Exercise 1. Let *E* be a locally convex topological vector space (l.c.t.v.s.) whose topology is induced by a (separating) countable family of semi-norms $(p_n)_{n \in \mathbb{N}}$. We define

$$d(x,y) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

Let us prove that the topology induced by d and the topology induced by the family of seminorms coincide.

- 1. Show that $g:[0,\infty) \to \mathbb{R}$ defined by $g(t) = \frac{t}{1+t}$ is an increasing sub-additive function and give its image. Deduce that d is a translation invariant distance on E.
- 2. Give a basis of neighbourhoods of 0_E for the topology induced by the family of semi-norms, and show that every neighbourhood of 0_E contains an open ball for the distance d.
- 3. Show that every open ball for the distance d centered on 0_E contains a neighbourhood of 0_E for the topology induced by the family of semi-norms.
- 4. Conclude.

Recall the following definitions of bounded sets:

- We say that a subset A of a topological vector space X is bounded if, for every neighbourhood V of 0_X , there exists $\lambda > 0$ such that $A \subset \lambda V$.
- We say that a subset A of a metric space X is bounded if there exists r > 0 such that $A \subset B(0_X, r)$.
- 5. Are both definitions equivalent? Take a look at Exercise 2 for a concrete example.

Exercise 2. Let Ω be an open subset of \mathbb{R}^N and $(K_n)_{n \in \mathbb{N}}$ a sequence of compact subsets of Ω such that $K_n \subseteq \check{K}_{n+1}$ and $\bigcup K_n = \Omega$. The space $C(\Omega)$ of continuous functions on Ω is a l.c.t.v.s. for the topology induced by the family of seminorms

$$p_n(f) = \sup_{x \in K_n} |f(x)|, \quad n \in \mathbb{N}.$$

- 1. Prove that $(C(\Omega), (p_n))$ is a Fréchet space (i.e. complete for the distance defined in Exercise 1). Hint: Fix $n_0 \in \mathbb{N}$ and prove that every Cauchy sequence in $C(\Omega)$ defines a Cauchy sequence in $C(K_{n_0})$ by restriction.
- 2. Recall the first definition of bounded set from Exercise 1. Prove that if B is a subset of equibounded functions of $C(\Omega)$ (*i.e.* $\sup_{f \in B} ||f||_{\infty} < \infty$), B is bounded.
- 3. Take f_n a sequence of continuous function on Ω such that $f_n : \Omega \to [0, n]$, $f_n = 0$ on K_n and $f_n = n$ on $\Omega \setminus K_{n+1}$. Show that $\bigcup_n \{f_n\}$ is a bounded subset of $C(\Omega)$.
- 4. Prove that $C(\mathbb{R})$ is not locally bounded, that is, the origin does not have a bounded neighbourhood. Hence the subsets of the previous questions are <u>not</u> neighbourhoods of the origin !

Now consider the space $C^{\infty}(\Omega)$ of smooth functions on Ω . This is also a l.c.t.v.s. for the family of seminorms

$$p_{n,\alpha}(f) = \sup_{x \in K_n} |D^{\alpha}f(x)|, \quad n \in \mathbb{N}, \ \alpha \in \mathbb{N}^N,$$

where $D^{\alpha}f = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_N}^{\alpha_N}$.

- 5. Prove that the derivation $f \mapsto \partial_{x_i} f$ defines a continuous linear operator on $C^{\infty}(\Omega)$ for all i = 1, ..., N.
- 6. Deduce that every linear differential operator (i.e. $P(\partial_{x_1}, ..., \partial_{x_N})$ with $P \in \mathbb{R}[X_1, ..., X_N]$) is continuous on $C^{\infty}(\Omega)$.

Exercise 3. Let E be a normed space.

