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Midterm take-home exam – March 4-8th, 2024

Cet examen est un devoir-maison: afin de mieux tester vos connaissances, vous êtes encouragé.e.s à le
travailler seul.e.s, mais aussi à vous servir de tout le matériel que vous le souhaitez, et notamment du
matériel du cours et des TDs. Le sujet d’examen ne nécessite pas de données que vous ne puissiez pas
trouver dans le cours et les TDs. Le temps que vous allez passer dans la préparation de votre copie est laissé
à votre discretion, mais idéalement il ne devrait pas dépasser les 3 heures.

1 Short questions

These questions only require a short answer/ a short calculation!

Q1. Can you give a qualitative argument to explain why 4He does not solidify at ambient pressure?

Solution: He is an atom which is both light and chemically inert. The He-He interaction potential
has a shallow minimum at 0.265 nm with a depth of approximately 11 K; at this temperature the
thermal de Broglie wavelength of an He atom is approximately 0.4 nm, namely larger than the
interparticle spacing. This means that at the temperature at which the solid should form, the
quantum uncertainty on the position of the atom is larger than the lattice spacing, and therefore
quantum fluctuations essentially prevent the atoms from solidifying in a static pattern.

Q2. Consider a 1d Bose gas in a harmonic potential, V (x) = mω2x2/2, and be Ψ0(x) the macroscopic
wavefunction describing a Bose-Einstein condensate. What is the difference between the macroscopic
wavefunction in the case of the ground-state of the ideal Bose gas, and that in the presence of interactions,
i.e. the solution to the Gross-Pitaevskii equation? Hint: use the Thomas-Fermi approximation to solve
the Gross-Pitaevskii equation.

Solution: In the case of the ideal Bose gas the macroscopic wavefunction for the ground state
is a Gaussian, Ψ0(x) ∼

√
Ne−x

2/2σ2

where σ =
√

~/mω. Instead in the case of the Thomas-
Fermi solution to the Gross-Pitaevskii equation Ψ0(x) = (µ−V (x))/g, namely Ψ0(x) is an inverted
parabola, much broader than the Gaussian, because of the presence of interactions.

Q3. Spin-spin interactions in magnetic solids come from the magnetic dipole moment associated with the
spin: true or false? Provide some argument to justify your answer.

Solution: False, the magnetic dipole associated with the spins cannot account for the spin-spin
interactions. Two magnetic dipoles of 1 Bohr magneton each, placed at 1 Åof distance, have an in-
teraction energy of about 1K, much too weak to justify the appearance of magnetism at temperatures
of hundreds or even thousands of K.

Q4. Be ψ1(x), ψ2(x) and ψ3(x) three orthonormal single-particle wavefunctions. Write the wavefunction
associated to each of these three-particle states

|ΨB〉 = b†1b
†
2b
†
3|0〉 |ΨF 〉 = f†1f

†
2f
†
3 |0〉 (1)
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in terms of the ψ1, ψ2, ψ3 wavefunctions. Here b†i (i = 1, 2, 3) creates a boson in ψi, while f†i creates a
fermion.

Solution: One should build the 3×3 matrix {ψi(xj)}, and then obtain the many-body wavefunction
as the matrix permanent for bosons, and the matrix determinant for fermions.

Q5. Consider the two electronic states in first quantization

Ψ± =
1

2
[ψ1(x1)ψ2(x2)± ψ2(x1)ψ1(x2)] (| ↑1↓2〉 ∓ | ↓1↑2〉) . (2)

Write these states in terms of the states in second quantization

f†1,↑f
†
2,↓|0〉 f†1,↓f

†
2,↑|0〉 (3)

where f†i,σ creates an electron in state ψi(x)|σ〉.

Solution: We have that

f†1,↑f
†
2,↓|0〉 →

1√
2

(ψ1(x1)ψ2(x2)| ↑1↓2〉 − ψ2(x1)ψ1(x2)| ↓1↑2〉)

and

f†1,↓f
†
2,↑|0〉 →

1√
2

(ψ1(x1)ψ2(x2)| ↓1↑2〉 − ψ2(x1)ψ1(x2)| ↑1↓2〉)

. Hence

Ψ± =
1√
2

(
f†1,↑f

†
2,↓|0〉 ∓ f

†
1,↓f

†
2,↑|0〉

)
.

