1 and â2, â

†
2 the destruction and creation operators in two single-particle states 1 and 2. Is

â†1â2â
†
2â1 a Hermitian operator? Rewrite it in terms of the number operators n̂1(2) = â†1(2)â1(2) in the

case in which â, â† are bosonic operators, and in the case in which they are fermionic operators.

Solution: Yes, â†1â2â
†
2â1 is Hermitian as it is of the form ÂÂ† with Â = â†1â2.

Using (anti)commutation relations for bosons (fermions) one finds that â†1â2â
†
2â1 = n̂1(±n̂2 + 1)

with + for bosons and - for fermions.

Q2. Consider two S = 1/2 particles in the following state (in first quantization):

φ(x1)φ(x2)
| ↑1↓2〉 − | ↓1↑2〉√

2

where φ(x) is a single-particle wavefunction. Is it a legitimate state for two identical fermions? Write

the state in second quantization using the field operators ĉ†φ,↑ and ĉ†φ,↓ creating a fermion in the state φ
with spin ↑ and ↓ respectively.

Solution:
|Ψ〉 = ĉ†φ,↑ĉ

†
φ,↓|0〉

Q3. Rewrite the state above by using the field operators ψ̂†↑(x), ψ̂†↓(x) creating particles with spin ↑ and ↓
at position x.

Solution:

|Ψ〉 =

∫
dx1dx2 φ(x1)φ(x2) ψ̂†↑(x1)ψ̂†↓(x2) |0〉

Q4. What are the assumptions underlying Bogolyubov theory for the interacting Bose gas?

Solution: One must assume that the gas is nearly 100% condensed, so that the fraction of the
particles outside of the condensate can be treated as a perturbation to the fraction of the condensed
particles. In the treatment that we gave in the lectures we also assumed that the atoms in the
condensate are described via a macroscopic wavefunction Ψ0(r) such that the field operator writes

as ψ̂(r) = Ψ0(r) + δψ̂(r), with δψ̂ treated as a “perturbation” with respect to Ψ0(r).
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Q5. In a rotating Bose-Einstein condensate with total vorticity of 4, order the following states depending
on their energy (neglecting vortex-vortex interactions): a) two vortices with vorticity 2 each; b) three
vortices with vorticity 1, 1, and 2; c) two vortices with vorticity 3 and 1. Is there a vortex state with
even lower energy?

Solution: The energy of each vortex goes as the square of its vorticity, so that the energies are
ordered as Eb < Ea < Ec. A state with even lower energy has 4 vortices with vorticity 1 each.

Q6. Consider the one-body density matrix g(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 for a system of identical bosons. What
is the value of this function for |r − r′| → 0? And what is its behavior for |r − r′| → ∞ in the absence
of Bose condensation?

Solution: g(1)(r, r) = n (average density). g(1)(r, r′) decays to zero when |r − r′| → ∞ in the
absence of condensation.

2 Hydrogen atom as a composite boson

Let us consider two types of fermions, electrons and protons, with associated quantum fields ψ̂e(r), ψ̂†e(r)

and ψ̂p(r), ψ̂†p(r), respectively. In the following we shall neglect the fact that electrons and protons carry a
spin, which is not relevant for the present discussion.

2.1

For identical fermions we have the anticommutation relations

{ψ̂e(r), ψ̂†e(r
′)} = δ(r − r′) {ψ̂e(r), ψ̂e(r

′)} = 0

and the same holds for the protons (e→ p). Justify why instead we can write

[ψ̂e(r), ψ̂†p(r
′)] = [ψ̂e(r), ψ̂p(r

′)] = 0 .

Solution: Because electrons and protons are mutually distinguishable! I can have a proton and an
electron in the same state, even though they are fermions.

2.2

Consider now the hydrogen atom, which is a bound state of a proton and an electron. Be φ0(r) the ground-
state wavefunction of the hydrogen atom for the relative coordinate r (namely the distance between the
proton and the electron). Justify why the “hydrogen operator”

ĥ†0(R) =

∫
d3r φ0(r) ψ̂†e(r + R) ψ̂†p(R) (1)

creates a hydrogen atom in its electronic ground state with the nucleus at position R.

Solution: ψ̂†p(R) creates the nucleus at the desired position;
∫
d3r φ0(r) ψ̂†e(r +R) = ĉ†φ0,R

creates an
electron in the state φ0 centered around R.

2



2.3

We want to study the commutation relations of the ĥ0(R), ĥ†0(R) operators. Calculate the commutation
bracket

[ψ̂p(R) ψ̂e(R + r), ψ†e(R
′ + r′) ψ̂†p(R

′)] . (2)

(Suggestion: try to rewrite ψ†e(R
′+r′) ψ̂†p(R

′)ψ̂p(R) ψ̂e(R+r) in terms of ψ̂p(R) ψ̂e(R+r)ψ†e(R
′+r′) ψ̂†p(R

′)
by using the known anticommutation relations of fermions).

