Homework - to give back on March 7th

Exercise 1: linear reduction. Let us consider the matrix $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.

1. Why is A diagonalizable?
2. Observe that $(1,1,1)$ is an eigenvector for A.
3. From the trace and the determinant of A, determine the eigenvalues and their multiplicity.
4. Write the characteristic polynomial $\chi_{A}(X)=\operatorname{det}\left(A-X I_{3}\right)$ to check the previous result.

Exercise 2: optimization without constraints - geometrical point of view.

Let $f(x, y)=\frac{x^{2}+y^{2}}{5-2 y}$.

1. Give the domain of definition of f. What is the regularity of f on this domain? Show that f is not bounded above or below.
2. For which $k \in \mathbb{R}$ is the level set of f associated with k, i.e. $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=k\right\}$, non empty? Show that this level set is then a circle, and give its characteristics. Draw the level sets of f for $k=-6, k=-5, k=0, k=1, k=4$.
3. Determine the critical points of f. What is the local behaviour of f around these points?

Exercise 3: optimization without constraints - differential point of view.

Let $f(x, y, z)=x z-x-z+\frac{1}{2} y^{2}$. Is f bounded below or above? Determine the critical points of f. What is the behaviour of f around these points?

Exercise 4: concavity of the value function. Let D be a convex domain of $\mathbb{R}^{n}, f: D \rightarrow \mathbb{R}$ be a concave continuous function and $g_{i}: D \rightarrow \mathbb{R}$ be k convex continuous constraint functions. Assume that there exists a convex domain C of \mathbb{R}^{k} such that for all $c \in C$, the quantity $V(c)=\sup _{g(x) \leq c} f(x)$ is achieved at an admissible point. Prove that V is concave.

Exercise 5: optimization with constraints. We look at the domain $D=\left\{x \geq 0, y \geq 0, x^{2}+y^{2} \leq 5\right\}$ and at a point $P=\left(x_{P}, y_{P}\right)=(2,4)$ out of this domain. We are interested in the maximal distance between P and a point of D, and the minimal distance between P and a point of D. We define

$$
M=\max _{(x, y) \in D}\left(x_{P}-x\right)^{2}+\left(y_{P}-y\right)^{2} \quad m=\min _{(x, y) \in D}\left(x_{P}-x\right)^{2}+\left(y_{P}-y\right)^{2}
$$

1. Justify without computations that these two quantities are achieved.
2. Show that every point of the constraint D is qualified for the constrained optimization problem.
3. Write a Lagrangian function addressing both problems simultaneously, write the associated KuhnTucker system of (in)equalities, and solve it. Which ones of the solution are candidates for the considered optimization problems? Determine M and m.
4. Draw on a figure all the candidates obtained, and the gradients of the goal function and of the active constraints (contraintes saturées) at those points. Discuss for each of them if they are local extrema under constraints or not.
5. Now let $\left(x_{P}, y_{P}\right)$ be considered as parameters, staying close to $(2,4)$, and define $m\left(x_{P}, y_{P}\right)=$ $\min _{(x, y) \in D}\left(x_{P}-x\right)^{2}+\left(y_{P}-y\right)^{2}$. Assuming that the conditions of the envelope theorem are met, give the partial derivatives of m at $(2,4)$. Give a first order approximation of

$$
\min _{(x, y) \in D}(2.1-x)^{2}+(3.9-y)^{2} .
$$

