Exercise 1. Let *E* be a l.c.t.v.s. One says that *H* is a closed half-space if there exists a $\varphi \in E^*$ and $a \in \mathbb{R}$ such that $H = \{x \in E \mid \varphi(x) \leq a\}$ (why is it closed ?).

- 1. If C is a convex subset of E, show that its closure \overline{C} is convex.
- 2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces containing A.
- 3. Deduce that $\overline{co(A)}$ is the intersection of the closed half-spaces containing A for any subset A of E.

Exercise 2. Let H be the Hilbert space $L^2([-1,1])$. For every $\alpha \in \mathbb{R}$, let $C_\alpha \subset H$ be the subset of continuous functions $f: [-1,1] \to \mathbb{R}$ such that $f(0) = \alpha$. Prove that C_α is a convex dense subset of H. Deduce that, if $\alpha \neq \beta$, then C_α and C_β are convex disjoint subsets that cannot be separated by a continuous linear form.

Exercise 3 (Amenability (Moyennabilité) of \mathbb{Z}). A group G is amenable if there exists a function $\mu : \mathcal{P}(G) \to \mathbb{R}_+$, called *mean*, such that

- $\mu(G) = 1$,
- μ is finitely additive: $\forall A, B \subset G$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$,
- μ is left-invariant: $\forall g \in G$ and $A \subset G$, $\mu(gA) = \mu(A)$.
- 1. Let $\mathbb{1}$ be the constant sequence equal to 1 and $s: \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ be the shift operator, defined by $s(x)_i = x_{i+1}$ for all $i \in \mathbb{Z}$ and $x \in \ell^{\infty}(\mathbb{Z})$. If F denotes the range of s id, prove that $||y \mathbb{1}||_{\infty} \ge 1$ for all y in F.
- 2. Prove that there exists a continuous linear form ϕ on $\ell^{\infty}(\mathbb{Z})$ such that $\phi(\mathbb{1}) = 1$ and $\phi \circ s = \phi$.
- 3. Deduce that \mathbb{Z} is amenable.

Exercise 4 (Hahn-Banach theorems for complex spaces). Let E be a l.c.t.v.s. over \mathbb{C} .

- 1. Let $f : E \to \mathbb{C}$ be a \mathbb{C} -linear form. Prove that its real part is \mathbb{R} -linear. Conversely, show that for every \mathbb{R} -linear form $g : E \to \mathbb{R}$, there exists a unique \mathbb{C} -linear form $f : E \to \mathbb{C}$ such that $\operatorname{Re} f = g$.
- 2. (Analytic form) Let F be a subspace of E and let $f : F \to \mathbb{C}$ be a \mathbb{C} -linear form. Suppose that there is a semi-norm $p : E \to [0, \infty)$ such that

$$|f(x)| \le p(x), \quad \forall x \in F.$$

Prove that there there exists a linear form $\tilde{f}: E \to \mathbb{C}$ extending f, and such that $|\tilde{f}| \leq p$.

3. (Geometric form) Let $A, B \subset E$ two disjoint convex sets with A open. Prove that there exists $f \in E^*$ such that

$$\sup_{x \in A} \operatorname{Re} f(x) \le \inf_{x \in B} \operatorname{Re} f(x).$$

Exercise 5. Recall that a point a in a convex set C is extreme if, whenever $a = \theta b + (1 - \theta)c$ with $\theta \in (0, 1)$ and $b, c \in C$, one has b = c.

- 1. In a Hilbert space, what are the extreme points of the unit closed ball? What about the open ball?
- 2. Let c_0 denote the space of real sequences $(a_n)_{n \in \mathbb{N}}$ which converge to zero. We endow c_0 with the norm $\|\cdot\|_{\infty}$.
 - (a) Show that $(c_0, \|\cdot\|_{\infty})$ is a Banach space.
 - (b) Show that the closed unit ball of c_0 does not admit extreme points.
 - (c) Is it compact ?
- 3. Let $I \subset \mathbb{R}$ be an interval. Show that the unit closed ball of $L^1(I)$ does not admit extreme points.

