Exercise 1. Some properties of $H^{s}\left(\mathbb{R}^{d}\right)$.

1. Show that $\delta_{0} \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s<-d / 2$.
2. Show that if $s>d / 2, H^{s}\left(\mathbb{R}^{d}\right)$ embeds continuously into $C_{0}\left(\mathbb{R}^{d}\right)=\left\{u \in C\left(\mathbb{R}^{d}\right): u(x) \rightarrow 0\right.$ as $\left.|x| \rightarrow \infty\right\}$.
3. Let $k \in \mathbb{N}$, and $s>k+d / 2$. Show that $H^{s}\left(\mathbb{R}^{d}\right) \subset C^{k}\left(\mathbb{R}^{d}\right)$ and that if $|\alpha| \leqslant k$,

$$
\lim _{\|x\| \rightarrow \infty}\left|D^{\alpha} u(x)\right|=0, \quad \forall u \in H^{s}\left(\mathbb{R}^{d}\right)
$$

4. Show that for every $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$ there exist $s \in \mathbb{R}$ and $C>0$ such that

$$
\left|\left\langle\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \mathcal{F}(u), \varphi\right\rangle\right| \leq C\|\varphi\|_{L^{2}}, \quad \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right) .
$$

5. Conclude that $\mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right) \subset \bigcup_{s \in \mathbb{R}} H^{s}\left(\mathbb{R}^{d}\right)$.
6. Show that $H^{s_{1}}\left(\mathbb{R}^{d}\right)$ embeds continuously into $H^{s_{2}}\left(\mathbb{R}^{d}\right)$ for $s_{1} \geq s_{2}$.
7. Suppose $s \in] d / 2, d / 2+1[$.
(a) Show that for all $\alpha \in[0,1]$ and all $x, y, \xi \in \mathbb{R}^{d}$:

$$
\left|e^{i x \cdot \xi}-e^{i y \cdot \xi}\right| \leq 2|x-y|^{\alpha}|\xi|^{\alpha}
$$

(b) Deduce that for all $\alpha \in] 0, s-d / 2\left[\right.$, there exists $C(\alpha)$ such that for all $u \in H^{s}\left(\mathbb{R}^{d}\right)$

$$
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C(\alpha)\|u\|_{H^{s}}, \quad \forall x, y \in \mathbb{R}^{d} .
$$

(c) Conclude that $H^{s}\left(\mathbb{R}^{d}\right)$ embeds continuously into $C^{\alpha}\left(\mathbb{R}^{d}\right)$.

Exercise 2. Some examples.

1. Let $a, b \in \mathbb{R}$ such that $a<b$. Show that the indicator function $\mathbb{1}_{[a, b]}$ belongs to $H^{r}(\mathbb{R})$ for all $r<1 / 2$ but not to $H^{1 / 2}(\mathbb{R})$.
2. Let u be the function on the half-disc $\Omega=D(0, R) \cap\{(x, y), y>0\}$ defined by

$$
\begin{aligned}
] 0, R[\times] 0, \pi[& \rightarrow \mathbb{R} \\
(r, \theta) & \mapsto
\end{aligned} \theta .
$$

Show that u does not belong to $H^{1}(\Omega)$.

Exercise 3. Duality. Let $s \in \mathbb{R}$.

1. Show that every $v \in H^{-s}\left(\mathbb{R}^{d}\right)$ defines an element ψ_{v} of $H^{s}\left(\mathbb{R}^{d}\right)^{*}$ by

$$
\left\langle\psi_{v}, u\right\rangle=\int_{\mathbb{R}^{d}} \overline{\mathcal{F}}(v) \mathcal{F}(u),
$$

and $\left\|\psi_{v}\right\| \leq\|v\|_{H^{-s}}$.
2. Show that for every $\psi \in H^{s}\left(\mathbb{R}^{d}\right)^{*}$ there exists a unique $v \in H^{-s}\left(\mathbb{R}^{d}\right)$ such that

$$
\langle\psi, u\rangle=\int_{\mathbb{R}^{d}} \overline{\mathcal{F}}(v) \mathcal{F}(u),
$$

and that, moreover, it satisfies $\|v\|_{H^{-s}}=\|\psi\|$. Conclude that $H^{s}\left(\mathbb{R}^{d}\right)^{*}$ can be identified with $H^{-s}\left(\mathbb{R}^{d}\right)$.
3. Let $\Omega \subset \mathbb{R}^{d}$ be an open set. Recall that $H^{s}(\Omega)$ is defined as the space of restrictions to Ω of elements of $H^{s}\left(\mathbb{R}^{d}\right)$, with the norm

$$
\|u\|_{H^{s}(\Omega)}=\inf _{\substack{\left.v \in H^{s}\left(\mathbb{R}^{d}\right) \\ v\right|_{\Omega}=u}}\|v\|_{H^{s}\left(\mathbb{R}^{d}\right)}
$$

Show that for every integer $m \geq 1, H_{0}^{m}(\Omega)^{*}$ can be identified with $H^{-m}(\Omega)$.
Hint: Recall that if F is a closed subspace of a Banach space E, then $F^{*} \cong E^{*} / F^{\perp}$.

Exercise 4. Let Ω be a bounded domain of \mathbb{R}^{d}.

1. Let $u \in H^{1}(\Omega)$. Prove that $\Delta u \in H^{-1}(\Omega)=H_{0}^{1}(\Omega)^{*}$.
2. Let $u_{0} \in H^{1}(\Omega)$ and $f \in H^{-1}(\Omega)$. Show that there exists a unique $u \in H^{1}(\Omega)$ such that

$$
\left\{\begin{aligned}
\Delta u & =f & & \text { in } \Omega \\
u & =u_{0}, & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Here the first identity is to be understood in the sense of distributions and the second one in the sense of traces: $u-u_{0} \in H_{0}^{1}(\Omega)$.
Hint: Consider first the case $u_{0}=0$.