Q6. Two fermions with S = 1/2 can bind to form a composite boson with S = 0 or 1. Consider the field
operator

φ̂y(x) = ψ̂↑(x+ y/2) ψ̂↓(x− y/2) (4)

destroying a pair of fermions of opposite spins at distance y and with center of mass in x. Provide a
simple condition on x, x′ and y under which the operators φ̂y(x) and φ̂y(x′) satisfy bosonic commutation

relations at different positions, i.e. [φ̂y(x), φ̂†y(x′)] = 0 and [φ̂y(x), φ̂y(x′)] = 0.

Solution: If we require that |x− x′| > y, namely that the composite bosons are further apart than
their size, than we are guaranteed that the pairs of fermionic operators creating and destroying them
commute with each other.

2 Hong-Ou-Mandel effect

In this exercise, we consider a very important effet of interference between two identical particles, the so-called
Hong-Ou-Mandel effect. The setup to observe this effect implies a so-called beam-splitter transformation,
namely the linear transformation of two input states φ1, φ2 into two output states ψ1, ψ2:

|ψ1〉 = cos θ|φ1〉+ eiφ sin θ|φ2〉 (5)

|ψ2〉 = sin θ|φ1〉 − eiφ cos θ|φ2〉 (6)

See Fig. 1(a) for an illustration. Throughout the exercise we will assume that the particles of interest can
be bosons or fermions.
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Hong-Ou-Mandel Interference Results

Hong-Ou-Mandel-Dip

Overlap controlled by BS displacement:
no coincidences for perfect overlap

Photon length from FWHM = 16 µm = c · 50 fs

Width of dip connected to
IF-bandwidth due to Fourier-limited
photons
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Figure 1: Hong-Ou-Mandel (HOM) effect: (a) scheme of a beam-splitter experiment, with input modes
a1, a2 and output modes b1, b2. The number of particles detected at the two output ports translates into
two signals of intensity I1 and I2 which are recombined and correlated; (b) dependence of the g(2) function
on the delay time τ between the two signals I1 and I2, in the case of bosons; (c) and (d): HOM experiment
done with (c) photons (C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 1987) and (d) with atoms
(R. Lopes et al., Nature 2015).

2.1

Be a1, a
†
1 and a2, a

†
2 the operators that destroy and create particles in states φ1 and φ2 respectively; and

b1, b
†
1 and b2, b

†
2 the operators that destroy and create particles in states ψ1 and ψ2 respectively. Write down

the linear relationship between a1, a2 and b1, b2.

Solution:
b1 = cos θ a1 + e−iφ sin θ a2 b2 = sin θ a1 − e−iφ cos θ a2

2.2

Calculate the number operators of output particles b†1b1, b†2b2 as a function of the input operators a1(2), a
†
1(2).

What is the relationship between the number of incoming particles, a†1a1 +a†2a2, and the number of outgoing

ones, b†1b1 + b†2b2?

Solution:
b†1b1 = cos2 θ a†1a1 + sin2 θ a†2a2 + sin θ cos θ(e−iφa†1a2 + eiφa†2a1)

b†2b2 = sin2 θ a†1a1 + cos2 θ a†2a2 − sin θ cos θ(e−iφa†1a2 + eiφa†2a1)

The number of incoming particles is equal to that of outgoing ones.

2.3

We denote with |n1, n2〉 an incoming Fock state for the a1, a2 particles, such that a†1a1|n1, n2〉 = n1|n1, n2〉
and a†2a2|n1, n2〉 = n2|n1, n2〉. What is the outgoing number of particles at the two ports, 〈b†1b1〉 and 〈b†2b2〉?
And under which condition does one get 〈b†1b1〉 = 〈b†2b2〉?
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Solution:
〈b†1b1〉 = cos2 θ n1 + sin2 θ n2 〈b†2b2〉 = sin2 θ n1 + cos2 θ n2

Clearly for n1 = n2 = n one has 〈b†1b1〉 = 〈b†2b2〉 = n for any mixing angle θ. Otherwise for θ = π/4 one

has 〈b†1b1〉 = 〈b†2b2〉 = (n1 + n2)/2.