Exercise 6. An $n \times n$ matrix with real entries is bi-stochastic if its entries are non-negative, and the sum of the entries of either rows or columns equals 1. One denotes $SM_n(\mathbb{R})$ the set of bistochastic matrices. Show that every matrix in $SM_n(\mathbb{R})$ is actually a convex combination of permutation matrices.

Exercise 7. Let E be a Banach space, (x_n) a sequence in E and (f_n) a sequence in E^* . Suppose that x_n converges weakly to $x \in E$ and f_n converges *-weakly to $f \in E^*$. Is it true that $f_n(x_n)$ converges to f(x)? *Hint:* Consider $E = \ell^2$ and $x_n = e_n$ the canonical basis.

Exercise 8. Let *E* be a Banach space. Recall that if f, f_1, \dots, f_n are linear forms on *E* such that $\bigcap_{i=1}^n \ker f_i \subset \ker f$, there

exist
$$\lambda_1, \dots, \lambda_n \in \mathbb{R}$$
 such that $f = \sum_{i=1}^n \lambda_i f_i$

1. Show that if E is finite-dimensional, then the weak topology $\sigma(E, E^*)$ and the strong topology coincide.

2. We assume that E is infinite-dimensional.

- (a) Show that every weak open subset of E contains a straight line.
- (b) Deduce that $B = \{x \in E \mid ||x|| < 1\}$ is not open for the weak topology.
- (c) Show that $S = \{x \in E \mid ||x|| = 1\}$ is not closed for the weak topology.

Exercise 9. See Exercise 3, Sheet 3. Let E be a Banach space and (x_n) be a sequence of E converging towards x in the weak topology. Show that (x_n) is bounded and that

$$\|x\| \leqslant \liminf_{n \to +\infty} \|x_n\|.$$

Exercise 10. Let E, F be two Banach spaces and $T : E \to F$ be a linear map. Show that T is strongly continuous (*i.e.* continuous from $(E, \|\cdot\|_E)$ to $(F, \|\cdot\|_F)$) if and only if T is weakly continuous (*i.e.* continuous from $(E, \sigma(E, E^*))$ to $(F, \sigma(F, F^*))$).

Exercise 11. Let $p, q \in [1, +\infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. We introduce the map

$$\begin{array}{rccc} I_p : & \ell^q & \to & (\ell^p)^* \\ & & (a_n) & \mapsto & \left((x_n) \mapsto \sum_{n=0}^{+\infty} a_n x_n \right) \end{array}$$

and the canonical family of sequences e^k of ℓ^p , for which every term is zero, except the k^{th} which is 1.

- 1. For $p < +\infty$, show that J_p is a surjective isometry.
- 2. Show that J_{∞} is a non-surjective isometry.
- 3. For $1 , deduce that <math>e^k$ converges weakly but not strongly towards the null sequence when $k \to +\infty$.
- 4. We still assume that $1 , and consider the following subset of <math>\ell^p$:

$$E = \{e^n + ne^m \mid n, m \in \mathbb{N}, \ m > n\}.$$

- (a) Show that E is a closed subset for the strong topology.
- (b) Show that 0 is in the weak closure of E.
- (c) Show that a sequence of E cannot converge weakly towards 0.

Exercise 12 (The weak topology is not metrizable). Let E be an infinite dimensional Banach space. The purpose of this exercise is to prove that there does not exist a distance on E that generates the weak topology.

- 1. Suppose first that every weakly convergent sequence is strongly convergent (i.e. for the norm). Prove that if such a distance existed, then the weak topology and the norm topology would be the same.
- 2. Now we assume that there exists a weakly convergent sequence that does not converge in norm.
 - (a) Prove that there exists a sequence $(e_n) \subset E$ such that e_n converges weakly to 0, and $||e_n|| = 1$ for all $n \in \mathbb{N}$.
 - (b) Define $y_{n,m} = e_n + ne_m$ and prove that the set $F = \{y_{n,m} : m > n\}$ is closed for the norm.
 - (c) Prove that 0 lies in the weak closure of F, but there is no sequence in F converging weakly to 0.
 - (d) Conclude that the weak topology is not metrizable.