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Exercise 1. Let E be a locally convex topological vector space (l.c.t.v.s.) whose topology is induced by a (separating)
countable family of semi-norms (pn)n∈N. We define

d(x, y) =
�

n∈N

1

2n
pn(x− y)

1 + pn(x− y)

Let us prove that the topology induced by d and the topology induced by the family of seminorms coincide.

1. Show that g : [0,∞) → R defined by g(t) = t
1+t is an increasing sub-additive function and give its image. Deduce

that d is a translation invariant distance on E.

2. Give a basis of neighbourhoods of 0E for the topology induced by the family of semi-norms, and show that every
neighbourhood of 0E contains an open ball for the distance d.

3. Show that every open ball for the distance d centered on 0E contains a neighbourhood of 0E for the topology induced
by the family of semi-norms.

4. Conclude.

Recall the following definitions of bounded sets:

• We say that a subset A of a topological vector space X is bounded if, for every neighbourhood V of 0X , there exists
λ > 0 such that A ⊂ λV .

• We say that a subset A of a metric space X is bounded if there exists r > 0 such that A ⊂ B(0X , r).

5. Are both definitions equivalent? Take a look at Exercise 2 for a concrete example.

Exercise 2. Let Ω be an open subset of RN and (Kn)n∈N a sequence of compact subsets of Ω such that Kn ⊆ K̊n+1

and
�
Kn = Ω. The space C(Ω) of continuous functions on Ω is a l.c.t.v.s. for the topology induced by the family of

seminorms

pn(f) = sup
x∈Kn

|f(x)|, n ∈ N.

1. Prove that (C(Ω), (pn)) is a Fréchet space (i.e. complete for the distance defined in Exercise 1).
Hint: Fix n0 ∈ N and prove that every Cauchy sequence in C(Ω) defines a Cauchy sequence in C(Kn0

) by restriction.

2. Recall the first definition of bounded set from Exercise 1. Prove that if B is a subset of equibounded functions of
C(Ω) (i.e. supf∈B �f�∞ < ∞), B is bounded.

3. Take fn a sequence of continuous function on Ω such that fn : Ω → [0, n], fn = 0 on Kn and fn = n on Ω \Kn+1.
Show that ∪n{fn} is a bounded subset of C(Ω).

4. Prove that C(R) is not locally bounded, that is, the origin does not have a bounded neighbourhood. Hence the
subsets of the previous questions are not neighbourhoods of the origin !

Now consider the space C∞(Ω) of smooth functions on Ω. This is also a l.c.t.v.s. for the family of seminorms

pn,α(f) = sup
x∈Kn

|Dαf(x)|, n ∈ N, α ∈ NN ,

where Dαf = ∂α1
x1

· · · ∂αN
xN

.

5. Prove that the derivation f �→ ∂xif defines a continuous linear operator on C∞(Ω) for all i = 1, ..., N .

6. Deduce that every linear differential operator (i.e. P (∂x1
, ..., ∂xN

) with P ∈ R[X1, ..., XN ]) is continuous on C∞(Ω).

Exercise 3. Let E be a normed space.

1. Let G be a subspace and g : G → R a continuous linear form. Show that there exists a continuous linear form f
over E that extends g, such that

�f�E∗ = �g�G∗ .

2. In this question and only in this one, we assume that E is a Hilbert space. Show that such an extension is unique.
Hint: recall that E = Ḡ⊕G⊥.
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3. Show that for every x ∈ E, there exists f ∈ E∗ such that �f�E∗ = 1 and f(x) = �x�.
4. Deduce that, for every x ∈ E,

�x� = max
f∈E∗

�f�E∗�1

|f(x)|.

Remark: In general it is not true that
�f�E∗ = max

x∈E
�x��1

|f(x)|.

In fact, James’ theorem asserts that, for Banach spaces, this characterizes reflexivity.

5. Suppose that E is a Banach space. Let B∗ be a subset of E∗ such that

∀x ∈ E, sup
f∈B∗

f(x) < +∞.

Show that B∗ is bounded.

6. (Continuing.) Let B be a subset of E such that

∀f ∈ E∗, sup
x∈B

f(x) < +∞.

Prove that B is bounded.

Exercise 4. Let p ∈]0, 1[ (mind that this range is unusual !). One denotes Lp the set of real-valued measurable functions
f defined over [0, 1], modulo almost everywhere vanishing functions, for which the following quantity is finite:

�f�p =

�� 1

0

|f |pdx
� 1

p

.

1. (a) For every a, b � 0, show that (a+ b)p � ap + bp.
(b) Let f ∈ Lp and n ∈ N∗ be given. Prove that there exists a partition of [0, 1] in n intervals I1, . . . , In such that

�

Ij

|f |pdx =
1

n
�f�pp,

and compute �f�Ij�p.
2. Show that Lp is a vector space and that d(f, g) = �f − g�pp is a distance. Prove that (Lp, d) is complete.

3. Let q < 0 be such that 1
p + 1

q = 1. Let f, g : [0, 1] → R be two measurable functions such that, almost everywhere,
f � 0 and g > 0. Show that � 1

0

|fg|dx � �f�p
����
1

g

����
−1

|q|
.

4. Let f1, . . . , fn be Lp-functions. Prove the following inequalities
n�

i=1

�fi�p �
�����

n�

i=1

|fi|
�����
p

and

�����
n�

i=1

fi

�����
p

� n
1
p−1

n�

i=1

�fi�p.

Hint: For the latter inequality, one may first prove that if θ � 1 and a1, . . . , an � 0, then one has
��

ai

�θ

� nθ−1
�

aθi .

5. Verify that the constant n
1
p−1 is accurate in the latter inequality.

6. Prove that the only convex open domain in Lp containing f ≡ 0 is Lp itself. Deduce that the Fréchet space Lp is
not locally convex.

7. Show that the (topological) dual space of Lp reduces to {0}.
8. Let N , a semi-norm over Lp, be continuous for the topology associated with d.

(a) Show that there exists C > 0 such that for every f ∈ Lp

N(f) � C�f�p.
(b) Deduce that for all f ∈ Lp, N(f) = 0. Hint: One might consider the smallest constant C in the previous

question.