2.4

After the answer to the previous question, you may think that the beam splitter redistributes the incoming
particles uniformly at the output ports. Let us examine the situation more closely by looking at the corre-
lation between the output ports, namely the product b†1b1b

†
2b2. Calculate this operator as a function of the

incoming-state operators a1(2), a
†
1(2), and by retaining only the terms which conserve the particle numbers

in the two incoming states (namely which commute with a†1a1 and a†2a2). Use the bosonic commutation and
fermionic anti-commutation relations to express the result in terms of the incoming particle numbers n1 and
n2.

Solution:

b†1b1b
†
2b2 = cos2 θ sin2 θ (n21 + n22) + (cos4 θ + sin4 θ) n1n2 − sin2 θ cos2 θ (n1 + n2 + 2η n1n2)

+ (terms not conserving the incoming populations)

with η = 1 for bosons and η = −1 for fermions.

2.5

Considering the case n1 = n2 = 1, show that

〈b†1b1b†2b2〉 =

{
1 for fermions

cos2(2θ) for bosons
. (7)

What is special about bosons?

Solution: The result follows directly from that of the previous question as a special case. As one can
see, for bosons this number can vanish, precisely when one has a 50-50 beam splitter with θ = π/4.

2.6

In a Hong-Ou-Mandel experiment particles are continuously sent into the beam splitter; particles at the
output ports are detected, and the detection generates two signals I1 and I2 proportional to the number
b†1b1 and b†2b2 of detected particles. These signals are then correlated, so as to reconstruct the second-order
correlation function

g(2)(τ) =
〈I1(0)I2(τ)〉
〈I1〉〈I2〉

=
〈(b†1b1)(0)(b†2b2)(τ)〉
〈b†1b1〉〈b†2b2〉

(8)

where τ is a delay time imposed between the acquisition of the two signals. The typical outcome of a Hong-
Ou-Mandel experiment done with bosons is shown in Fig. 1(b) (with concrete examples with photons in
Fig. 1(c) and with atoms in Fig. 1(d)). Based on the result of the previous question, can you explain what
you see in the figure?
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Solution: The g(2)(τ) function is 1 for large |τ |, as the signals at large time difference become uncor-
related. On the other hand, for τ = 0 the function goes to zero in a 50-50 beam splitter (or, more
generally, to cos2(2θ) ≤ 1) because of the two-particle interference effect outlined above.

3 Stoner instability and ferromagnetism in a Fermi gas

In this exercise we consider a Fermi gas of interacting electrons, possessing a spin 1/2. We shall be interested
in single-particle states which are then joint states of position (r) and spin (σ), of the form |r, σ〉; and of
momentum (~k) and spin, of the form |k, σ〉 with σ = ↑, ↓. The corresponding operators destroying and

creating particles in these states are indicated as ψσ(r), ψ†σ(r), and ck,σ, c
†
k,σ, respectively.

3.1

We start from the non-interacting Fermi gas at T = 0 in three-dimensional space. The Hamiltonian of the
system in second quantization reads

Hkin =
∑
σ=↑,↓

∑
k

εk c
†
k,σck,σ (9)

where εk = ~2k2/2m. Since electrons obey the Pauli exclusion principle, in the ground state at T = 0 they
occupy all the single particle states with energy smaller than the Fermi energy εk ≤ εF , namely all the states
with momentum smaller than the Fermi momentum |k| ≤ kF , such that the density reads

n =
N

V
=
∑
σ

1

V

∑
k:|k|≤kF

(10)

where N is the total particle number, and V the volume of the system. In the limit of N,V → ∞ you can
transform the sum V −1

∑
k(...) into an integral. Show then that, for a Fermi gas with two spin states and

density n
kF = (3π2n)1/3 (11)

and therefore, defining the densities of spin ↑ and spin ↓ particles n↑ = N↑/V and n↓ = N↓/V

kF,↑ = (6π2n↑)
1/3 kF,↓ = (6π2n↓)

1/3 . (12)

Solution:

n =
N

V
=

(2)

(2π)3
4π

3
k3F

hence the result, in which the factor of 2 is omitted in the case of a single spin species.

