Continuous embeddings. Let Ω be \mathbb{R}^d , \mathbb{R}^d_+ or a bounded domain (i.e. open and connected) of \mathbb{R}^d with C^1 boundary. 1. If $1 \le p < d$, then $W^{1,p}(\Omega) \subset L^q(\Omega)$ for all $q \in \left[p, \frac{dp}{d-p}\right]$. 2. If p = d, then $W^{1,d}(\Omega) \subset L^q(\Omega)$ for all $q \in [d, \infty[$. 3. If $d , then <math>W^{1,p}(\Omega) \subset C^{1-\frac{d}{p}}(\overline{\Omega})$.

Exercise 1. Let Ω be a bounded domain of \mathbb{R}^d with C^1 boundary. Show that if p > d, $W^{1,p}(\Omega)$ is closed under multiplication.

Exercise 2. Optimality of the Sobolev embeddings.

Let $1 \le p < d$ and $\alpha \in [1, \infty]$. Show that if the inclusion $W^{1,p}(\mathbb{R}^d) \subset L^{\alpha}(\mathbb{R}^d)$ holds, then necessarily $p \le \alpha \le \frac{dp}{d-p}$. *Hint: Define* $u_{\lambda}(x) = u(\lambda x)$ for $\lambda > 0$.

Exercise 3. Let $m \ge 1$ and $1 \le p < \infty$. Show that

- 1. if $\frac{1}{p} \frac{m}{d} > 0$, then $W^{m,p}(\mathbb{R}^d) \subset L^q(\mathbb{R}^d)$, where $\frac{1}{q} = \frac{1}{p} \frac{m}{d}$,
- 2. if $\frac{1}{p} \frac{m}{d} = 0$, then $W^{m,p}(\mathbb{R}^d) \subset L^q(\mathbb{R}^d)$ for all q in $[p, \infty[$,
- 3. if $\frac{1}{p} \frac{m}{d} < 0$, then $W^{m,p}(\mathbb{R}^d) \subset L^{\infty}(\mathbb{R}^d)$ (in fact, one can even show that $W^{m,p}(\mathbb{R}^d) \subset C^k(\mathbb{R}^d)$ where $k = [m \frac{d}{p}]$).

Exercise 4 (Fourier series and the action functional). Let $\mathbb{T}^d = (\mathbb{R}/2\pi\mathbb{Z})^d$, for $n \in \mathbb{N}$, $H^n(\mathbb{T}^d)$ will denote the usual Sobolev space of order n on \mathbb{T}^d . For $u \in L^2(\mathbb{T}^d)$, we will work with its Fourier series

$$u(x) = \sum_{k \in \mathbb{Z}^d} u_k e^{ik \cdot x}$$

which converges in $L^2(\mathbb{T}^d)$ with $u_k \in \mathbb{C}$.

1. (a) Show that $H^n(\mathbb{T}^d) = \left\{ u \in L^2(\mathbb{T}^d) \mid \sum_{k \in \mathbb{Z}^d} |k|^{2n} |u_k|^2 < +\infty \right\}$ and that the Hermitian form

$$(u|v)_n := u_0 \overline{v_0} + \sum_{k \in \mathbb{Z}^d} |k|^{2n} u_k \overline{v_k}$$

defines an equivalent inner product for this Hilbert space.

Then, we define $H^s(\mathbb{T}^d) := \left\{ u \in L^2(\mathbb{T}^d) \mid \sum_{k \in \mathbb{Z}^d} |k|^{2s} |u_k|^2 < +\infty \right\}$ for all real number $s \ge 0$.

- (b) For $0 \leq s < t$, show the inclusion $H^t(\mathbb{T}^d) \hookrightarrow H^s(\mathbb{T}^d)$.
- (c) Denote by $j: H^{\frac{1}{2}} \hookrightarrow L^2$ the inclusion map and by $j^*: L^2 \to H^{\frac{1}{2}}$ its adjoint operator. Show that $j^*(L^2) \subset H^1$ and that $\|j^*(u)\|_1 \leq \|u\|_{L^2}$.
- (d) Find the relationship between $s \ge 0$ and $m \in \mathbb{N}$ providing a natural continuous injection $H^s(\mathbb{T}^d) \hookrightarrow C^m(\mathbb{T}^d)$.
- 2. We will now limit ourselves to the case d = 1 and study maps from \mathbb{T}^1 to \mathbb{C}^n . The only changes to make are to formally replace $u_k \in \mathbb{C}$ by $u_k \in \mathbb{C}^n$ and $u_k \overline{v_k}$ by $\langle u_k, v_k \rangle$ in the former questions where $\langle x, y \rangle = \operatorname{Re}(x\overline{y})$ denotes the usual inner product of the Euclidean space $\mathbb{R}^{2n} \simeq \mathbb{C}^n$.

We are interested in the study of the functional:

$$\Phi(u) = \int_0^1 \left(\frac{1}{2} \langle -iu', u \rangle - H \circ u\right) \mathrm{d}t.$$

where $u: \mathbb{T}^1 \to \mathbb{C}^n$ (regularity to be specified) and $H: \mathbb{C}^n \to \mathbb{R}$ is smooth.

- (a) Show that $a(u,v) := \int_0^1 \frac{1}{2} \langle -iu',v \rangle dt$ is a smooth bilinear form of $H^{\frac{1}{2}}(\mathbb{T}^1,\mathbb{C}^n)$.
- (b) Show that $b(x) := \int_0^1 H \circ u dt$ is a C^1 function of $H^{\frac{1}{2}}(\mathbb{T}^1, \mathbb{C}^n)$ such that its gradient $\nabla b : H^{\frac{1}{2}}(\mathbb{T}^1, \mathbb{C}^n) \to H^{\frac{1}{2}}(\mathbb{T}^1, \mathbb{C}^n)$ satisfies $\nabla b(x) = j^* \nabla H(x)$.
- (c) Show that if $u \in H^{\frac{1}{2}}(\mathbb{T}^1, \mathbb{C}^n)$ is a critical point of Φ (*i.e.* $\Phi'(u) = 0$), then $u \in C^{\infty}(\mathbb{T}^1, \mathbb{C}^n)$ and it is a periodic solution of the Hamiltonian equation:

$$u' = i\nabla H(u).$$