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1 Short questions

These questions only require a short answer/ a short calculation!

Q1. Normal ordering of operator products in second quantization (denoted as : ... :) amounts to rewriting
such products by putting all the creation operators to the left of the destruction ones. For instance, for
two bosonic modes 1 and 2, : blbg = bgbl. Calculate the difference between b{bgblb; and : bibgblbg D
and the expectation value (0] : blbybybl : |0) on the vacuum state |0).

Solution: blbybibl— : blbybybl := blb,
(0] : blbyby bl < [0) = 0 (as for any normal-ordered product)

Q2. Consider the two states (in first quantization) for two particles:

[¥)]0) £ [9)|9)
N :

Rewrite these two states using bosonic operators bl ,bL and/or fermionic operators Cjb’ cl; acting on the
vacuum.

+) = (1)

Solution:
+) = bl,b5,]0) |-) = cl,ch,|0)

Q3. Using creation and destruction operators, write an operator which destroys a particle with wavevector
k and creates two identical particles to the first one, with wavevectors k + q and k — q. Which particles
in physics could experience such a transformation?

Solution: bL " qb;F qbk. This process cannot happen using massive particles, because mass would
not be conserved. On the other hand it may happen with quasiparticles, such as phonons or magnons;
or massless particles such as photons.

Q4. Consider a system of 2 fermions on a 4-site square, as depicted in the figure below. Using second
quantization, we want to describe the mathematical operations that exchange the two particles.

Be ¢1, ¢, c3, and ¢4 the operators that destroy a particle in the sites 1, 2, 3 and 4, while c]i, cg, cg, and

c}l are the ones creating a particle. We imagine that particles can be made to hop only between nearest-

neighboring sites, by using the hopping operators cgcl, c};cQ, 0103 and 0104. Using hopping operators

applied to the initial state |n1,ng,ns,n4) = |1,0,1,0) as in the sequence described in the figure, show
that one comes back to the same state, but with a minus sign in front.
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Solution: The sequence is described by ¢l cqcheacherches|1,0,1,0) = —cleyescleleseach|1,0,1,0) =
_Ila 07 17 O>

Q5. For an ideal Bose gas, Bose-Einstein condensation is possible at finite temperature in d = 2 dimensions.
True or false? Can you motivate your answer with a small calculation?

Solution: Tt is false, because the number of atoms in the excited states can diverge for zero chemical
potential since it goes as Nmax ~ [ dk k971 /[exp(h?k?/(2m)) — 1] ~ [ dk k?=3, diverging for d = 1
and 2.

2 Squeezed states of a harmonic oscillator

We consider a single harmonic oscillator (or equivalently a single bosonic mode), described in terms of the
destruction/creation operators a, a'; and its so-called squeezed states. To generate squeezed states, one uses
the squeezing operator

S(r) = ezl(ah?~a’] (2)

where r is a real number.

2.1
Show that S(r) is unitary.

Solution: St(r) = S(—r) so that ST(r)S(r) = 1.

2.2

We consider the unitarily transformed operator a:
b(r) = ST(r) a S(r) . (3)

Write the expression of bf(7), and of the derivative db(r)/dr in terms of b(r), b (r).

Solution:
bT(r) = ST(’I‘) al S(r)
db

pr bl (r)




2.3
Show that the equation for db(r)/dr, with the condition 5(0) = a, admits the solution

b(r) = cosh(r) a + sinh(r) a (4)

Prove that b, b are still bosonic operators.

Solution:
db

e

and b(0) = a indeed. b and b’ are bosonic operators because [b, b'] = cosh?(r) — sinh?(r) = 1.

bl (r) = sinh(r) a + cosh(r) af = bi(r)

24

Consider the so-called squeezed vacuum state, given by |r) = S(r)|0).
Calculate the average particle number n(r) = (rlafalr), and its behavior for 7 — +oo. Is this still the
vacuum?

Solution:
2r|

(rlatalr) = (06" (r)b(r)|0) = (0| [*a’a + s®aa’ + cs(a'a’ + a?)] [0) = sinh?(7) ~ 400 e

This is clearly not the vacuum, because the number is growing exponentially with |r|.

2.5

We introduce the (dimensionless) position and momentum operators X = (a 4 a')/v/2 and P = (a —
a')/(iv/2). Calculate (r|X|r), {r|P|r), (r|X?|r) and (r|P2|r).

Solution:
<X>T:<P>T:07
2 1 2 1 2 e
(X%)r = §<0\(b+b*) 0) = S(e+s)" ==
2y _ 1 2 L s e
(P7)r = =5 016 = b1)7|0) = 5(c = 5)" = —
2.6

Calculate the product (AX),(AP),, where (AX), = /(r|X2|r) — (r|X|r)? and similarly for (AP),. Does
this product change with respect to the vacuum |r = 0) 7 When r — oo, can you recognize an operator of
which the squeezed vacuum becomes an eigenstate?

Solution: (AX),.(AP), = 1/2 as in the vacuum. For r — oo, (AP), = ¢~ "/v/2 — 0, namely the
squeezed state tends to a momentum eigenstate.




3 XXZ model of ferromagnetism: spin-wave theory vs. mean-field
theory

In this exercise, we consider the XXZ model of ferrromagnetism, whose Hamiltonian reads

H = ,g SO [SrSt g+ SYSY g+ AS;S; 4] —HY S
7 d 7
J
=522 E(S?Sm + 57 St a) + AS; m} ~HY_S: (5)
% d 7

where A is an anisotropy parameter, which introduces a difference between the interaction energy for the x
and y spin components, and that for the z spin components. We have also introduced a magnetic field H.
Otherwise J > 0 is the interaction energy; the index ¢ runs on the sites of a d-dimensional hypercubic lattice
(a linear chain for d = 1; a square lattice for d = 2; and a cubic lattice for d = 3) comprising N = L? sites;
and d is the vector connecting the site ¢ to its z = 2d nearest neighbors.