3.2

Write the density of kinetic energy of the gas as a sum over k-space, then as an integral, and show that it
can be written as

ekin =
〈Hkin〉
V

=
3

5
( n↑εF,↑ + n↓εF,↓ ) (13)

where εF,σ =
~2k2F,σ
2m .
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Solution: The average energy reads:

〈Hkin〉
V

=
∑
σ

~2

2m

4π

(2π)3

∫ kF,σ

0

dk k4 =
∑
σ

3

5
nσεF,σ .

3.3

Introducing the polarization variable

p =
N↑ −N↓

N
(14)

rewrite N↑ and N↓ in terms of N and p, and show that

ekin(p) =
ekin(0)

2

[
(1 + p)5/3 + (1− p)5/3

]
(15)

where ekin(0) is the kinetic energy density at zero polarization. Prove that the energy minimum is obtained
for p = 0.

Solution: Given that N↑ = 1+p
2 N , N↓ = 1−p

2 N , the result follows directly from the fact that nσεF,σ ∼
n
5/3
σ ∼ (1 + σp)5/3. Since dekin(p)/dp ∼ [(1 + p)2/3 − (1− p)2/3], the only solution to dekin(p)/dp = 0 is

for p = 0.

3.4

We now add interactions to the picture, namely the potential energy (in second quantization)

Hpot =
1

2

∑
σσ′

∫
V

d3r

∫
V

d3r′ψ†σ(r)ψ†σ′(r
′)V (r − r′)ψσ′(r

′)ψσ(r) . (16)

In the following we will assume a contact interaction between the fermions, V (r − r′) = g δ(r − r′), and
g > 0. Using the transformation from the ψ†σ(r) operators to the ck,σ operators, show that

Hpot =
g

2V

∑
k,k′,q

∑
σσ′

c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ . (17)

Solution: Since ψσ(r) =
∑

k
eik·r√
V
ck,σ and∫

V

d3r ei(k1+k2+k3+k4)·r = V δk1+k2,−k3−k4

one obtains the result above.

3.5

We would then like to calculate the expectation value of the potential energy on the state of the electron
gas with lowest kinetic energy (as considered above), but possessing a finite polarization p. Such a state is

generically a Fock state on the single-particle basis |k, σ〉. Justify why 〈c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ〉 is finite for

this state only in two cases
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1. q = 0;

2. q = k′ − k and σ = σ′ .

Evaluate the expectation value in the two cases, accounting correctly for the fermionic anticommutation
relations.

Solution: The two cases above are the only ones in which the operator c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ conserves

the populations Nk,σ of the states |k, σ〉. The first case leads to the expectation value

〈c†k,σc
†
k′,σ′ck′,σ′ck,σ〉 = NkσNk′σ′ −Nkσδk,k′δσ,σ′

while the second case gives

〈c†k′,σc
†
k,σck′,σck,σ〉 = −NkσNk′σ +Nkσδk,k′ .

3.6

Show that
〈Hpot〉 =

g

4V
N2(1− p2) . (18)

Solution: We have that

〈Hpot〉 =
g

2V

∑
kk′

∑
σσ′

Nk,σNk′,σ′(1− δσσ′) =
g

2V

(
N2 −N2

↑ −N2
↓
)

which leads to the above result.

Figure 2: f(p;x) function.
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3.7

The expectation value of the total energy is then of the form

〈Hkin +Hpot〉 = E0 f(p;x) (19)

where
f(p;x) = (1 + p)5/3 + (1− p)5/3 + x(1− p2) (20)

and the parameters E0 and x are to be determined. The function f(p;x) is shown in Fig. 2. Can you deduce
that interactions may lead to ferromagnetism in a Fermi gas, and how?

Solution: E0 = 3
10NεF and x = 5gn

6εF
. When x is sufficiently large, i.e. interactions are sufficiently

strong, the minima of the energy is no longer at zero polarization p but at a finite one, and for even
stronger interactions one obtains p = 1, i.e. full polarization. This means that the Fermi gas is
unstable to spontaneous polarization at strong repulsive interactions, and it is expected to develop
ferromagnetism.

8


