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1 Short questions

These questions only require a short answer!

Q1. Be &1,&1 and d27d; the destruction and creation operators in two single-particle states 1 and 2. Is
&1&2&;&1 a Hermitian operator? Rewrite it in terms of the number operators 7o) = di(z)&l(g) in the

case in which @, a' are bosonic operators, and in the case in which they are fermionic operators.

Solution: Yes, d;&gd;dl is Hermitian as it is of the form AA! with A = d];ag.
iy aoabay = g (£ + 1)

Using (anti)commutation relations for bosons (fermions) one finds that
with + for bosons and - for fermions.

Q2. Consider two S = 1/2 particles in the following state (in first quantization):

| T1d2) — | d1T2)
V2

where ¢(x) is a single-particle wavefunction. Is it a legitimate state for two identical fermions? Write

the state in second quantization using the field operators éL,T and éL | creating a fermion in the state ¢
with spin 1 and | respectively.

B(z1)p(z2)

Solution:
W) = ¢l el 1 |0)

Q3. Rewrite the state above by using the field operators @/};(x), z@i(:c) creating particles with spin 1 and |
at position x.

Solution:

v = / drydas $()d(22) Bl (22) [0)

Q4. What are the assumptions underlying Bogolyubov theory for the interacting Bose gas?

Solution: One must assume that the gas is nearly 100% condensed, so that the fraction of the
particles outside of the condensate can be treated as a perturbation to the fraction of the condensed
particles. In the treatment that we gave in the lectures we also assumed that the atoms in the
condensate are described via a macroscopic wavefunction Wy (r) such that the field operator writes
as h(r) = Uo(r) + 60 (r), with 81 treated as a “perturbation” with respect to ¥o(r).




Q5. In a rotating Bose-Einstein condensate with total vorticity of 4, order the following states depending
on their energy (neglecting vortex-vortex interactions): a) two vortices with vorticity 2 each; b) three
vortices with vorticity 1, 1, and 2; ¢) two vortices with vorticity 3 and 1. Is there a vortex state with
even lower energy?

Solution: The energy of each vortex goes as the square of its vorticity, so that the energies are
ordered as Fy, < E, < E.. A state with even lower energy has 4 vortices with vorticity 1 each.

Q6. Consider the one-body density matrix g™ (r, ') = (4T (r) (")) for a system of identical bosons. What
is the value of this function for |r — r'| — 0? And what is its behavior for |r — r'| — oo in the absence

of Bose condensation?

Solution: g™ (r,7) = n (average density). ¢(!)(r,r’) decays to zero when |r — 7’| — oo in the
absence of condensation.

2 Hydrogen atom as a composite boson

Let us consider two types of fermions, electrons and protons, with associated quantum fields 7,[?6 (1“),1[)2 (r)
and ¥, (r), 1/@(7“), respectively. In the following we shall neglect the fact that electrons and protons carry a
spin, which is not relevant for the present discussion.

2.1

For identical fermions we have the anticommutation relations
{e(r), Di(r")} = d(r — 1) {te(r), de(r')} =0

and the same holds for the protons (e — p). Justify why instead we can write

Solution: Because electrons and protons are mutually distinguishable! I can have a proton and an
electron in the same state, even though they are fermions.

2.2

Consider now the hydrogen atom, which is a bound state of a proton and an electron. Be ¢o(7) the ground-
state wavefunction of the hydrogen atom for the relative coordinate = (namely the distance between the
proton and the electron). Justify why the “hydrogen operator”

W (R) = [ ou(r) Bl + R) BY(R) 0

creates a hydrogen atom in its electronic ground state with the nucleus at position R.

Solution: 1[1;(R) creates the nucleus at the desired position; [ dr ¢o(r) Pi(r+R) = é;o R creates an
electron in the state ¢y centered around R.




2.3

We want to study the commutation relations of the ho(R), BS(R) operators. Calculate the commutation
bracket

[0p(R) e(R+ 1), 0L(R + ') O}(R)] . (2)

(Suggestion: try to rewrite Y (R +1') ¥} (R ), (R) Pe(R+7) in terms of ¢, (R) v (R+r)y} (R +r') I (R')
by using the known anticommutation relations of fermions).