3.1

Introducing the (linearized) Holstein-Primakoff transformation
§*=8—blb  Stx=V2Sb S~ ~ V25 bt (6)

rewrite the above Hamiltonian in terms of the bosonic operators b, b'.

Solution:

- 1 2 JS 1 1
M~ - JsNAS® - NHS - 2 Zd: (alaiva + aly qai) + (H + 7S24) Z n;
)

3.2 (Bonus question)

Introducing the Fourier-transformed bosons
b= —— > ek Tipy, (7)
K3 \/N -

show that one can rewrite the Hamiltonian as

H = Z frblbr + const. (8)
k

where fr, = —2J Sy + JSzA+ H, and y, = 271 Y, e® 4 = L (cos(ky) + ... + cos(kq)).

3.3

We start from the result of the previous question. Show that v, = 1 — k?/z, so that, for small k, the above
Hamiltonian can be rewritten as H = >, (ex — u)b;rcbk + const. where e, = Ak? (with A a constant to be
specified); and p is a chemical potential to be calculated.

Solution: a = JS; p=JSz(1—-A) - H.




3.4

Show that the density of Holstein-Primakoff bosons (number of bosons per lattice site) at inverse temperature
B =1/(kpT) can be written as

Ny, Q¢ (kgT\"* [ d-1
ny = -2 = dd (B> / dxfil (9)
N  (2n) JS 0 er"(-1 -1
where ¢ = e”#, and Q is the solid angle in d dimensions. If 4 < 0, in the limit 7" — 0 (8 — oc) show that
Qq kpT\Y? _
N ——I | —= Bl 10
™A d( 75 ) e (10)

where I is a convergent integral.

Solution:

1 1 Qq [ k-t
"=y zk: eBles—n) — 1 (2m)d /O dk eBISK>—p) _ 1

. . . . 2 2
which gives the integral above when setting = \/BJSk. When 8 — oo, e#(/SF =1 _ 1 x BT eBlnl
hence the integral

o 1
I;= / dr 24 te™ = 5(d/2)
0

which is a convergent Gaussian integral, with I'(d/2) = /7, 1,/7/2 for d = 1, 2, and 3, respectively.

3.5

We consider now the average magnetization per spin,

Justify that m(T') = S — n; within spin-wave theory.
On the other hand, within mean-field theory for the XXZ model

m(T) = S Bs|B(JSAzm + H)) . (12)

Given that Bs(z — o0) =~ 1 —e~*/3/S, and m(T) — S for T — 0, compare the mean-field expression and
the spin-wave one for m(T") when S — co. Do they predict the same behavior? Can you imagine a limit in
which the dominant temperature dependence of m(T) is the same?

Solution: m(T) = S — n, within spin-wave theory because S7 = S — (bibﬁ We have that

Qq kpT\*? —BlIS(A=1)2+H
()= ptaha () e

from spin-wave theory, while
m(T) -9 e—ﬁ(JSzA-i—H)

from mean-field theory. Hence the exponential temperature dependence is well captured by mean-field
theory, but the dependence on the anisotropy is wrong — it should be A — 1 instead of A. On the
other hand the field dependence is correct; hence if H > JSA, the the dependence as exp(—S8H) of the
magnetization emerges in both theories.




3.6

Consider now the case H = 0. In the TD no. 2, you learned that, if A = 1, there is no ferromagnetism at
T >0ind = 1,2 (can you remember why?). What condition on A guarantees that ferromagnetism survives
alsoind =1,27

Solution: We see here that, as long as p < 0, ferromagnetism can persist at finite (albeit possibly
small) temperatures. If H =0, A > 1 guarantees that p < 0. If A = 1, on the other hand, the integral
of Eq. (9) diverges for d = 1, 2.

3.7

Calculate the susceptibility y = g—ﬁ within spin-wave theory, and take the limit H = 0. Do you understand
why, for A > 1 the susceptibility becomes exponentially small when 7" — 07

Solution:

Q. (ksT\? _ssias
_ g g (FBL [JS(A-1)z+H]
Y=y d(JS) ‘

The susceptibility vanishes exponentially for T' — 0 because the magnetization is reaching its saturation
value exponentially as well, and applying a magnetic field cannot make it increase any further.

3.8

And what about A < 1? Does the result for m(T) in spin-wave theory still make sense? If not, can you
understand what kind of ferromagnetic order you should expect from the ground state of the Hamiltonian
in Eq. (5)? And what does mean-field theory say in this case? What is the condition for the mean-field
prediction to become unstable?

Solution: For A < 1, m(T') goes to —oo exponentially when 7" — 0, which is absurd. This is indicative
of the fact that the theory assumes order along the z axis, but this order is not at all verified. Indeed
for A < 1 the ground state of the Hamiltonian Eq. (5) develops rather ferromagnetic order in the xy
plane, while ferromagnetism along z becomes unstable. Mean-field theory instead is not sensitive to the
fact that A < 1, and it still provides a self-consistent solution even in this case. For mean-field theory
to signal its breakdown we need the stronger condition A < 0, such that the mean-field magnetization
also goes to —oo when 7' — 0. In this case in fact the z spin components interact antiferromagnetically,
so that ferromagnetism for the z spin components becomes unstable even at the mean-field level.




