Sheet 2 - Banach-Steinhaus, open map and closed graph

Exercise 1. Let *E* and *F* be two Banach spaces. Let us consider a sequence of continuous linear mappings $(T_n : E \to F)$ such that for every $x \in E$, $(T_n x)$ converges towards a limit denoted by Tx.

- 1. Show that $x \mapsto Tx$ is linear.
- 2. Show that $\sup ||T_n|| < +\infty$. Deduce that T is continuous.
- 3. Show that

$$||T|| \leq \liminf_{n \to +\infty} ||T_n||.$$

Exercise 2. Let E be a Banach space. Let us consider two closed subspaces F and G such that F + G is closed too.

1. Prove the existence of a finite constant C > 0 such that, for every $z \in F + G$, there exists $x \in F$ and $y \in G$ satisfying

$$||x|| \leq C||z||, ||y|| \leq C||z||$$
 and $z = x + y.$

2. Deduce that there exists a finite constant C' > 0 such that, for all $x \in E$

$$d(x,F\cap G)\leqslant C'\Big[d(x,F)+d(x,G)\Big].$$

Exercise 3 (A space with two norms). 1. Let *E* be a vector space endowed with two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ such that both $(E, \|\cdot\|_1)$ and $(E, \|\cdot\|_2)$ are Banach spaces. Assume the existence of a finite constant C > 0 such that

$$\forall x \in E, \quad \|x\|_1 \leqslant C \|x\|_2$$

Prove that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

2. Consider the classical norms $\|\cdot\|_{L^1}$ and $\|\cdot\|_{L^2}$ over $L^2([0,1])$. Consider also the linear map

$$\begin{array}{rccc} T: & (L^2, \|\cdot\|_{L^1}) & \to & (L^2, \|\cdot\|_{L^2}) \\ & f & \mapsto & f. \end{array}$$

- (a) Verify that $\|\cdot\|_{L^1}$ is indeed a norm on L^2 .
- (b) Show that the graph of T is closed.
- (c) Prove that T is not continuous.
- (d) What can we deduce from above ?

Exercise 4 (Fourier series of continuous functions). We denote by $C(\mathbb{T})$ the Banach space of continuous functions on the torus $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. We are going to address the following question: Is it true that for all $f \in C(\mathbb{T})$, the Fourier series of f converges pointwise to f?

Recall that if $f \in C(\mathbb{T})$, the Fourier series' n^{th} partial sum at a point x is given by

$$s_n(f;x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt,$$

where D_n is the Dirichlet kernel, defined by

$$D_n(t) = \sum_{k=-n}^n e^{ikt}.$$

Observe that D_n is an \mathbb{R} -valued function. For each $n \in \mathbb{N}$ and f in $C(\mathbb{T})$, we define $\Lambda_n f = s_n(f; 0)$.

1. Let us prove that the norm of Λ_n in the dual of $(C(\mathbb{T}), \|\cdot\|_{\infty})$ is equal to

$$||D_n||_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| \, dt.$$

- (a) Prove that $\|\Lambda_n\| \leq \|D_n\|_1$.
- (b) We fix n and define $g = \mathbb{1}_{\{D_n \ge 0\}} \mathbb{1}_{\{D_n < 0\}}$. Show that $\Lambda_n(f_j) \to \|D_n\|_1$ for a suitable family $f_j \in C(\mathbb{T})$ satisfying $f_j D_n \to gD_n$ pointwise.

2. Prove that

$$D_n(t) = \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)}, \quad \forall t \in (-\pi, \pi).$$

Hint: Consider $e^{it/2}D_n - e^{-it/2}D_n$.

3. Prove that $||D_n||_1 \to \infty$ as $n \to \infty$. Hint: Recall that $|\sin(t)| \le |t|$.

4. Conclude.

Exercise 5 (Fourier coefficients of L^1 functions). For f in $L^1(\mathbb{T})$, we define $\hat{f}: \mathbb{Z} \to \mathbb{C}$ by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

We denote by c_0 the space of complex valued functions on \mathbb{Z} tending to 0 at $\pm \infty$.

- 1. Prove that $(c_0, \|\cdot\|_{\infty})$ is a Banach space.
- 2. Prove that, for all $f \in L^1(\mathbb{T})$, $\hat{f} \in c_0$. Hint: Recall that the trigonometric polynomials $(\sum_{k=-n}^n a_k e^{ikt})$ are dense in $C(\mathbb{T})$.

Now we want to study the converse. In other words, is every element of c_0 the sequence of Fourier coefficients of a function in $L^1(\mathbb{T})$?

- 3. Prove that $\Lambda: f \to \hat{f}$ defines a bounded linear map from $L^1(\mathbb{T})$ to c_0 .
- 4. Prove that Λ is injective. *Hint:* You may use the fact that, for every measurable set $A \subseteq \mathbb{T}$, there exists a sequence of continuous functions $g_n : \mathbb{T} \to [0,1]$ such that $g_n \to \mathbb{1}_A$ almost everywhere.
- 5. Show that $f \to \hat{f}$ is not onto. Hint: You may use the Dirichlet kernel defined in the previous exercise.