1. Let G be a subspace and $g: G \to \mathbb{R}$ a continuous linear form. Show that there exists a continuous linear form f over E that extends g, such that

$$||f||_{E^*} = ||g||_{G^*}.$$

2. In this question and only in this one, we assume that E is a Hilbert space. Show that such an extension is unique. Hint: recall that $E = \overline{G} \oplus G^{\perp}$.

- 3. Show that for every $x \in E$, there exists $f \in E^*$ such that $||f||_{E^*} = 1$ and f(x) = ||x||.
- 4. Deduce that, for every $x \in E$,

$$||x|| = \max_{\substack{f \in E^* \\ \|f\|_{E^*} \leqslant 1}} |f(x)|$$

Remark: In general it is not true that

$$||f||_{E^*} = \max_{\substack{x \in E \\ ||x|| \leqslant 1}} |f(x)|$$

In fact, James' theorem asserts that, for Banach spaces, this characterizes reflexivity.

5. Suppose that E is a Banach space. Let B^* be a subset of E^* such that

$$\forall x \in E, \quad \sup_{f \in B^*} f(x) < +\infty.$$

Show that B^* is bounded.

6. (Continuing.) Let B be a subset of E such that

$$\forall f \in E^*, \quad \sup_{x \in B} f(x) < +\infty.$$

Prove that B is bounded.

Exercise 4. Let $p \in]0,1[$ (mind that this range is unusual !). One denotes L^p the set of real-valued measurable functions f defined over [0,1], modulo almost everywhere vanishing functions, for which the following quantity is finite:

$$||f||_p = \left(\int_0^1 |f|^p \mathrm{d}x\right)^{\frac{1}{p}}.$$

- 1. (a) For every $a, b \ge 0$, show that $(a+b)^p \le a^p + b^p$.
 - (b) Let $f \in L^p$ and $n \in \mathbb{N}^*$ be given. Prove that there exists a partition of [0, 1] in n intervals I_1, \ldots, I_n such that

$$\int_{I_j} |f|^p \mathrm{d}x = \frac{1}{n} ||f||_p^p$$

and compute $||f\mathbb{1}_{I_i}||_p$.

- 2. Show that L^p is a vector space and that $d(f,g) = ||f g||_p^p$ is a distance. Prove that (L^p, d) is complete.
- 3. Let q < 0 be such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $f, g : [0, 1] \to \mathbb{R}$ be two measurable functions such that, almost everywhere, $f \ge 0$ and g > 0. Show that

$$\int_0^1 |fg| \mathrm{d}x \ge \|f\|_p \ \left\|\frac{1}{g}\right\|_{|q|}^{-1}.$$

4. Let f_1, \ldots, f_n be L^p -functions. Prove the following inequalities

$$\sum_{i=1}^{n} \|f_i\|_p \leqslant \left\|\sum_{i=1}^{n} |f_i|\right\|_p \quad \text{and} \quad \left\|\sum_{i=1}^{n} f_i\right\|_p \leqslant n^{\frac{1}{p}-1} \sum_{i=1}^{n} \|f_i\|_p.$$

Hint: For the latter inequality, one may first prove that if $\theta \ge 1$ and $a_1, \ldots, a_n \ge 0$, then one has

$$\left(\sum a_i\right)^{\theta} \leqslant n^{\theta-1} \sum a_i^{\theta}.$$

- 5. Verify that the constant $n^{\frac{1}{p}-1}$ is accurate in the latter inequality.
- 6. Prove that the only convex open domain in L^p containing $f \equiv 0$ is L^p itself. Deduce that the Fréchet space L^p is not locally convex.
- 7. Show that the (topological) dual space of L^p reduces to $\{0\}$.
- 8. Let N, a semi-norm over L^p , be continuous for the topology associated with d.
 - (a) Show that there exists C > 0 such that for every $f \in L^p$

$$N(f) \leqslant C \|f\|_p.$$

(b) Deduce that for all $f \in L^p$, N(f) = 0. Hint: One might consider the smallest constant C in the previous question.