Solution: The result is

~6(R—R) !(r' + R) Ypo(r + R) + 6(r' + R — 7 — R) 4,,(R) ¥}(R)

2.4
Conclude that

[ho(R), hj(R))] = —¢l, péso.r (R—R')+ / d*r ¢o(r)do(r + R — R') ¥, (R)VI(R)

where we have introduced the operator

hom= [ v onlr) i+ R)

and we have assumed that ¢y € R (as it is the case).

Solution: It just follows by integrating the result of the previous section over r and 7’.

2.5

The ground-state hydrogen wavefunction has a linear spatial extent of about a Bohr radius, ag ~ 0.5 x 1010
m. Under which physical conditions can one have that [ho(R), hg)(R’ )] &= 0? What can you conclude about
the possibility of treating hydrogen atoms as bosons?

Solution: The commutation relation vanishes when R # R’ (for the first term) and when |R— R/| >> aq
(to let the second term vanish), which also implies the vanishing of the first term a fortiori. Hence two
hydrogen atoms behave as composite bosons (namely, their operators commute) when they stay at a
distance much bigger than their spatial extent.

3 Bosonic bunching and the effect of interactions on a BEC

In this section we would like to evaluate the effect of interactions on a Bose gas in the case in which it is
condensed or not.
To do so, we shall evaluate the so called g(®)(0) function, which reads

S0 — )
W (r)h(r))?

where ¢)(r), ¢t (r) are bosonic field operators.



3.1

Introducing the destruction operator in momentum space
by = = YR ay
VV 4

write (T (7)Yt (1) (1) (r)) in terms of the 4-momentum expectation value (&L&Ldk/&q/>. Conclude that, if

the system is translationally invariant (namely momentum must be conserved), then (¢ (r)dt (7)) (r)ih(r))
is independent of 7.

Solution:

N n n ~ 1 _ Y. ot ot A .
(@ ) )bryb(r) = g S0 3 e RO o)
kq k/q/
With momentum conservation, one must have k +q = k' + ¢’, so that the spatial dependence drops
out.

3.2

In the case of an ideal Bose gas, we have that all states which enter in the averages (...) have a well-
defined number of particles {n,} in each single-particle state with wave-vector p. This means that one
should consider only quartets of wavevectors k, g, k', ¢’ such that &Ld:r]&k’&q’ H{np}) = c[{np}), where cis a
proportionality constant.
Conclude that
<&Ld£dk’dq’> = nk(ng — Ok.q) [0k k' 0q.q" + Ok,q' Ok q(1 — Ok.q)]

where ng = (d};dk>.

Solution: Only the combinations d;cdl;dqdk and &L&j}&kdq count; but one has to avoid counting twice
the case with all equal wavevectors, which appears in principle in both cases (hence the factor (1—0dk q))-

3.3
In the case of a perfect BEC, ng = N o, show that

gd?0)=1+0 <‘1/> .

Solution: One has that for the ideal Bose gas

() () (r) = 5 S (g — mkig) (2~ Gig) = 207 — >0k - "

kq

In the case of a condensate > ., ni = n?, so that W) ()P () (r)) = n? + O(1/V).




3.4

We consider then the opposite limit of a gas with a rather flat momentum distribution (non-condensed gas),
namely ng ~ O(1) for N wavevectors. Show then that

g?0)=2+0 (é) :

This effect for the non-condensed Bose gas is called bosonic bunching — and it expresses the fact that if one
finds a boson in a given position in space it is twice more likely to find a second one than in a system of
spatially uncorrelated particles.

Solution: In this case o5z >, 1z ~ n/V, and the result follows.

3.5

The above result has strong consequences in terms of the stability of a condensate to interactions. Considering
the potential energy due to a contact potential

i =5 [ &1 000 (b))

calculate the expectation value of this energy on the perfect BEC and for the non-condensed gas. Which
state has the lowest potential energy?

Solution:
Flu) = 2N +0(1/V) BEC
"7 Y gnN +0(1)V)  non — BEC

Clearly the BEC case has the lowest potential energy.