Solution: The result is

−δ(R−R′) ψ̂†e(r
′ + R′) ψ̂e(r + R) + δ(r′ + R′ − r −R) ψ̂p(R) ψ̂†p(R

′)

2.4

Conclude that

[ĥ0(R), ĥ†0(R′)] = −ĉ†φ0,R
ĉφ0,R δ(R−R′) +

∫
d3r φ0(r)φ0(r + R−R′) ψ̂p(R)ψ̂†p(R

′)

where we have introduced the operator

ĉ†φ0,R
=

∫
d3r φ0(r) ψ̂†e(r + R)

and we have assumed that φ0 ∈ R (as it is the case).

Solution: It just follows by integrating the result of the previous section over r and r′.

2.5

The ground-state hydrogen wavefunction has a linear spatial extent of about a Bohr radius, a0 ≈ 0.5×10−10

m. Under which physical conditions can one have that [ĥ0(R), ĥ†0(R′)] ≈ 0? What can you conclude about
the possibility of treating hydrogen atoms as bosons?

Solution: The commutation relation vanishes when R 6= R′ (for the first term) and when |R−R′| � a0
(to let the second term vanish), which also implies the vanishing of the first term a fortiori. Hence two
hydrogen atoms behave as composite bosons (namely, their operators commute) when they stay at a
distance much bigger than their spatial extent.

3 Bosonic bunching and the effect of interactions on a BEC

In this section we would like to evaluate the effect of interactions on a Bose gas in the case in which it is
condensed or not.

To do so, we shall evaluate the so called g(2)(0) function, which reads

g(2)(0) =
〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉

〈ψ̂†(r)ψ̂(r)〉2
(3)

where ψ̂(r), ψ̂†(r) are bosonic field operators.
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3.1

Introducing the destruction operator in momentum space

ψ̂(r) =
1√
V

∑
k

eik·r âk

write 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉 in terms of the 4-momentum expectation value 〈â†kâ†qâk′ âq′〉. Conclude that, if

the system is translationally invariant (namely momentum must be conserved), then 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉
is independent of r.

Solution:

〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉 =
1

V 2

∑
kq

∑
k′q′

e−i(k+q−k′−q′)·r〈â†kâ
†
qâk′ âq′〉 .

With momentum conservation, one must have k + q = k′ + q′, so that the spatial dependence drops
out.

3.2

In the case of an ideal Bose gas, we have that all states which enter in the averages 〈...〉 have a well-
defined number of particles {np} in each single-particle state with wave-vector p. This means that one

should consider only quartets of wavevectors k, q,k′, q′ such that â†kâ
†
qâk′ âq′ |{np}〉 = c|{np}〉, where c is a

proportionality constant.
Conclude that

〈â†kâ
†
qâk′ âq′〉 = nk(nq − δk,q) [δk,k′δq,q′ + δk,q′δk′,q(1− δk,q)]

where nk = 〈â†kâk〉.

Solution: Only the combinations â†kâ
†
qâqâk and â†kâ

†
qâkâq count; but one has to avoid counting twice

the case with all equal wavevectors, which appears in principle in both cases (hence the factor (1−δk,q)).

3.3

In the case of a perfect BEC, nk = Nδk,0, show that

g(2)(0) = 1 +O
(

1

V

)
.

Solution: One has that for the ideal Bose gas

〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉 =
1

V 2

∑
kq

(nknq − nkδk,q) (2− δk,q) = 2n2 − 1

V 2

∑
k

n2k −
n

V
.

In the case of a condensate 1
V 2

∑
k n

2
k = n2, so that 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉 = n2 +O(1/V ).
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3.4

We consider then the opposite limit of a gas with a rather flat momentum distribution (non-condensed gas),
namely nk ∼ O(1) for N wavevectors. Show then that

g(2)(0) = 2 +O
(

1

V

)
.

This effect for the non-condensed Bose gas is called bosonic bunching – and it expresses the fact that if one
finds a boson in a given position in space it is twice more likely to find a second one than in a system of
spatially uncorrelated particles.

Solution: In this case 1
V 2

∑
k n

2
k ≈ n/V , and the result follows.

3.5

The above result has strong consequences in terms of the stability of a condensate to interactions. Considering
the potential energy due to a contact potential

Ĥint =
g

2

∫
d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

calculate the expectation value of this energy on the perfect BEC and for the non-condensed gas. Which
state has the lowest potential energy?

Solution:

〈Ĥint〉 =

{
gn
2 N +O(1/V ) BEC

gnN +O(1/V ) non− BEC
.

Clearly the BEC case has the lowest potential energy.
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