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Exercise 1. Let E be a l.c.t.v.s. One says that H is a closed half-space if there exists a ϕ ∈ E∗ and a ∈ R such that
H = {x ∈ E | ϕ(x) � a} (why is it closed ?).

1. If C is a convex subset of E, show that its closure C is convex.

2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces containing A.

3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A of E.

Exercise 2. Let H be the Hilbert space L2([−1, 1]). For every α ∈ R, let Cα ⊂ H be the subset of continuous functions
f : [−1, 1] → R such that f(0) = α. Prove that Cα is a convex dense subset of H. Deduce that, if α �= β, then Cα and Cβ

are convex disjoint subsets that cannot be separated by a continuous linear form.

Exercise 3 (Amenability (Moyennabilité) of Z). A group G is amenable if there exists a function µ : P(G) → R+,
called mean, such that

• µ(G) = 1,

• µ is finitely additive: ∀A,B ⊂ G with A ∩B = ∅, µ(A ∪B) = µ(A) + µ(B),

• µ is left-invariant: ∀g ∈ G and A ⊂ G, µ(gA) = µ(A).

1. Let � be the constant sequence equal to 1 and s : �∞(Z) → �∞(Z) be the shift operator, defined by s(x)i = xi+1 for
all i ∈ Z and x ∈ �∞(Z). If F denotes the range of s− id, prove that �y − ��∞ ≥ 1 for all y in F .

2. Prove that there exists a continuous linear form φ on �∞(Z) such that φ(�) = 1 and φ ◦ s = φ.

3. Deduce that Z is amenable.

Exercise 4 (Hahn-Banach theorems for complex spaces). Let E be a l.c.t.v.s. over C.

1. Let f : E → C be a C-linear form. Prove that its real part is R-linear. Conversely, show that for every R-linear
form g : E → R, there exists a unique C-linear form f : E → C such that Ref = g.

2. (Analytic form) Let F be a subspace of E and let f : F → C be a C-linear form. Suppose that there is a semi-norm
p : E → [0,∞) such that

|f(x)| ≤ p(x), ∀x ∈ F.

Prove that there there exists a linear form f̃ : E → C extending f , and such that |f̃ | ≤ p.

3. (Geometric form) Let A,B ⊂ E two disjoint convex sets with A open. Prove that there exists f ∈ E∗ such that

sup
x∈A

Ref(x) ≤ inf
x∈B

Ref(x).

Exercise 5. Recall that a point a in a convex set C is extreme if, whenever a = θb+ (1− θ)c with θ ∈ (0, 1) and b, c ∈ C,
one has b = c.

1. In a Hilbert space, what are the extreme points of the unit closed ball ? What about the open ball ?

2. Let c0 denote the space of real sequences (an)n∈N which converge to zero. We endow c0 with the norm � · �∞.

(a) Show that (c0, � · �∞) is a Banach space.

(b) Show that the closed unit ball of c0 does not admit extreme points.

(c) Is it compact ?

3. Let I ⊂ R be an interval. Show that the unit closed ball of L1(I) does not admit extreme points.

Exercise 6. An n× n matrix with real entries is bi-stochastic if its entries are non-negative, and the sum of the entries
of either rows or columns equals 1. One denotes SMn(R) the set of bistochastic matrices. Show that every matrix in
SMn(R) is actually a convex combination of permutation matrices.
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Exercise 7. Let E be a Banach space, (xn) a sequence in E and (fn) a sequence in E∗. Suppose that xn converges
weakly to x ∈ E and fn converges ∗-weakly to f ∈ E∗. Is it true that fn(xn) converges to f(x)?
Hint: Consider E = �2 and xn = en the canonical basis.

Exercise 8. Let E be a Banach space. Recall that if f, f1, · · · , fn are linear forms on E such that
n�

i=1

ker fi ⊂ ker f , there

exist λ1, · · · ,λn ∈ R such that f =

n�

i=1

λifi.

1. Show that if E is finite-dimensional, then the weak topology σ(E,E∗) and the strong topology coincide.

2. We assume that E is infinite-dimensional.

(a) Show that every weak open subset of E contains a straight line.
(b) Deduce that B = {x ∈ E | �x� < 1} is not open for the weak topology.
(c) Show that S = {x ∈ E | �x� = 1} is not closed for the weak topology.

Exercise 9. See Exercise 3, Sheet 3. Let E be a Banach space and (xn) be a sequence of E converging towards x in the
weak topology. Show that (xn) is bounded and that

�x� � lim inf
n→+∞

�xn�.

Exercise 10. Let E,F be two Banach spaces and T : E → F be a linear map. Show that T is strongly continuous (i.e.
continuous from (E, � · �E) to (F, � · �F )) if and only if T is weakly continuous (i.e. continuous from (E,σ(E,E∗)) to
(F,σ(F, F ∗))).

Exercise 11. Let p, q ∈ [1,+∞] be such that 1
p + 1

q = 1. We introduce the map

Jp : �q → (�p)∗

(an) �→
�
(xn) �→

+∞�

n=0

anxn

�

and the canonical family of sequences ek of �p, for which every term is zero, except the kth which is 1.

1. For p < +∞, show that Jp is a surjective isometry.

2. Show that J∞ is a non-surjective isometry.

3. For 1 < p < +∞, deduce that ek converges weakly but not strongly towards the null sequence when k → +∞.

4. We still assume that 1 < p < +∞, and consider the following subset of �p :

E = {en + nem | n,m ∈ N, m > n}.
(a) Show that E is a closed subset for the strong topology.
(b) Show that 0 is in the weak closure of E.
(c) Show that a sequence of E cannot converge weakly towards 0.

Exercise 12 (The weak topology is not metrizable). Let E be an infinite dimensional Banach space. The purpose
of this exercise is to prove that there does not exist a distance on E that generates the weak topology.

1. Suppose first that every weakly convergent sequence is strongly convergent (i.e. for the norm). Prove that if such a
distance existed, then the weak topology and the norm topology would be the same.

2. Now we assume that there exists a weakly convergent sequence that does not converge in norm.

(a) Prove that there exists a sequence (en) ⊂ E such that en converges weakly to 0, and �en� = 1 for all n ∈ N.
(b) Define yn,m = en + nem and prove that the set F = {yn,m : m > n} is closed for the norm.
(c) Prove that 0 lies in the weak closure of F , but there is no sequence in F converging weakly to 0.
(d) Conclude that the weak topology is not metrizable.


