Exercise 1. Some properties of $H^s(\mathbb{R}^d)$.

- 1. Show that $\delta_0 \in H^s(\mathbb{R}^d)$ for s < -d/2.
- 2. Show that if s > d/2, $H^s(\mathbb{R}^d)$ embeds continuously into $C_0(\mathbb{R}^d) = \{u \in C(\mathbb{R}^d) : u(x) \to 0 \text{ as } |x| \to \infty\}.$
- 3. Let $k \in \mathbb{N}$, and s > k + d/2. Show that $H^s(\mathbb{R}^d) \subset C^k(\mathbb{R}^d)$ and that if $|\alpha| \leq k$,

$$\lim_{\|x\|\to\infty} |D^{\alpha}u(x)| = 0, \quad \forall u \in H^s(\mathbb{R}^d).$$

4. Show that for every $u \in \mathcal{E}'(\mathbb{R}^d)$ there exist $s \in \mathbb{R}$ and C > 0 such that

$$\left| \left\langle (1+|\xi|^2)^{\frac{s}{2}} \mathcal{F}(u), \varphi \right\rangle \right| \le C \|\varphi\|_{L^2}, \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^d).$$

- 5. Conclude that $\mathcal{E}'(\mathbb{R}^d) \subset \bigcup_{s \in \mathbb{R}} H^s(\mathbb{R}^d)$.
- 6. Show that $H^{s_1}(\mathbb{R}^d)$ embeds continuously into $H^{s_2}(\mathbb{R}^d)$ for $s_1 \geq s_2$.
- 7. Suppose $s \in [d/2, d/2 + 1[.$
 - (a) Show that for all $\alpha \in [0, 1]$ and all $x, y, \xi \in \mathbb{R}^d$:

$$|e^{ix\cdot\xi} - e^{iy\cdot\xi}| \le 2|x-y|^{\alpha}|\xi|^{\alpha}.$$

(b) Deduce that for all $\alpha \in [0, s - d/2[$, there exists $C(\alpha)$ such that for all $u \in H^s(\mathbb{R}^d)$

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(\alpha) ||u||_{H^s}, \quad \forall x, y \in \mathbb{R}^d.$$

(c) Conclude that $H^s(\mathbb{R}^d)$ embeds continuously into $C^{\alpha}(\mathbb{R}^d)$.

Exercise 2. Some examples.

- 1. Let $a, b \in \mathbb{R}$ such that a < b. Show that the indicator function $\mathbb{1}_{[a,b]}$ belongs to $H^r(\mathbb{R})$ for all r < 1/2 but not to $H^{1/2}(\mathbb{R})$.
- 2. Let u be the function on the half-disc $\Omega = D(0, R) \cap \{(x, y), y > 0\}$ defined by

$$\begin{array}{rcl}]0, R[\times]0, \pi[\rightarrow & \mathbb{R} \\ (r, \theta) \mapsto & \theta. \end{array}$$

Show that u does not belong to $H^1(\Omega)$.

Exercise 3. Duality. Let $s \in \mathbb{R}$.

1. Show that every $v \in H^{-s}(\mathbb{R}^d)$ defines an element ψ_v of $H^s(\mathbb{R}^d)^*$ by

$$\langle \psi_v, u \rangle = \int_{\mathbb{R}^d} \overline{\mathcal{F}}(v) \mathcal{F}(u),$$

and $\|\psi_v\| \leq \|v\|_{H^{-s}}$.

2. Show that for every $\psi \in H^s(\mathbb{R}^d)^*$ there exists a unique $v \in H^{-s}(\mathbb{R}^d)$ such that

$$\langle \psi, u \rangle = \int_{\mathbb{R}^d} \overline{\mathcal{F}}(v) \mathcal{F}(u),$$

and that, moreover, it satisfies $\|v\|_{H^{-s}} = \|\psi\|$. Conclude that $H^s(\mathbb{R}^d)^*$ can be identified with $H^{-s}(\mathbb{R}^d)$.

3. Let $\Omega \subset \mathbb{R}^d$ be an open set. Recall that $H^s(\Omega)$ is defined as the space of restrictions to Ω of elements of $H^s(\mathbb{R}^d)$, with the norm

$$\|u\|_{H^s(\Omega)} = \inf_{\substack{v \in H^s(\mathbb{R}^d) \\ v|_{\Omega} = u}} \|v\|_{H^s(\mathbb{R}^d)}.$$

Show that for every integer $m \ge 1$, $H_0^m(\Omega)^*$ can be identified with $H^{-m}(\Omega)$. Hint: Recall that if F is a closed subspace of a Banach space E, then $F^* \cong E^*/F^{\perp}$. **Exercise 4.** Let Ω be a bounded domain of \mathbb{R}^d .

- 1. Let $u \in H^1(\Omega)$. Prove that $\Delta u \in H^{-1}(\Omega) = H^1_0(\Omega)^*$.
- 2. Let $u_0 \in H^1(\Omega)$ and $f \in H^{-1}(\Omega)$. Show that there exists a unique $u \in H^1(\Omega)$ such that

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = u_0, & \text{on } \partial \Omega. \end{cases}$$

Here the first identity is to be understood in the sense of distributions and the second one in the sense of traces: $u - u_0 \in H_0^1(\Omega)$.

Hint: Consider first the case $u_0 = 0$.