Continuous embeddings. Let Ω be $\mathbb{R}^{d}, \mathbb{R}_{+}^{d}$ or a bounded domain (i.e. open and connected) of \mathbb{R}^{d} with C^{1} boundary.

1. If $1 \leq p<d$, then $W^{1, p}(\Omega) \subset L^{q}(\Omega)$ for all $q \in\left[p, \frac{d p}{d-p}\right]$.
2. If $p=d$, then $W^{1, d}(\Omega) \subset L^{q}(\Omega)$ for all $q \in[d, \infty[$.
3. If $d<p<\infty$, then $W^{1, p}(\Omega) \subset C^{1-\frac{d}{p}}(\bar{\Omega})$.

Exercise 1. Let Ω be a bounded domain of \mathbb{R}^{d} with C^{1} boundary. Show that if $p>d, W^{1, p}(\Omega)$ is closed under multiplication.

Exercise 2. Optimality of the Sobolev embeddings.
Let $1 \leq p<d$ and $\alpha \in[1, \infty]$. Show that if the inclusion $W^{1, p}\left(\mathbb{R}^{d}\right) \subset L^{\alpha}\left(\mathbb{R}^{d}\right)$ holds, then necessarily $p \leq \alpha \leq \frac{d p}{d-p}$.
Hint: Define $u_{\lambda}(x)=u(\lambda x)$ for $\lambda>0$.

Exercise 3. Let $m \geq 1$ and $1 \leq p<\infty$. Show that

1. if $\frac{1}{p}-\frac{m}{d}>0$, then $W^{m, p}\left(\mathbb{R}^{d}\right) \subset L^{q}\left(\mathbb{R}^{d}\right)$, where $\frac{1}{q}=\frac{1}{p}-\frac{m}{d}$,
2. if $\frac{1}{p}-\frac{m}{d}=0$, then $W^{m, p}\left(\mathbb{R}^{d}\right) \subset L^{q}\left(\mathbb{R}^{d}\right)$ for all q in $[p, \infty[$,
3. if $\frac{1}{p}-\frac{m}{d}<0$, then $W^{m, p}\left(\mathbb{R}^{d}\right) \subset L^{\infty}\left(\mathbb{R}^{d}\right)$ (in fact, one can even show that $W^{m, p}\left(\mathbb{R}^{d}\right) \subset C^{k}\left(\mathbb{R}^{d}\right)$ where $\left.k=\left[m-\frac{d}{p}\right]\right)$.

Exercise 4 (Fourier series and the action functional). Let $\mathbb{T}^{d}=(\mathbb{R} / 2 \pi \mathbb{Z})^{d}$, for $n \in \mathbb{N}, H^{n}\left(\mathbb{T}^{d}\right)$ will denote the usual Sobolev space of order n on \mathbb{T}^{d}. For $u \in L^{2}\left(\mathbb{T}^{d}\right)$, we will work with its Fourier series

$$
u(x)=\sum_{k \in \mathbb{Z}^{d}} u_{k} e^{i k \cdot x}
$$

which converges in $L^{2}\left(\mathbb{T}^{d}\right)$ with $u_{k} \in \mathbb{C}$.

1. (a) Show that $H^{n}\left(\mathbb{T}^{d}\right)=\left\{\left.u \in L^{2}\left(\mathbb{T}^{d}\right)\left|\sum_{k \in \mathbb{Z}^{d}}\right| k\right|^{2 n}\left|u_{k}\right|^{2}<+\infty\right\}$ and that the Hermitian form

$$
(u \mid v)_{n}:=u_{0} \overline{v_{0}}+\sum_{k \in \mathbb{Z}^{d}}|k|^{2 n} u_{k} \overline{v_{k}}
$$

defines an equivalent inner product for this Hilbert space.
Then, we define $H^{s}\left(\mathbb{T}^{d}\right):=\left\{\left.u \in L^{2}\left(\mathbb{T}^{d}\right)\left|\sum_{k \in \mathbb{Z}^{d}}\right| k\right|^{2 s}\left|u_{k}\right|^{2}<+\infty\right\}$ for all real number $s \geq 0$.
(b) For $0 \leq s<t$, show the inclusion $H^{t}\left(\mathbb{T}^{d}\right) \hookrightarrow H^{s}\left(\mathbb{T}^{d}\right)$.
(c) Denote by $j: H^{\frac{1}{2}} \hookrightarrow L^{2}$ the inclusion map and by $j^{*}: L^{2} \rightarrow H^{\frac{1}{2}}$ its adjoint operator. Show that $j^{*}\left(L^{2}\right) \subset H^{1}$ and that $\left\|j^{*}(u)\right\|_{1} \leq\|u\|_{L^{2}}$.
(d) Find the relationship between $s \geq 0$ and $m \in \mathbb{N}$ providing a natural continuous injection $H^{s}\left(\mathbb{T}^{d}\right) \hookrightarrow C^{m}\left(\mathbb{T}^{d}\right)$.
2. We will now limit ourselves to the case $d=1$ and study maps from \mathbb{T}^{1} to \mathbb{C}^{n}. The only changes to make are to formally replace $u_{k} \in \mathbb{C}$ by $u_{k} \in \mathbb{C}^{n}$ and $u_{k} \overline{v_{k}}$ by $\left\langle u_{k}, v_{k}\right\rangle$ in the former questions where $\langle x, y\rangle=\operatorname{Re}(x \bar{y})$ denotes the usual inner product of the Euclidean space $\mathbb{R}^{2 n} \simeq \mathbb{C}^{n}$.
We are interested in the study of the functional:

$$
\Phi(u)=\int_{0}^{1}\left(\frac{1}{2}\left\langle-i u^{\prime}, u\right\rangle-H \circ u\right) \mathrm{d} t .
$$

where $u: \mathbb{T}^{1} \rightarrow \mathbb{C}^{n}$ (regularity to be specified) and $H: \mathbb{C}^{n} \rightarrow \mathbb{R}$ is smooth.
(a) Show that $a(u, v):=\int_{0}^{1} \frac{1}{2}\left\langle-i u^{\prime}, v\right\rangle \mathrm{d} t$ is a smooth bilinear form of $H^{\frac{1}{2}}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right)$.
(b) Show that $b(x):=\int_{0}^{1} H \circ u \mathrm{~d} t$ is a C^{1} function of $H^{\frac{1}{2}}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right)$ such that its gradient $\nabla b: H^{\frac{1}{2}}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right) \rightarrow$ $H^{\frac{1}{2}}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right)$ satisfies $\nabla b(x)=j^{*} \nabla H(x)$.
(c) Show that if $u \in H^{\frac{1}{2}}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right)$ is a critical point of $\Phi\left(\right.$ i.e. $\left.\Phi^{\prime}(u)=0\right)$, then $u \in C^{\infty}\left(\mathbb{T}^{1}, \mathbb{C}^{n}\right)$ and it is a periodic solution of the Hamiltonian equation:

$$
u^{\prime}=i \nabla H(u) .
$$

